CN114010655A - 一种识别和降解前列腺癌细胞表面的pd-l1的金纳米星及其制备方法和应用 - Google Patents

一种识别和降解前列腺癌细胞表面的pd-l1的金纳米星及其制备方法和应用 Download PDF

Info

Publication number
CN114010655A
CN114010655A CN202111288485.5A CN202111288485A CN114010655A CN 114010655 A CN114010655 A CN 114010655A CN 202111288485 A CN202111288485 A CN 202111288485A CN 114010655 A CN114010655 A CN 114010655A
Authority
CN
China
Prior art keywords
star
auns
gold nano
gold
polyhexamethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111288485.5A
Other languages
English (en)
Other versions
CN114010655B (zh
Inventor
张力
陶良俊
梁朝朝
潘鑫源
王辉
李春
葛胜东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Affiliated Hospital of Anhui Medical University
Original Assignee
First Affiliated Hospital of Anhui Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Affiliated Hospital of Anhui Medical University filed Critical First Affiliated Hospital of Anhui Medical University
Priority to CN202111288485.5A priority Critical patent/CN114010655B/zh
Publication of CN114010655A publication Critical patent/CN114010655A/zh
Application granted granted Critical
Publication of CN114010655B publication Critical patent/CN114010655B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/242Gold; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供了一种识别和降解前列腺癌细胞表面的PD‑L1的金纳米星及其制备方法和应用,涉及生物医药技术领域。本发明首次利用PD‑L1结合肽,自噬诱导肽及金纳米星,成功构建了一种能识别并能高效降解前列腺癌细胞表面PD‑L1的纳米颗粒。即将PD‑L1结合肽及自噬诱导肽嫁接到金纳米星的表面,通过该纳米装置识别并降解PD‑L1,以抑制前列腺细胞的免疫逃逸,增强抗肿瘤免疫,从而抑制前列腺癌的进展,达到治疗前列腺癌的目的。

Description

一种识别和降解前列腺癌细胞表面的PD-L1的金纳米星及其 制备方法和应用
技术领域
本发明属于生物医药技术领域,具体涉及一种识别和降解前列腺癌细胞表面的PD-L1的金纳米星及其制备方法和应用。
背景技术
前列腺癌是全球男性第二常见的癌症,也是导致男性癌症死亡的第五大原因。根治性前列腺切除术或根治性放疗是局限性前列腺癌的主要治疗方法,而以雄激素剥夺疗法(ADT)为基础的综合治疗是晚期前列腺癌的治疗方法。一旦发生激素抵抗,晚期前列腺癌常发展为转移性前列腺癌。疾病复发和转移以及激素难治性疾病的发展仍然是前列腺癌患者死亡的主要原因。因此,晚期前列腺癌的病死率高,急需新的治疗方法。近年来,免疫治疗已成为晚期肿瘤治疗的主要手段之一,其中应用最为广泛的是免疫检查点分子程序性死亡受体-1(programmed death receptor-1,PD-1)/程序性死亡配体-1(programmed deathligand-1,PD-L1)信号通路抑制剂。PD-1/PD-L1抑制剂已被多国FDA批准用于临床治疗,并在进展期及晚期癌症患者中取得了长期且持久的临床反应。
PD-1/PD-L1信号通路是肿瘤免疫逃逸的主要机制之一,PD-1和PD-L1为共刺激分子,当表达于肿瘤细胞表面的PD-L1和表达于活化T细胞表面的PD-1结合时,便会触发T细胞凋亡,并抑制T细胞活化、增殖及毒性T细胞的功能,从而导致肿瘤细胞免受免疫细胞的攻击而发生免疫逃逸。PD-L1是一种Ⅰ型跨膜蛋白,由IgV样和IgC样胞外结构域、疏水性跨膜结构域和由30个氨基酸组成的短细胞质尾组成。PD-L1的表达可以是结构性低水平的,也可是适应性高水平的。越来越多的研究表明,PD-L1高表达于多种肿瘤并与多种肿瘤的PD-1/PD-L1抑制剂疗效及预后相关,当然也包括前列腺癌。PD-1/PD-L1信号轴在前列腺癌微环境调控中也起着重要作用。此外,PD-L1在恩杂鲁胺耐药的前列腺癌小鼠模型及前列腺癌细胞系中也是高表达的。总之,PD-L1在前列腺癌的发生发展中起着重要作用。目前用于治疗前列腺癌的靶向于PD-L1的都是PD-L1抗体。然而,抗体价格昂贵且多个临床试验表明PD-L1抗体在晚期前列腺癌免疫治疗方面的疗效并不十分理想。
发明内容
有鉴于此,本发明的目的在于提供一种识别和降解前列腺癌细胞表面的PD-L1的金纳米星及其制备方法和应用,抑制前列腺细胞的免疫逃逸,从而促进前列腺癌细胞的死亡。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种识别和降解前列腺癌细胞表面的PD-L1的金纳米星P-AuNS-B,所述金纳米星P-AuNS-B的制备原料包括PD-L1结合肽、自噬诱导肽和聚己二醇包被的金纳米星。
优选的,所述PD-L1结合肽的氨基酸序列包括SEQ ID NO.1所示的序列;
所述自噬诱导肽的氨基酸序列包括SEQ ID NO.2所示的序列。
优选的,所述PD-L1结合肽和自噬诱导肽均以酰胺反应偶联到聚己二醇包被的金纳米星表面。
优选的,利用聚己二醇包被金纳米星的方法,包括:去除金纳米星中的CTAB,重新分散于纯水中,并与聚己二醇反应10~12h,得聚己二醇包被的金纳米星;
所述聚己二醇的一端带有巯基,另一端带有羧基。
优选的,所述金纳米星与聚己二醇的质量比为0.5:10;
所述聚己二醇的分子量为5kD。
优选的,得聚己二醇包被的金纳米星后,还包括重新分散于MES中。
本发明还提供了上述金纳米星P-AuNS-B的制备方法,包括以下步骤:将聚己二醇包被的金纳米星、SDS、PD-L1结合肽和自噬诱导肽混合搅拌2h,与EDC混合后继续搅拌10~12h,所得溶液中包含所述金纳米星P-AuNS-B;
所述聚己二醇包被的金纳米星、PD-L1结合肽和自噬诱导肽的质量比为0.5:0.2:0.2。
优选的,在得所述溶液后,还包括离心,所述离心的转速为23000rpm。
本发明还提供了上述金纳米星P-AuNS-B在制备治疗前列腺癌药物中的应用。
本发明还提供了一种治疗前列腺癌的药物,所述药物的有效成分包括上述金纳米星P-AuNS-B。
有益效果:本发明提供了一种识别和降解前列腺癌细胞表面的PD-L1的金纳米星P-AuNS-B,首次利用PD-L1结合肽,自噬诱导肽及金纳米星,成功构建了一种能识别并能高效降解前列腺癌细胞表面PD-L1的纳米颗粒。即将PD-L1结合肽及自噬诱导肽嫁接到金纳米星的表面,通过该纳米装置识别并降解PD-L1,以抑制前列腺细胞的免疫逃逸,增强抗肿瘤免疫,从而抑制前列腺癌的进展,达到治疗前列腺癌的目的(图1)。
本发明所述金纳米星P-AuNS-B的靶向性强,表面修饰有PD-L1结合肽,可特异性识别并高效结合细胞表面的PD-L1,精准治疗前列腺癌;同时纳米材料具有穿透性强及在作用部位具有滞留效应的特点,PD-L1降解效率高,纳米材料具有穿透性强及在作用部位具有滞留效应的特点,PD-L1结合肽能保证所述金纳米星P-AuNS-B特异性识别并结合细胞表面的PD-L1,通过受体介导的胞吞作用,将与之结合的PD-L1大量地带到细胞内,并滞留在细胞内。在细胞内,该材料通过其表面的自噬诱导肽启动自噬,从而高效降解PD-L1;由于该材料靶向性强,PD-L1降解效率高,使得该材料能够有效阻断PD-1与PD-L1的结合,增强抗肿瘤免疫,从而能够有效的抑制前列腺癌的进展。
附图说明
图1为金纳米星P-AuNS-B的构建流程和实验设计方案;
图2为P-AuNS-B降解PD-L1的免疫印迹分析结果;
图3为P-AuNS-B处理后,PD-L1的表达量分析结果;
图4为P-AuNS-B的T细胞的增殖能力影响;
图5为P-AuNS-B对IF-2的分泌水平的影响;
图6为P-AuNS-B对IFN-γ的分泌水平的影响;
图7为P-AuNS-B在小鼠体内的治疗效果;其中A:静脉注射到小鼠体内的P-AuNS-B的药代动力学曲线,n=3;B:在2、12和24小时,通过ICP-MS评估健康小鼠主要器官中P-AuNS-B的生物分布,n=3;C和D:不同治疗组的肿瘤体积,n=5;E:治疗结束时切除肿瘤的照片;F:治疗结束时小鼠的肿瘤重量,n=5;G:指定治疗后小鼠的体重,n=5;H:在指定治疗后获得的小鼠肿瘤组织的苏木精-伊红(H&E)和免疫组织化学(IHC)染色;比例尺,50μm,数据以平均值±标准差表示,*P<0.05,**P<0.01,***P<0.001。
具体实施方式
本发明提供了一种识别和降解前列腺癌细胞表面的PD-L1的金纳米星P-AuNS-B,所述金纳米星P-AuNS-B的制备原料包括PD-L1结合肽、自噬诱导肽和聚己二醇包被的金纳米星。
本发明所述PD-L1结合肽的氨基酸序列优选包括SEQ ID NO.1所示(CVRARTR,标记为P)的序列;所述自噬诱导肽的氨基酸序列优选包括SEQ ID NO.2所示(YGRKKRRQRRRGGTNVFNATFEIWHDGEFGT,标记为B)的序列。
本发明所述聚已二醇(PEG)包被的金纳米星(AuNS,粒径为40nm),标记为PEG-AuNS。本发明所述PD-L1结合肽和自噬诱导肽优选均以酰胺反应偶联到PEG-AuNS表面,形成完整的纳米材料(P-AuNS-B)。
在本发明中,利用聚己二醇包被金纳米星的方法,优选包括:去除金纳米星中的CTAB,重新分散于纯水中,并与聚己二醇反应10~12h,得聚己二醇包被的金纳米星;所述聚己二醇的一端带有巯基,另一端带有羧基(简称SH-PEG-COOH)。
本发明所述金纳米星优选为本领域的常规市售产品,实施例中优选购自南京东纳生物科技有限公司,粒径为40nm,浓度为0.05mg/mL。本发明通过离心去除市售金纳米星中的CTAB,所述离心的转速优选为15000rpm,时间优选为15~20分钟。本发明将离心去除CTAB的金纳米星重新分散于纯水中,所述分散的比例优选为10mL所述市售金纳米星产品经离心去除CTAB后,重新分散于1mL的纯水中,而后与聚己二醇进行反应,所述金纳米星(纯品)与聚己二醇的质量比优选为0.5:10;所述聚己二醇的分子量优选为5kD。本发明所述反应优选在室温(18~22℃)下反应过夜(10~12h),使金纳米星颗粒表面带有羧基官能团。
本发明在得到聚己二醇包被的金纳米星后,优选还包括将其重新分散于MES中,所述MES的浓度优选为15mM,pH为5.5。在本发明实施例中,优选将所述P-AuNS-B利用MES重新分散为0.1mg/mL。
本发明还提供了上述金纳米星P-AuNS-B的制备方法,包括以下步骤:将聚己二醇包被的金纳米星、SDS、PD-L1结合肽和自噬诱导肽混合搅拌2h,与EDC混合后继续搅拌10~12h,所得溶液中包含所述金纳米星P-AuNS-B;
所述聚己二醇包被的金纳米星、PD-L1结合肽和自噬诱导肽的质量比为0.5:0.2:0.2。
本发明所述聚己二醇包被的金纳米星优选为上述MES重新分散的P-AuNS-B(0.1mg/mL),本发明将聚己二醇包被的金纳米星、SDS、PD-L1结合肽和自噬诱导肽混合搅拌2h,所述搅拌的速度优选为250rpm。本发明向所述搅拌后的体系中加入EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐),于室温(18~22℃)下搅拌过夜(10~12h),所述EDC的加入量与所述聚己二醇包被的金纳米星的质量比优选为1:1。
本发明在得所述溶液后,优选还包括离心,所述离心的次数优选为3次,所述离心的转速为23000rpm,每次离心的时间优选为15分钟。本发明利用所述离心的方法进行纯化。
本发明还提供了上述金纳米星P-AuNS-B在制备治疗前列腺癌药物中的应用。
本发明所述金纳米星P-AuNS-B,在作用48h后可显著降解前列腺癌细胞DU145表面的PD-L1,并可显著恢复T细胞(Jurkat细胞)的增殖能力及IF-2、IFN-γ的分泌水平;在前列腺癌荷瘤小鼠模型中,P-AuNS-B可显著下调PD-L1的表达并抑制肿瘤的生长,从而可用于制备治疗前列腺癌药物。
本发明还提供了一种治疗前列腺癌的药物,所述药物的有效成分包括上述金纳米星P-AuNS-B。本发明所述药物的剂型优选为注射剂。
本发明还提供了一种治疗前列腺癌的方法,向患者体内注射所述金纳米星P-AuNS-B。
下面结合实施例对本发明提供的一种识别和降解前列腺癌细胞表面的PD-L1的金纳米星及其制备方法和应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
本发明中所涉及到的试剂、材料和仪器,如非特别说明,均为本领域的常规试剂、材料和仪器,可通过购买得到。
实施例1
1、试剂和仪器
1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC,规格1g,Sigma);
金纳米星(规格:0.05mg/mL,南京东纳生物科技有限公司);
SH-PEG-COOH(MW:5kD,规格:500mg,北京键凯);
PD-L1结合肽(P,规格:1.0mg,吉尔生化上海有限公司);
自噬诱导肽(B,规格:0.5mg,吉尔生化上海有限公司);
十二烷基硫酸钠(SDS,规格:500g,国药);
电子分析天平(型号:OHAUS-CP114,上海奥豪斯仪器有限公司);
紫外可见分光光度计(Uv-vis)(型号:UV-1780,岛津);
机械搅拌器(型号:JJ-1,国华电器有限公司);
动态激光光散射仪(DLS)(型号:ZetaPlus,Brookhaven Instruments);
冷冻离心机(型号:5430R,湖南湘仪);
透射电子显微镜(TEM)(型号:Tecnai G2 F20场发射透射电子显微镜,美国FEI公司)。
2、金纳米星进行SH-PEG-COOH修饰
平行取2份10mL金纳米星(40nm,浓度为0.05mg/mL),进行离心去除上清CTAB溶液,用1mL纯水分散,加入10mg SH-PEG-COOH(MW:5kD),充分混匀,于室温反应过夜,使金纳米颗粒表面带有羧基和巯基官能团。将修饰上SH-PEG-COOH的金纳米星离心纯化,用15mM MES(pH 5.5)重新分散,定容至5mL(浓度为0.1mg/mL)。
3、SH-PEG-COOH修饰的金纳米星进行PD-L1结合肽及自噬诱导肽偶联
在5mL SH-PEG-COOH修饰的金纳米星(0.1mg/mL,分散于15mM MES),加入少量SDS,加入0.2mg PD-L1结合肽(P,1mg/mL,200L)及0.2mg自噬诱导肽(B,1mg/mL,200L),搅拌2小时后加入0.5mg EDC(10mg/mL,50L),于室温搅拌过夜。反应结束后,23000rpm离心3次纯化,首次离心上清液留样测试P肽及B肽的偶联率,纯化后的P-AuNS-B复合物用纯水定容至10mL(金纳米粒子的浓度为0.05mg/mL)。
4、实验例
4.1蛋白免疫印迹:使用总蛋白提取试剂盒(KeyGen,China)收集总蛋白,并使用BCA蛋白检测试剂盒(Sigma,USA)测量蛋白浓度。将裂解液涂在12%聚丙烯酰胺凝胶上并进行电泳。电泳后,蛋白质转移到聚偏二氟乙烯(PVDF)膜上。使用5%的牛奶封闭膜,并与初级抗体(PD-L1,#13684,Cell Signaling)在4℃过夜。接下来,在室温下将膜与二级抗体孵育1-2小时。使用增强化学发光检测试剂(Thermo-Scientific)检测信号。通过标准化GAPDH表达确定蛋白质水平。
结果如图2~3和表1所示,P-AuNS-B在作用48h后可显著降解前列腺癌细胞DU145表面的PD-L1。
表1P-AuNS-B处理后,PD-L1的表达量(n=3)
0h 24h 48h 72h
0.844 0.637 0.452 0.434
0.816 0.685 0.483 0.417
0.805 0.625 0.415 0.458
4.2T淋巴细胞活性检测:前列腺癌细胞DU145与人急性白血病细胞Jurkat(购于上海中国科学院细胞库)共培养用于评估T细胞活性。Jurkat细胞与人IL-2(20ng/ml;PeproTech,#AF-200-02)在共培养前过夜,以诱导激活和刺激PD-1表达。然后将活化的Jurkat细胞与DU145细胞在PD-L1pep、B-AuNS、P-AuNS或P-AuNS-B存在或不存在的情况下以1:5的比例共培养48小时。为了评估T细胞活性,检测了IF-2、IFN-γ分泌和T细胞增殖。使用ELISA人IF-2试剂盒和ELISA人IFN-γ试剂盒(Elascience)测量培养基中的IF-2和IFN-γ水平。用CCK-8检测T细胞增殖。
结果如图4~6和表2~4所示,P-AuNS-B可显著恢复T细胞(Jurkat细胞)的增殖能力及IF-2、IFN-γ的分泌水平。
表2P-AuNS-B对Jurkat细胞增殖能力的影响(%,n=3)
Figure BDA0003334091810000081
表3P-AuNS-B处理对IF-2分泌水平的影响(pg/ml,n=3)
Figure BDA0003334091810000082
表4P-AuNS-B处理对IFN-γ分泌水平的影响(pg/ml,n=3)
Figure BDA0003334091810000083
4.3动物实验:将小鼠前列腺癌细胞RM-1(1×106细胞)接种到6周龄C57BL/6雄性小鼠的右侧。当肿瘤体积达到约100mm3时,将小鼠随机分为PBS,PD-L1pep,P-AuNS,P-AuNS-B四组(每组5只小鼠),开始治疗程序,小鼠接受指定的注射(PBS,PD-L1结合态:5mg/kg;P-AuNS,P-AuNS-B:10mg/kg)注入尾静脉,每周三到四次,共八次注射。每隔一天测量肿瘤体积和体重。治疗于第16天终止,处死小鼠。然后,采集血液和血清进行血液学参数和肝肾功能分析,采集主要器官并进行苏木精-伊红(H&E)染色。此外,对切除的肿瘤进行拍照和称重。
结果如图7和表5~9所示,在前列腺癌荷瘤小鼠模型中,P-AuNS-B可显著下调PD-L1的表达并抑制肿瘤的生长。
表5静脉注射到小鼠体内的P-AuNS-B的药代动力学曲线(n=3)
Figure BDA0003334091810000091
表6不同时间内小鼠主要器官中P-AuNS-B的生物分布(n=3)
心脏 3.83 5.1 3.72 5.01 3.1 3.56 2.36 1.79 1.47
肝脏 14.82 17.64 14.28 31.06 26.7 27.11 28.65 25.48 29.55
脾脏 11.16 8.7 9.52 22.08 17.63 19.95 23.46 19.84 18.14
3.06 4.44 3.1 3.63 3.32 4.9 1.56 2.1 1.71
肾脏 4.23 3.8 4.81 6.18 5.19 5.46 2.64 2.46 1.24
表7不同处理组的肿瘤体积(mm3,n=5)
Figure BDA0003334091810000092
Figure BDA0003334091810000101
表8治疗结束时的小鼠肿瘤重量(g,n=5)
PBS PD-L1pep P-AuNS P-AuNS-B
1.75 1.37 1.09 0.52
1.81 1.18 0.95 0.56
1.57 1.1 0.88 0.35
1.41 0.98 0.78 0.46
1.54 0.97 0.76 0.38
表9治疗后小鼠的体重(g,n=5)
Figure BDA0003334091810000102
Figure BDA0003334091810000111
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110> 安徽医科大学第一附属医院
<120> 一种识别和降解前列腺癌细胞表面的PD-L1的金纳米星及其制备方法和应用
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 7
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 1
Cys Val Arg Ala Arg Thr Arg
1 5
<210> 2
<211> 31
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Gly Gly Thr Asn Val
1 5 10 15
Phe Asn Ala Thr Phe Glu Ile Trp His Asp Gly Glu Phe Gly Thr
20 25 30

Claims (10)

1.一种识别和降解前列腺癌细胞表面的PD-L1的金纳米星P-AuNS-B,其特征在于,所述金纳米星P-AuNS-B的制备原料包括PD-L1结合肽、自噬诱导肽和聚己二醇包被的金纳米星。
2.根据权利要求1所述金纳米星P-AuNS-B,其特征在于,所述PD-L1结合肽的氨基酸序列包括SEQ ID NO.1所示的序列;
所述自噬诱导肽的氨基酸序列包括SEQ ID NO.2所示的序列。
3.根据权利要求1或2所述金纳米星P-AuNS-B,其特征在于,所述PD-L1结合肽和自噬诱导肽均以酰胺反应偶联到聚己二醇包被的金纳米星表面。
4.根据权利要求3所述金纳米星P-AuNS-B,其特征在于,利用聚己二醇包被金纳米星的方法,包括:去除金纳米星中的CTAB,重新分散于纯水中,并与聚己二醇反应10~12h,得聚己二醇包被的金纳米星;
所述聚己二醇的一端带有巯基,另一端带有羧基。
5.根据权利要求4所述金纳米星P-AuNS-B,其特征在于,所述金纳米星与聚己二醇的质量比为0.5:10;
所述聚己二醇的分子量为5kD。
6.根据权利要求4或5所述金纳米星P-AuNS-B,其特征在于,得聚己二醇包被的金纳米星后,还包括重新分散于MES中。
7.权利要求1~6任一项所述金纳米星P-AuNS-B的制备方法,其特征在于,包括以下步骤:将聚己二醇包被的金纳米星、SDS、PD-L1结合肽和自噬诱导肽混合搅拌2h,与EDC混合后继续搅拌10~12h,所得溶液中包含所述金纳米星P-AuNS-B;
所述聚己二醇包被的金纳米星、PD-L1结合肽和自噬诱导肽的质量比为0.5:0.2:0.2。
8.根据权利要求7所述制备方法,其特征在于,在得所述溶液后,还包括离心,所述离心的转速为23000rpm。
9.权利要求1~6任一项所述金纳米星P-AuNS-B在制备治疗前列腺癌药物中的应用。
10.一种治疗前列腺癌的药物,其特征在于,所述药物的有效成分包括权利要求1~6任一项所述金纳米星P-AuNS-B。
CN202111288485.5A 2021-11-02 2021-11-02 一种识别和降解前列腺癌细胞表面的pd-l1的金纳米星及其制备方法和应用 Active CN114010655B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111288485.5A CN114010655B (zh) 2021-11-02 2021-11-02 一种识别和降解前列腺癌细胞表面的pd-l1的金纳米星及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111288485.5A CN114010655B (zh) 2021-11-02 2021-11-02 一种识别和降解前列腺癌细胞表面的pd-l1的金纳米星及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114010655A true CN114010655A (zh) 2022-02-08
CN114010655B CN114010655B (zh) 2023-02-03

Family

ID=80060220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111288485.5A Active CN114010655B (zh) 2021-11-02 2021-11-02 一种识别和降解前列腺癌细胞表面的pd-l1的金纳米星及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114010655B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105770901A (zh) * 2016-03-01 2016-07-20 中国人民解放军南京军区南京总医院 交联pH响应跨膜小肽的金纳米星材料及其应用
CN108697693A (zh) * 2016-01-13 2018-10-23 中央研究院 用于靶向、成像和治疗前列腺癌的肽共轭的纳米粒子
US20190314531A1 (en) * 2016-12-23 2019-10-17 The Johns Hopkins University Tumor and immune cell imaging based on pd-l1 expression
EP3725799A1 (en) * 2017-12-15 2020-10-21 Kyungpook National University Industry-Academic Cooperation Foundation Peptide bound to pl-l1 and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108697693A (zh) * 2016-01-13 2018-10-23 中央研究院 用于靶向、成像和治疗前列腺癌的肽共轭的纳米粒子
CN105770901A (zh) * 2016-03-01 2016-07-20 中国人民解放军南京军区南京总医院 交联pH响应跨膜小肽的金纳米星材料及其应用
US20190314531A1 (en) * 2016-12-23 2019-10-17 The Johns Hopkins University Tumor and immune cell imaging based on pd-l1 expression
EP3725799A1 (en) * 2017-12-15 2020-10-21 Kyungpook National University Industry-Academic Cooperation Foundation Peptide bound to pl-l1 and use thereof

Also Published As

Publication number Publication date
CN114010655B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
CN109529046B (zh) 一种靶向线粒体的自组装蛋白质纳米颗粒的制备与应用
CN108473527A (zh) 用于消除免疫抑制疗法期间jc病毒激活和pml(进行性多灶性白质脑病)风险的基因编辑方法和组合物
CN112402622B (zh) 靶向pd-l1的抗肿瘤多肽纳米药物载体及其应用
Ma et al. Enhanced immunotherapy of SM5-1 in hepatocellular carcinoma by conjugating with gold nanoparticles and its in vivo bioluminescence tomographic evaluation
CN108143718B (zh) 一种抗肿瘤纳米基因药物及其制备方法和应用
Cheng et al. Anti-cancer efficacy of biotinylated chitosan nanoparticles in liver cancer
Wang et al. Bio-fabricated nanodrugs with chemo-immunotherapy to inhibit glioma proliferation and recurrence
Wang et al. Transformable Supramolecular Self‐Assembled Peptides for Cascade Self‐Enhanced Ferroptosis Primed Cancer Immunotherapy
Wu et al. Targeted Delivery of PD‐L1‐Derived Phosphorylation‐Mimicking Peptides by Engineered Biomimetic Nanovesicles to Enhance Osteosarcoma Treatment
CN117384859B (zh) 一种树突状细胞来源的外泌体的制备方法及应用
Fang et al. Engineered IL-15/IL-15Rα-expressing cellular vesicles promote T cell anti-tumor immunity
Lin et al. Immunostimulatory gene therapy combined with checkpoint blockade reshapes tumor microenvironment and enhances ovarian cancer immunotherapy
CN109125741B (zh) 透明质酸/dotap/生存素编码基因自组装的三元复合物制剂及其制备方法
Gong et al. An off-the-shelf small extracellular vesicle nanomedicine for tumor targeting therapy
Rezaei et al. Erythrocyte− cancer hybrid membrane-coated reduction-sensitive nanoparticles for enhancing chemotherapy efficacy in breast cancer
Jian et al. Biomimetic Nanoplatform for Dual‐Targeted Clearance of Activated and Senescent Cancer‐Associated Fibroblasts to Improve Radiation Resistance in Breast Cancer
Xu et al. Application of mPEG-CS-cRGD/Bmi-1RNAi-PTX nanoparticles in suppression of laryngeal cancer by targeting cancer stem cells
Zheng et al. Arginine-assembly as NO nano-donor prevents the negative feedback of macrophage repolarization by mitochondrial dysfunction for cancer immunotherapy
CN114010655B (zh) 一种识别和降解前列腺癌细胞表面的pd-l1的金纳米星及其制备方法和应用
Pei et al. A tumoricidal lipoprotein complex electrostatically stabilized on mesoporous silica as nanotherapeutics and nanoadjuvant for potentiating immunotherapy of triple negative breast cancer
Liu et al. Study on biomimetic nano tumor targeted delivery system for chemotherapy-laser immunotherapy
Hu et al. Harnessing PD-1 cell membrane-coated paclitaxel dimer nanoparticles for potentiated chemoimmunotherapy
CN105078900B (zh) 一种多西紫杉醇纳米载药颗粒、其制备方法和应用
CN107412786A (zh) 一种基因载体系统的制备与应用
EP4268899A2 (en) Ferritin nanoparticles comprising a chemotherapeutic agent

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant