CN113995837A - 一种无模板中空单宁酸-铁纳米配位球及其制备方法和应用 - Google Patents

一种无模板中空单宁酸-铁纳米配位球及其制备方法和应用 Download PDF

Info

Publication number
CN113995837A
CN113995837A CN202111304045.4A CN202111304045A CN113995837A CN 113995837 A CN113995837 A CN 113995837A CN 202111304045 A CN202111304045 A CN 202111304045A CN 113995837 A CN113995837 A CN 113995837A
Authority
CN
China
Prior art keywords
hollow
coordination sphere
nano
template
tannic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111304045.4A
Other languages
English (en)
Other versions
CN113995837B (zh
Inventor
姜秀娥
王淑奇
甄文瑶
贾潇丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN202111304045.4A priority Critical patent/CN113995837B/zh
Publication of CN113995837A publication Critical patent/CN113995837A/zh
Application granted granted Critical
Publication of CN113995837B publication Critical patent/CN113995837B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Acoustics & Sound (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明提供一种无模板中空单宁酸‑铁纳米配位球及其制备方法和应用,属于纳米医学材料领域。该方法是先在反应溶剂中加入F127和氨水搅拌,然后加入单宁酸和甲醛,形成单宁酸低聚体,然后将单宁酸低聚体溶液与铁源与聚乙烯吡咯烷酮混合液混合反应,得到中空TA‑Fe纳米配位球。本发明的制备方法制备的中空TA‑Fe纳米配位球不需要模板,得到的中空TA‑Fe纳米配位球尺寸均一,形貌可控,具有良好的生物相容性,且具有显著提高的光热转换效率及良好的光热成像能力,可以作为很好的肿瘤诊断剂。

Description

一种无模板中空单宁酸-铁纳米配位球及其制备方法和应用
技术领域
本发明属于纳米医学材料领域,具体涉及一种无模板中空单宁酸-铁纳米配位球及其制备方法和应用。
背景技术
在过去的几十年里,具有多个功能的多功能纳米粒子一直是发展最快的科学领域之一。各种有机或无机纳米粒子或纳米胶囊由于其独特的结构和性质已被用作癌症成像和治疗的治疗诊断纳米平台。因此,将治疗和成像元素集成到纳米级药物中是有意义的。
单宁酸(TA)中含有大量的儿茶酚或没食子酰基,与多种金属离子有很强的螯合能力。单宁酸与各种底物以共价和非共价方式强烈结合,对这种金属-酚类配位聚合物的形态和结构的控制通常依赖于外部底物(或模板)的形状。由于TA分子的复杂聚合过程以及TA与金属离子之间强烈的配位相互作用,在不使用任何球形模板的情况下合成TA-金属配位球空心结构仍然是一个巨大的挑战。
由于具有低密度、高表面积和大内腔等突出优点,中空纳米结构在催化、太阳能收集、药物输送、生物医学等领域具有广泛的应用前景。与纳米颗粒不同,由于散射和反射光腔引起的光路增加以及照射时间延长,组装结构表现出增强的近红外光热转换效率。
发明内容
本发明的目的是为了提供一种无模板中空单宁酸-铁纳米配位球及其制备方法和应用,这种材料具有良好的生物相容性,具有显著提高的光热转换效率及良好的光热成像能力。
实现本发明的技术解决方案为:
一种无模板中空TA-Fe纳米配位球的制备方法,包括如下步骤:
步骤一:在反应溶剂中加入F127(聚环氧乙烷-嵌段-聚环氧丙烷-嵌段-聚环氧乙烷)和氨水搅拌,然后加入单宁酸(TA)和甲醛反应,得到单宁酸低聚体溶液;
步骤二:将单宁酸低聚体溶液与铁源溶液和聚乙烯吡咯烷酮混合液进行混合反应,得到中空TA-Fe纳米配位球。
优选的是,所述的步骤一的反应溶剂为水和乙醇的混合溶液。
优选的是,所述的步骤一的反应温度为室温,反应时间为8-12h。
优选的是,所述的步骤一中,氨水的浓度为25wt%,甲醛的浓度为37~38wt%。
优选的是,所述的步骤一中,F127的质量g:氨水的体积mL:单宁酸的质量g:甲醛的体积mL为0.2:0.5:0.2:0.38。
优选的是,所述的步骤二中,铁源溶液和聚乙烯吡咯烷酮混合液中,铁源和聚乙烯吡咯烷酮的质量比为0.2:0.5。
优选的是,所述的步骤二的反应温度为室温,反应时间为8-12h。
优选的是,所述铁源为Fe(NO3)3.9H2O。
本发明还提供上述制备方法得到的中空TA-Fe纳米配位球。
本发明还提供上述中空TA-Fe纳米配位球作为光热试剂在治疗癌症中的应用。
本发明的有益效果
本发明提供一种无模板中空TA-Fe纳米配位球及其制备方法,该方法是先在反应溶剂中加入F127和氨水搅拌,然后加入单宁酸和甲醛,在F127的帮助下,TA分子可以被甲醛适度聚合形成单宁酸低聚体,然后将单宁酸低聚体溶液与铁源与聚乙烯吡咯烷酮混合液混合反应,得到中空TA-Fe纳米配位球。本发明的制备方法制备的中空TA-Fe纳米配位球不需要模板,得到的中空TA-Fe纳米配位球尺寸均一,形貌可控,具有良好的生物相容性,且具有显著提高的光热转换效率及良好的光热成像能力,可以作为很好的肿瘤诊断剂。此外,本发明提供的中空TA-Fe纳米配位球材料制备方法简单,成本低廉。
附图说明
图1为实施例1制备的中空TA-Fe纳米配位球的SEM图;
图2为实施例1制备的中空TA-Fe纳米配位球的TEM图;
图3为实施例1制备的中空TA-Fe纳米配位球的水合粒径图;
图4为实施例1制备的中空TA-Fe纳米配位球的Zeta电势图;
图5为实施例1制备的中空TA-Fe纳米配位球的紫外-可见吸收光谱图;
图6为实施例1制备的中空TA-Fe纳米配位球在在不同浓度下的光照升温曲线;
图7为实施例1制备的中空TA-Fe纳米配位球在在不同浓度下的体外热成像图;
图8为实施例1制备的中空TA-Fe纳米配位球在激光连续反复照射五次下的升温和降温曲线;
图9为实施例1制备的中空TA-Fe纳米配位球在10min激光照射和冷却后的温度变化及在冷却期间收集的温度与时间的线性曲线图;
图10为实施例1制备的中空TA-Fe纳米配位球在不同浓度条件下的细胞毒性测试;
图11为实施例1制备的中空TA-Fe纳米配位球的细胞光热毒性测试。
具体实施方式
一种无模板中空TA-Fe纳米配位球的制备方法,包括如下步骤:
步骤一:在反应溶剂中加入F127和氨水搅拌,所述的搅拌时间优选为0.5-2h,更优选为1h,然后优选在氮气作用下,加入单宁酸(TA)和甲醛反应,所述的反应温度优选为室温,反应时间优选为8-12h,更优选为10h,得到单宁酸低聚体溶液;
所述的反应溶剂优选为水和乙醇的混合溶液,所述的混合溶液中,水和乙醇的体积比优选为46:8。
所述的氨水的浓度优选为25wt%,甲醛的浓度优选为37~38wt%。
所述的F127的质量g:氨水的体积mL:单宁酸的质量g:甲醛的体积mL优选为0.2:0.5:0.2:0.38。
步骤二:然后将单宁酸低聚体溶液与铁源溶液和聚乙烯吡咯烷酮混合液进行混合反应,所述的反应温度优选为室温,反应时间优选为8-12h,更优选为10h,得到中空TA-Fe纳米配位球。所述的为了反应更加均匀,优选将单宁酸低聚体溶液分2-3份分别加入到铁源溶液和聚乙烯吡咯烷酮混合液中反应。
所述的铁源溶液和聚乙烯吡咯烷酮混合液是将铁源溶液和聚乙烯吡咯烷酮溶液搅拌混合后得到的,所述的混合时间优选为1-2h,铁源和聚乙烯吡咯烷酮的质量比优选为0.2:0.5。所述铁源优选为Fe(NO3)3.9H2O。所述的PVP分子量为优选55000Da或58000Da,更优选为58000Da。
本发明还提供上述制备方法得到的中空TA-Fe纳米配位球。
本发明还提供上述中空TA-Fe纳米配位球作为光热试剂在治疗癌症中的应用。
为了进一步了解本发明,下面结合附图和实施例对本发明作进一步说明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围,实施例中涉及到的原料均为商购获得。
实施例1
(1)称取0.2g F127溶解在8mL乙醇和46mL水混合溶剂中,待F127完全溶解后,加入0.5mL氨水,室温下磁力搅拌1h。
(2)然后,先充15min氮气,然后称取0.2g TA,加入上述溶液中,继续充氮气(~15min),待完全溶解后,加入0.38mL甲醛,常温下反应11h。
(3)称取0.2g Fe(NO3)3.9H2O,分成三份儿,分别溶解在5mL超纯水中,然后,再称取0.5g PVP(58000Da),分成三份儿,分别溶解在13mL超纯水中,最后,分别将5mL的铁源液,逐滴加到PVP溶液中去,搅拌1h,得到单宁酸低聚体溶液;
(4)将得到的单宁酸低聚体溶液分成三份儿(18mL/份),然后,分别逐滴滴加到铁与PVP的混合溶液中去,常温下搅拌10h。然后离心洗涤,得到中空的TA-Fe纳米配位球。
图1为本发明实施例1中中空TA-Fe纳米配位球的扫描电镜图(SEM),从图中可以看到材料为纳米球,尺寸均一,大概在200nm左右。
图2为本发明实施例1中中空TA-Fe纳米配位球的透射电镜图(TEM),从图中可以看到材料的空腔结构。
图3为本发明实施例1中中空TA-Fe纳米配位球的水合粒径图,从图中可以看到材料粒径与电镜图吻合,在200nm左右。
图4为本发明实施例1中中空TA-Fe纳米配位球的Zeta电势图,从图中可以看到材料电势在-18mV左右,具有较高的稳定性。
图5为本发明实施例1中中空TA-Fe纳米配位球的紫外可见吸收图(UV-Vis),从图中可知材料在近红外区域有较好的吸收,可以用作光热材料。
实施例2
为了测试实施例1中制备的纳米材料的光热性质,具体测试方法如下:
(1)将实施例1中制备的材料配制成不同浓度的水溶液,选择浓度梯度为0,114,317,456,570,711μM,然后将这些纳米粒子水溶液均取1.0mL置于比色皿中,在808nm 0.7Wcm-2强度的激光下照射10min,利用温度探测器检测纳米粒子水溶液的温度变化,然后绘制温度照射时间曲线。
(2)为了测试TA-Fe的体外热成像能力,将0,114,711μM的TA-Fe水溶液置于比色皿中,用808nm 0.7W cm-2强度的激光照射10min,用红外热成像仪分别记录0,2,4,6,8,10min时溶液的热成像图。
(3)为了测试光热转换稳定性,将711μM的TA-Fe水溶液置于比色皿中,用808nm0.7W cm-2强度的激光照射10min,记录温度变化,然后关掉激光器,让其自由降温至起始温度,重复照射降温五次,绘制出了光热转换稳定性图。
图6为本发明实施例1中不同浓度材料在同一功率密度的808nm激光器照射下随时间升温曲线,图6说明,材料的水溶液较纯水有明显的温度升高,并且材料浓度越大温度越高,表明该材料光热效果比较优越,是一种良好的光热试剂。
图7为本发明实施例1中不同浓度材料在同一功率密度的808nm激光器照射下随时间升温的热成像图,图7说明,该材料具有优秀的成像能力。
图8为实施例1中材料的光热转换稳定性曲线图,从图中可以看出TA-Fe水溶液反复用激光照射5次后,材料的光热转换效果并没有任何减弱,展现出了优秀的光热稳定性。
图9a为实施例1制备的中空TA-Fe纳米配位球在10min激光照射和冷却后的温度变化图,图9b是图9a中冷却期间收集的温度与时间的线性曲线。可以看出传热时间常数τs=247.9s,经计算,光热转换效率达到~58%。
表1为实施例1制备的中空TA-Fe纳米配位球与其他已报道用于光热治疗的单宁酸和铁的纳米复合物的光热转换效率的对比,可以看出,本发明制备的中空TA-Fe纳米配位球的光热转换效率有明显的提高。
表1:
光敏剂 激光波长 光热转换效率 参考文献
PNV@Fe<sup>III</sup>TA 808 ~45.4% 文献1
Fe<sup>III</sup>-TA 808 35.1% 文献2
CaO<sub>2</sub>@ZIF8@MPN 808 39.3% 文献3
TPF 808 43.2% 文献4
TA-Fe 808 ~58% 本发明
其中,文献1出处为“T.Liu,M.Zhang,W.Liu,X.Zeng,X.Song,X.Yang,X.Zhang,J.Feng,ACS Nano 2018,12,3917-3927.”
文献2出处为“Y.Wang,F.Liu,N.Yan,S.Sheng,C.Xu,H.Tian,X.Chen,ACSBiomater.Sci.Eng.2019,5,4700-4707.”
文献3出处为“J.Liu,Y.Jin,Z.Song,L.Xu,Y.Yang,X.Zhao,B.Wang,W.Liu,K.Zhang,Z.Zhang,J.Shi,Chem.Eng.J.,2021,411,128440.”
文献4出处为“X.Zhu,B.Guan,Z.Sun,X.Tian,X.Li,J.Mater.Chem.B,2021,9,6084-6091.”
实施例3
为了证明本发明实施例1所得中空TA-Fe纳米配位球良好的生物相容性,我们使用CCK8实验来测试材料与细胞共同培养一段时间后,细胞的增值情况,具体测试方法如下:
(1)取对数生长期的HeLa细胞(1×105/mL)加入到96孔细胞培养板中(200μL/孔),将96孔板中的细胞放在5%CO2,37℃二氧化碳培养箱培养24h,至细胞单层铺满孔底(96孔平底板)。
(2)然后将中空TA-Fe纳米配位球用细胞培养基分散,配成不同浓度的分散液,浓度分别为(300,400,500μM),然后向96孔板中加入不同浓度的中空TA-Fe纳米配位球,5个复孔,细胞与材料在5%CO2,37℃下孵育12h,对照组不加样品,倒置显微镜下观察。
(3)培养结束后,吸去孔内培养液,小心用PBS洗2-3遍,洗去材料,然后每孔加100μL含CCK8的稀释液,终止培养。
(4)2h后置摇床上低速震荡10min。在酶标仪上检测450nm处的吸光度值(OD值),求出细胞的存活率。
图10为实施例1中制备的中空TA-Fe纳米配位球在不同浓度条件下的细胞毒性测试,如图所示,即使材料的浓度达到了500μM,细胞活性仍能维持在90%以上。可以看出,该材料有着良好的生物相容性,可以适用于生物体内。
实施例4
为了检测本发明实施例1所得中空TA-Fe纳米配位球光热杀伤癌细胞能力,具体测试方法如下:
(1)将HeLa细胞(1×105/mL)加入到96孔细胞培养板中(200μL/孔),培养24h,至细胞单层铺满孔底(96孔平底板)。实验组每孔加入浓度为500μM的中空TA-Fe纳米配位球100μL,空白组不加入样品,孵育12h。
(2)然后用0.7W cm-2808nm激光器光照细胞10min后,一小时后加入CCK8溶液检测细胞的存活率。
图11为实施例1中制备的中空TA-Fe纳米配位球体外治疗实验,在无激光照射下,癌细胞的存活率可以达到102%,材料对细胞几乎不产生毒性,而在近红外激光照射的条件下,中空TA-Fe纳米配位球对细胞的杀伤效果产生巨大的变化,其细胞活性下降到53%,有很好的杀伤效果,表明我们发明的材料具有很好的光热治疗效果,有望用于生物体内的癌症治疗。

Claims (10)

1.一种无模板中空TA-Fe纳米配位球的制备方法,其特征在于,包括如下步骤:
步骤一:在反应溶剂中加入F127和氨水搅拌,然后加入TA和甲醛反应,得到单宁酸低聚体溶液;
步骤二:将单宁酸低聚体溶液与铁源溶液和聚乙烯吡咯烷酮混合液进行混合反应,得到中空TA-Fe纳米配位球。
2.根据权利要求1所述的一种无模板中空TA-Fe纳米配位球的制备方法,其特征在于,所述的步骤一的反应溶剂为水和乙醇的混合溶液。
3.根据权利要求1所述的一种无模板中空TA-Fe纳米配位球的制备方法,其特征在于,所述的步骤一的反应温度为室温,反应时间为8-12h。
4.根据权利要求1所述的一种无模板中空TA-Fe纳米配位球的制备方法,其特征在于,所述的步骤一中,氨水的浓度为25wt%,甲醛的浓度为37~38wt%。
5.根据权利要求1所述的一种无模板中空TA-Fe纳米配位球的制备方法,其特征在于,所述的步骤一中,F127的质量g:氨水的体积mL:单宁酸的质量g:甲醛的体积mL为0.2:0.5:0.2:0.38。
6.根据权利要求1所述的一种无模板中空TA-Fe纳米配位球的制备方法,其特征在于,所述的步骤二中,铁源溶液和聚乙烯吡咯烷酮混合液中,铁源和聚乙烯吡咯烷酮的质量比为0.2:0.5。
7.根据权利要求1所述的一种无模板中空TA-Fe纳米配位球的制备方法,其特征在于,所述的步骤二的反应温度为室温,反应时间为8-12h。
8.根据权利要求1所述的一种无模板中空TA-Fe纳米配位球的制备方法,其特征在于,所述铁源为Fe(NO3)3.9H2O。
9.权利要求1所述的制备方法得到的中空TA-Fe纳米配位球。
10.权利要求9所述的中空TA-Fe纳米配位球作为光热试剂在治疗癌症中的应用。
CN202111304045.4A 2021-11-05 2021-11-05 一种无模板中空单宁酸-铁纳米配位球及其制备方法和应用 Active CN113995837B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111304045.4A CN113995837B (zh) 2021-11-05 2021-11-05 一种无模板中空单宁酸-铁纳米配位球及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111304045.4A CN113995837B (zh) 2021-11-05 2021-11-05 一种无模板中空单宁酸-铁纳米配位球及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113995837A true CN113995837A (zh) 2022-02-01
CN113995837B CN113995837B (zh) 2023-06-06

Family

ID=79927778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111304045.4A Active CN113995837B (zh) 2021-11-05 2021-11-05 一种无模板中空单宁酸-铁纳米配位球及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113995837B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147390A (zh) * 2017-12-07 2018-06-12 西安交通大学 一种金属-天然多酚配合物纳米球及其纳米多孔金属/碳基复合材料及制备方法
CN108186605A (zh) * 2018-01-11 2018-06-22 中山大学 一种基于单宁酸的载药纳米颗粒及其制备方法和应用
CN108853059A (zh) * 2018-08-03 2018-11-23 上海理工大学 一种聚吡咯-聚乙烯吡咯烷酮纳米颗粒及其制备方法和用途
CN108906096A (zh) * 2018-07-23 2018-11-30 江南大学 一种用于醇脱氢的有序介孔碳封装碳化金属催化剂及制备
JP2019094541A (ja) * 2017-11-24 2019-06-20 株式会社ノリタケカンパニーリミテド 金属ナノ粒子分散液の製造方法
US20200179295A1 (en) * 2018-12-05 2020-06-11 The Uab Research Foundation Mri-detectable multilayer microcapsules for ultrasound-triggered delivery of pharmacologically active agents
CN111333124A (zh) * 2020-03-06 2020-06-26 西安交通大学 一种空心结构的尖晶石型介孔高熵氧化物纳米球及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094541A (ja) * 2017-11-24 2019-06-20 株式会社ノリタケカンパニーリミテド 金属ナノ粒子分散液の製造方法
CN108147390A (zh) * 2017-12-07 2018-06-12 西安交通大学 一种金属-天然多酚配合物纳米球及其纳米多孔金属/碳基复合材料及制备方法
CN108186605A (zh) * 2018-01-11 2018-06-22 中山大学 一种基于单宁酸的载药纳米颗粒及其制备方法和应用
WO2019137005A1 (zh) * 2018-01-11 2019-07-18 中山大学 一种基于单宁酸的载药纳米颗粒及其制备方法和应用
CN108906096A (zh) * 2018-07-23 2018-11-30 江南大学 一种用于醇脱氢的有序介孔碳封装碳化金属催化剂及制备
CN108853059A (zh) * 2018-08-03 2018-11-23 上海理工大学 一种聚吡咯-聚乙烯吡咯烷酮纳米颗粒及其制备方法和用途
US20200179295A1 (en) * 2018-12-05 2020-06-11 The Uab Research Foundation Mri-detectable multilayer microcapsules for ultrasound-triggered delivery of pharmacologically active agents
CN111333124A (zh) * 2020-03-06 2020-06-26 西安交通大学 一种空心结构的尖晶石型介孔高熵氧化物纳米球及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BY XI WANG等: "Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres", 《ADV. FUNCT. MATER.》 *
YANBING WANG等: "Exploration of FeIII-Phenol Complexes for Photothermal Therapy and Photoacoustic Imaging", 《ACS BIOMATERIALS SCIENCE & ENGINEERING》 *

Also Published As

Publication number Publication date
CN113995837B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
Dong et al. Upconversion-mediated ZnFe 2 O 4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy
Xiao et al. Hydrophilic bismuth sulfur nanoflower superstructures with an improved photothermal efficiency for ablation of cancer cells
CN109602919B (zh) 一种核壳金属有机框架包覆的黑磷量子点及其制备方法与应用
Qin et al. Development of copper vacancy defects in a silver-doped CuS nanoplatform for high-efficiency photothermal–chemodynamic synergistic antitumor therapy
CN107412195A (zh) 一种pH响应的抗肿瘤药物载体材料及其制备和应用
Zhang et al. A hybrid nanomaterial with NIR-induced heat and associated hydroxyl radical generation for synergistic tumor therapy
CN111298141B (zh) 一种基于铁和多巴胺配位的纳米颗粒光热转换材料及其制备方法和应用
Hafezi et al. Cur-loaded ZnFe2O4@ mZnO@ N-GQDs biocompatible nano-carriers for smart and controlled targeted drug delivery with pH-triggered and ultrasound irradiation
CN107469079B (zh) 一种t1-mri成像引导下的光动治疗剂制备方法
Cheng et al. 4-in-1 Fe3O4/g-C3N4@ PPy-DOX nanocomposites: magnetic targeting guided trimode combinatorial chemotherapy/PDT/PTT for cancer
Xu et al. Controllable synthesis of rare earth (Gd 3+, Tm 3+) doped Prussian blue for multimode imaging guided synergistic treatment
Wang et al. Polyoxometalate–covalent organic framework hybrid materials for pH-responsive photothermal tumor therapy
Ai et al. Tunable Assembly of Organic–Inorganic Molecules into Hierarchical Superstructures as Ligase Mimics for Enhancing Tumor Photothermal Therapy
Yin et al. Recent development of MOF-based photothermal agent for tumor ablation
Shao et al. Mn-doped single atom nanozyme composited Au for enhancing enzymatic and photothermal therapy
Liang et al. Tumor microenvironment-responsive modular integrated nanocomposites for magnetically targeted and photothermal enhanced catalytic therapy
CN113082206B (zh) 一种大分子一氧化氮供体修饰的上转换纳米粒子、制备方法和应用
CN110104689A (zh) 一种中空二氧化锰纳米颗粒及其制备方法
Liu et al. Nanosilver-decorated covalent organic frameworks for enhanced photodynamic, photothermal, and antibacterial properties
CN106882791B (zh) 水分散性碳纳米洋葱的制备方法及其应用
CN112850779A (zh) 一种空心Cu7S4纳米立方结构及其制备方法和应用
CN113995837B (zh) 一种无模板中空单宁酸-铁纳米配位球及其制备方法和应用
CN111494627A (zh) 一种基于中空碳球的光、热、磁复合材料的制备方法及应用
Baladi et al. Green synthesis and characterization of terbium orthoferrite nanoparticles decorated with g-C3N4 for antiproliferative activity against human cancer cell lines (Glioblastoma, and Neuroblastoma)
Zou et al. Polyethylene glycol–modified molybdenum oxide as NIR photothermal agent and its ablation ability for HeLa cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant