CN113976117B - 一种用于催化过硫酸盐氧化有机物的零价铝/含铁粘土复合材料的制法及应用 - Google Patents
一种用于催化过硫酸盐氧化有机物的零价铝/含铁粘土复合材料的制法及应用 Download PDFInfo
- Publication number
- CN113976117B CN113976117B CN202111262890.XA CN202111262890A CN113976117B CN 113976117 B CN113976117 B CN 113976117B CN 202111262890 A CN202111262890 A CN 202111262890A CN 113976117 B CN113976117 B CN 113976117B
- Authority
- CN
- China
- Prior art keywords
- zero
- iron
- containing clay
- valent aluminum
- ball milling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 151
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 109
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 107
- 239000002131 composite material Substances 0.000 title claims abstract description 70
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 70
- 239000004927 clay Substances 0.000 title claims abstract description 61
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 title claims abstract description 40
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 238000000498 ball milling Methods 0.000 claims abstract description 59
- 239000003054 catalyst Substances 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 26
- 229910000273 nontronite Inorganic materials 0.000 claims description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 30
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical group OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 claims description 27
- 239000002351 wastewater Substances 0.000 claims description 15
- 239000002734 clay mineral Substances 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 12
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 10
- 239000011812 mixed powder Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 claims description 8
- 239000002957 persistent organic pollutant Substances 0.000 claims description 8
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 6
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 claims description 5
- 239000005711 Benzoic acid Substances 0.000 claims description 5
- 235000010233 benzoic acid Nutrition 0.000 claims description 5
- 229960001699 ofloxacin Drugs 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 13
- 230000003213 activating effect Effects 0.000 abstract description 9
- 230000004913 activation Effects 0.000 abstract description 6
- 231100000956 nontoxicity Toxicity 0.000 abstract description 3
- 239000002638 heterogeneous catalyst Substances 0.000 abstract description 2
- 238000004088 simulation Methods 0.000 description 13
- 230000015556 catabolic process Effects 0.000 description 9
- 238000006731 degradation reaction Methods 0.000 description 9
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 8
- 229910052901 montmorillonite Inorganic materials 0.000 description 8
- 229960000892 attapulgite Drugs 0.000 description 7
- 239000003344 environmental pollutant Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229910052625 palygorskite Inorganic materials 0.000 description 7
- 231100000719 pollutant Toxicity 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229910000278 bentonite Inorganic materials 0.000 description 5
- 239000000440 bentonite Substances 0.000 description 5
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 5
- 230000000593 degrading effect Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 4
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005067 remediation Methods 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000010757 Reduction Activity Effects 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- XFBXDGLHUSUNMG-UHFFFAOYSA-N alumane;hydrate Chemical compound O.[AlH3] XFBXDGLHUSUNMG-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000001089 mineralizing effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- FHHJDRFHHWUPDG-UHFFFAOYSA-L peroxysulfate(2-) Chemical compound [O-]OS([O-])(=O)=O FHHJDRFHHWUPDG-UHFFFAOYSA-L 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- AZJYLVAUMGUUBL-UHFFFAOYSA-A u1qj22mc8e Chemical compound [F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[F-].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O=[Si]=O.O=[Si]=O.O=[Si]=O.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 AZJYLVAUMGUUBL-UHFFFAOYSA-A 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/722—Oxidation by peroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/16—Clays or other mineral silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/88—Ferrosilicates; Ferroaluminosilicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0036—Grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/70—Treatment of water, waste water, or sewage by reduction
- C02F1/705—Reduction by metals
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/306—Pesticides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
- C02F2101/345—Phenols
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/36—Organic compounds containing halogen
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Dispersion Chemistry (AREA)
- Catalysts (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
本发明涉及一种用于催化过硫酸盐氧化有机物的零价铝/含铁粘土复合材料的制法及应用,属于水环境处理领域。含铁粘土材料与零价铝经过简单球磨法制备新型催化剂,以达到活化过硫酸盐高效氧化降解水中难降解有机物的效果,本发明的催化剂制备方法和操作工艺简单,相比化学合成法二次污染小,合成时间短,产量大,成本低。采用的改性材料是天然含铁粘土材料,其来源广泛,无毒,且作为非均相催化剂性质稳定。零价铝/含铁粘土复合催化剂对PS活化效果良好,且使用pH范围较宽,在3–9内均可应用。本发明的零价铝/含铁粘土复合催化剂可以活化PS对不同的难降解有机物氧化去除,具有较宽的应用范围。
Description
技术领域
本发明涉及含铁粘土材料与零价铝经过简单球磨法制备新型催化剂,以达到活化过硫酸盐高效氧化降解水中难降解有机物的效果,属于水环境处理领域。
背景技术
近年来,杀虫剂、消毒副产物、药物及个人护理品等难降解有机物对于水体的污染破坏了生态系统的稳定性,影响了工农业发展。大部分难降解有机物很难被生物降解,具有高毒性,并且采用传统的处理方法去除效率低。高级氧化法作为一种能够彻底矿化污染物的方法,能够有效减小污染物毒性,增加其生物可降解性,受到了越来越广泛的关注。目前,基于过硫酸盐(PS)活化产生硫酸根自由基用于降解污染物的技术正在成为一种可代替传统Fenton技术的新型高级氧化技术。
零价金属材料(ZVMs)由于其较强的还原性,来源广泛性以及可重复利用性,被应用于污废水处理、地下水修复、土壤修复等领域。对于ZVMs的研究较集中于对零价铁(ZVI),零价锌(ZVZ)以及零价铜(ZVC)的应用研究,近年来,零价铝(ZVAl)因其具有比其他ZVMs更低的氧化还原电位(E0(Al3+/Al0))=-1.662V,以及其两性性质(反应pH可以拓展到碱性)而逐渐受到关注。目前环境领域关于ZVAl的研究主要集中于两类:以零价铝/氧化剂体系为核心的氧化体系和以零价铝/无氧体系为核心的还原体系。然而,由于ZVAl活泼的性质,在空气中能迅速生成一层致密的表面氧化膜,导致其在pH 4–9条件下性质稳定,影响Al0表面的暴露和电子传递。因此,其还原性利用pH范围较窄,为了拓宽其适用pH范围,许多学者提出采用一系列辅助方法,例如外加能源、酸洗预处理、添加化学试剂、材料改性等来改善它的氧化体系的效率。这些改进方法的核心都是以破坏氧化膜来增加电子的传递效率,其中近年来,有学者借鉴铝-水产氢反应中采用机械球磨活化铝粉的方法,将球磨铝粉应用于环境领域,提高了其还原活性。
一些天然的粘土矿物材料含有S,Mn,Fe等元素,使得它们具有较好的氧化还原活性,并且能影响元素在自然界中的生物化学循环以及污染物的迁移。其中,含铁粘土矿物中Fe(III)/Fe(II)氧化还原电对在自然界中的循环起到了氧化还原缓冲的作用,能够随着周围氧化还原环境的变化而改变。粘土矿物中的结构Fe常以Fe(III)的形式存在,利用生物或者化学还原的方法可以将其还原为结构Fe(II),使其具有还原重金属离子、放射性元素、硝酸盐,活化氧气、过氧化氢、过一硫酸盐产生自由基氧化有机污染物的能力。此外,粘土矿物材料属于超细粉末,具有较大的比表面积,稳定的骨架结构和绿色无毒的特点,因此它是一种具有潜力的环境修复功能材料。
已有研究利用表明过硫酸盐PS够加速纳米零价铝材料的(nZVAl)表面电化学腐蚀,从而使得nZVAl/PS体系在较宽的pH范围内高效降解污染物。然而,微米级零价铝(mZVAl)相比于nZVAl更加廉价易得和环境友好,然而其具有比nZVAl更低的比表面积,使得其活化PS效率低下。
发明内容
本发明的目的是提供微米零价铝与天然含铁粘土矿物材料用简单球磨方法合成新型复合催化剂及其制法,成本低,无污染,在污水中应用以达到高效活化PS氧化难降解有机物的效果。
为了解决本发明的技术问题,所提出的技术方案如下:一种零价铝/含铁粘土复合材料的制备方法,由微米零价铝、天然含铁粘土矿物材料球磨混合制得的一种复合催化剂;
所述的微米零价铝粒径大小为100-200目(75-150μm);
所述的天然含铁粘土矿物材料为绿脱石、蒙脱石、凹凸棒或膨润土,
具体制备方法如下:
将微米零价铝与所述含铁粘土以质量比为1:2–8:1混合,置于玛瑙球磨罐中,加入球料质量比为20:1–50:1的玛瑙球,将玛瑙罐放入真空套抽真空后开始球磨,球磨时间控制在0.5–4小时,行星式球磨旋转速率控制在200–800rpm,球磨结束后将混合粉末放入手套箱烘干,得到零价铝/含铁粘土复合材料。
优选的,微米零价铝与所述含铁粘土以质量比为1:1。
优选的,所述的天然含铁粘土矿物材料为绿脱石。
为了解决本发明的技术问题,所提出的另一技术方案如下:所述的零价铝/含铁粘土复合材料的用于去除难降解有机物的方法,包括以下步骤:
向有机污染物溶液中依次加入0.2g/L–1.5g/L的零价铝/含铁粘土复合材料和119mg/L–1904mg/L的过硫酸盐,零价铝/含铁粘土复合材料pH为3.00–9.00之间能够活化过硫酸盐去除难降解的有机污染物。
优选的,所述的有机污染物为4-氯酚、苯甲酸、硝基苯、苯酚或氧氟沙星溶液。
优选的,所述的零价铝/含铁粘土复合材料的用于去除难降解有机物的方法,零价铝/含铁粘土复合材料在pH为3活化过硫酸盐去除难降解的有机污染物。
优选的,将微米零价铝(约75μm)与所述绿脱石以质量比为1:1的比例混合,置于50mL玛瑙球磨罐中,加入球料质量比为20:1的玛瑙球,将玛瑙罐放入真空套抽真空后开始球磨,球磨时间控制为1.0小时,行星式球磨旋转速率控制在600rpm,球磨结束后将混合粉末放入手套箱烘干,得到零价铝/绿脱石含铁粘土复合材料,向含有浓度为20.0mg/L 4-氯酚的废水200mL中加入100mg零价铝/绿脱石复合催化剂和476mg/L过硫酸盐反应1h。
相比现有技术,本发明的有益效果如下:
(1)本发明采用简单球磨法制得零价铝/含铁粘土复合催化剂,制备方法和操作工艺简单,相比化学合成法二次污染小,合成时间短,产量大,成本低。
(2)本发明采用的改性材料是天然含铁粘土材料,其来源广泛,无毒,且作为非均相催化剂性质稳定。
(3)本发明的零价铝/含铁粘土复合催化剂对PS活化效果良好,且使用pH范围较宽,在3–9内均可应用。
(4)本发明的零价铝/含铁粘土复合催化剂可以活化PS对不同的难降解有机物氧化去除,具有较宽的应用范围。
(5)本发明采用零价铝与含铁粘土球磨的方法,既破坏了零价铝的氧化膜增加了其活性,又利用零价铝的强还原性促进含铁粘土中Fe元素的循环,增强其复合物对过硫酸盐的活化能力。
(6)微米零价铝与所述含铁粘土以质量比为1:1。以不同零价铝/绿脱石质量比复合的催化剂对4-氯酚的去除率对比,随着质量比的增加,零价铝/绿脱石复合催化剂对4-氯酚的去除率先上升后下降,在投料比为1:1时达到最优效果。
(7)所述的天然含铁粘土矿物材料为绿脱石,其与零价铝复合材料活化过硫酸盐的效果优于蒙脱石、凹凸棒和膨润土,可能是因为它们含铁量以及粘土中结构铁的占位差异而造成的。
(8)零价铝/绿脱石复合材料在pH为3.00–9.00之间能够高效活化PS降解4-氯酚,且随着pH降低,催化活性升高,可能是因为酸性条件下促进了零价铝的腐蚀,使得其对绿脱石中Fe元素循环的促进作用增强。
附图说明
图1为零价铝、含铁粘土、零价铝/含铁粘土复合催化剂的粒度分布图。
图2为零价铝、含铁粘土、零价铝/含铁粘土复合催化剂的XRD图。
图3为零价铝、含铁粘土、零价铝/含铁粘土复合催化剂的扫描电镜图。
图4为不同体系对一种难降解有机物:4-氯酚的降解动力学曲线。
图5为零价铝/含铁粘土复合催化剂在pH为3.00–10.00下对一种难降解有机物:4-氯酚的降解动力学曲线。
具体实施方式
以下通过实施例进一步说明本发明。
实施例1:
一种零价铝/含铁粘土复合材料的制备方法
将微米零价铝(约110μm)与绿脱石以质量比为1:1混合,置于50mL玛瑙球磨罐中,加入球料质量比为20:1的玛瑙球,将玛瑙罐放入真空套抽真空后开始球磨。球磨时间控制为1.0小时,行星式球磨旋转速率控制在600rpm。球磨结束后将混合粉末放入手套箱烘干,得到零价铝/含铁粘土复合材料。图1是零价铝、绿脱石、零价铝/绿脱石复合催化剂的粒度分布图,零价铝和绿脱石的中位粒径分别为111.75μm和0.60μm,而零价铝/绿脱石复合催化剂的中位粒径为15.44μm,说明两者复合后零价铝颗粒发生断裂或破碎导致粒径减小。图2中零价铝的晶体结构特征峰强度减小,说明其晶粒尺寸和晶型有序度有所下降,也和氧化膜破坏有关。图3电镜照片也显示,新生成的复合材料的粒径相比零价铝有所降低,且表面更加粗糙,可能是粘土颗粒与零价铝碎片相互掺杂复合压实所造成的。通过XPS表征,发现含铁粘土中的铁元素都为Fe(III),与零价铝球磨复合后,其中47.0%的Fe都被还原为Fe(II),而Fe(II)对过硫酸盐有较强的活化效果。
以一种不含铁粘土:合成锂蒙脱石替换绿脱石,采用实施例1中相同方法合成得到零价铝/不含铁粘土复合材料作为对比。图4是以含有一种难降解有机物:4-氯酚的废水为实验室模拟水样的降解效果对比图。模拟废水初始4-氯酚浓度为20mg/L,在200mL的4-氯酚溶液中分别加入100mg零价铝/含铁粘土复合催化剂、100mg零价铝/不含铁粘土复合催化剂、50mg零价铝、50mg绿脱石含铁粘土,过硫酸盐浓度为476mg/L。本工艺通过液相色谱仪检测体系中4-氯酚的剩余含量(Ct/C0),从图4中可以看出,零价铝、绿脱石以及复合催化剂对4-氯酚没有降解效果,且前两者对过硫酸盐没有活化降解4-氯酚的能力;零价铝/不含铁粘土复合催化剂活化过硫酸盐1h后对4-CP的去除率只有16.2%,而零价铝/绿脱石复合催化剂能够高效活化过硫酸盐降解4-氯酚污染物,达到100%去除率。
实施例2:
一种由实施例1制备得到的零价铝/绿脱石复合材料高效活化过硫酸盐(PS)应用于去除难降解有机物,包括以下步骤:
(1)配制20.0mg/L的4-氯酚废水为实验室模拟水样;
(2)量取5份200mL(1)中的实验室模拟水样于5个锥形瓶,将溶液pH分别调至3.00、5.00、7.00、9.00、10.00,向每个锥形瓶中加入100mg零价铝/绿脱石土复合材料和浓度为476mg/L的过硫酸盐,在不同的反应时间点用注射器取样,通过液相色谱仪检测体系中4-氯酚的剩余含量(Ct/C0),相关结果如图5所示。由图5可知,零价铝/绿脱石复合材料在pH为3.00–9.00之间能够高效活化PS降解4-氯酚,且随着pH降低,催化活性升高。
实施例3:
一种零价铝/含铁粘土复合材料的制备方法
将微米零价铝(约75μm)与上述绿脱石以质量比分别为1:2、1:1、2:1、4:1、8:1的比例混合,置于50mL玛瑙球磨罐中,加入球料质量比为20:1的玛瑙球,将玛瑙罐放入真空套抽真空后开始球磨。球磨时间控制为1.0小时,行星式球磨旋转速率控制在600rpm。球磨结束后将混合粉末放入手套箱烘干,得到零价铝/含铁粘土复合材料。
含有4-氯酚的废水200mL为实验室模拟水样,模拟废水初始4-氯酚浓度为20.0mg/L,加入100mg复合催化剂和476mg/L过硫酸盐反应1h。本工艺通过液相色谱仪检测产品实际降解4-氯酚的效果,表1为以不同零价铝/绿脱石质量比复合的催化剂对4-氯酚的去除率对比,随着质量比的增加,零价铝/绿脱石复合催化剂对硝基苯的去除率先上升后下降,在投料比为1:1时达到最优效果。
表1实施例3中不同零价铝/绿脱石质量比复合的催化剂对4-氯酚去除率的对比
实施例4:
一种零价铝/含铁粘土复合材料的制备方法
将微米零价铝(约150μm)与蒙脱石以质量比分别为1:1的比例混合,置于50mL玛瑙球磨罐中,加入球料质量比为20:1的玛瑙球,将玛瑙罐放入真空套抽真空后开始球磨。球磨时间控制为1.0小时,行星式球磨旋转速率控制在600rpm。球磨结束后将混合粉末放入手套箱烘干,得到零价铝/蒙脱石复合材料。
含有苯甲酸的废水200mL为实验室模拟水样,模拟废水初始苯甲酸浓度为12.2mg/L,加入0.2g/L–1.5g/L的复合催化剂和476mg/L过硫酸盐反应1h。本工艺通过液相色谱仪检测产品实际降解硝基苯的效果。当复合催化剂投加量在0.5g/L时,达到最佳的苯甲酸降解效果,去除率为54.0%。
实施例5:
一种零价铝/含铁粘土复合材料的制备方法
将微米零价铝(约90μm)与凹凸棒以质量比分别为1:1的比例混合,置于50mL玛瑙球磨罐中,加入球料质量比为20:1的玛瑙球,将玛瑙罐放入真空套抽真空后开始球磨。球磨时间控制为1.0小时,行星式球磨旋转速率控制在600rpm。球磨结束后将混合粉末放入手套箱烘干,得到零价铝/蒙脱石复合材料。
含有苯酚的废水200mL为实验室模拟水样,模拟废水初始苯酚浓度为9.14mg/L,加入0.5g/L的复合催化剂和119mg/L–1904mg/L的过硫酸盐反应1h。本工艺通过液相色谱仪检测产品实际降解苯酚的效果。随着过硫酸盐投加量的增加,苯酚的降解效果越好,最高去除率可达67.2%。
实施例6:
一种零价铝/含铁粘土复合材料的制备方法
将微米零价铝(约130μm)与上述膨润土以质量比为1:1的比例混合,置于50mL玛瑙球磨罐中,加入球料质量比为20:1的玛瑙球,将玛瑙罐放入真空套抽真空后开始球磨。球磨时间控制为1.0小时,行星式球磨旋转速率控制在600rpm。球磨结束后将混合粉末放入手套箱烘干,得到零价铝/膨润土复合材料。
含有氧氟沙星的废水200mL为实验室模拟水样,模拟废水初始氧氟沙星浓度为36.1mg/L,加入0.5g/L的复合催化剂和476mg/L的过硫酸盐反应1h。本工艺通过液相色谱仪检测产品实际降解氧氟沙星的效果。
实施例7:
一种零价铝/含铁粘土复合材料的制备方法
将微米零价铝(约130μm)分别与绿脱石、蒙脱石、凹凸棒以质量比为1:1的比例混合,置于50mL玛瑙球磨罐中,加入球料质量比为20:1的玛瑙球,将玛瑙罐放入真空套抽真空后开始球磨。球磨时间控制为1.0小时,行星式球磨旋转速率控制在600rpm。球磨结束后将混合粉末放入手套箱烘干,分别得到零价铝/绿脱石、零价铝/蒙脱石、零价铝/凹凸棒复合材料。
含有4-氯酚的废水200mL为实验室模拟水样,模拟废水初始4-氯酚浓度为20.0mg/L,加入100mg上述3种复合催化剂和476mg/L过硫酸盐反应1h。本工艺通过液相色谱仪检测产品实际降解4-氯酚的效果,表2为不同零价铝/含铁粘土复合催化剂对4-氯酚的去除率的对比,零价铝/绿脱石对4-氯酚有最好的降解效果,去除率达100%,而零价铝/凹凸棒效果最差,只有30.7%。
表2实施例7中不同零价铝/含铁粘土复合催化剂对4-氯酚的去除率的对比
本发明的不局限于上述实施例所述的具体技术方案,凡采用等同替换形成的技术方案均为本发明要求的保护范围。
Claims (3)
1.一种零价铝/含铁粘土复合材料用于去除难降解有机物的方法,其特征在于:包括以下步骤:
向有机污染物溶液中依次加入0.2 g/L–1.5 g/L的零价铝/含铁粘土复合材料和119mg/L–1904 mg/L的过硫酸盐,零价铝/含铁粘土复合材料pH为3.00–9.00之间能够活化过硫酸盐去除难降解的有机污染物;所述的有机污染物为4-氯酚、苯甲酸、硝基苯、苯酚或氧氟沙星溶液;
由微米零价铝、天然含铁粘土矿物材料球磨混合制得的一种复合催化剂;所述的微米零价铝粒径大小为100-200目75-150μm;所述的天然含铁粘土矿物材料为绿脱石;复合催化剂具体制备方法如下:
将微米零价铝与所述含铁粘土以质量比为1:1混合,置于玛瑙球磨罐中,加入球料质量比为20:1–50:1的玛瑙球,将玛瑙罐放入真空套抽真空后开始球磨,球磨时间控制在0.5–4小时,行星式球磨旋转速率控制在200–800rpm,球磨结束后将混合粉末放入手套箱烘干,得到零价铝/含铁粘土复合材料。
2.根据权利要求1所述的零价铝/含铁粘土复合材料的用于去除难降解有机物的方法,其特征在于:零价铝/含铁粘土复合材料在pH为3活化过硫酸盐去除难降解的有机污染物。
3.根据权利要求1所述的零价铝/含铁粘土复合材料的用于去除难降解有机物的方法,其特征在于:将微米零价铝75μm与所述绿脱石以质量比为1:1的比例混合,置于50mL玛瑙球磨罐中,加入球料质量比为20:1的玛瑙球,将玛瑙罐放入真空套抽真空后开始球磨,球磨时间控制为1.0小时,行星式球磨旋转速率控制在600 rpm,球磨结束后将混合粉末放入手套箱烘干,得到零价铝/绿脱石含铁粘土复合材料,向含有浓度为20.0 mg/L 4-氯酚的废水200 mL中加入100 mg零价铝/绿脱石复合催化剂和476 mg/L过硫酸盐反应1h。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111262890.XA CN113976117B (zh) | 2021-10-28 | 2021-10-28 | 一种用于催化过硫酸盐氧化有机物的零价铝/含铁粘土复合材料的制法及应用 |
US17/870,781 US11534738B1 (en) | 2021-10-28 | 2022-07-21 | Preparation method and application of zero-valent aluminum/iron-bearing clay composite for catalyzing persulfate to oxidize organics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111262890.XA CN113976117B (zh) | 2021-10-28 | 2021-10-28 | 一种用于催化过硫酸盐氧化有机物的零价铝/含铁粘土复合材料的制法及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113976117A CN113976117A (zh) | 2022-01-28 |
CN113976117B true CN113976117B (zh) | 2022-06-21 |
Family
ID=79743403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111262890.XA Active CN113976117B (zh) | 2021-10-28 | 2021-10-28 | 一种用于催化过硫酸盐氧化有机物的零价铝/含铁粘土复合材料的制法及应用 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11534738B1 (zh) |
CN (1) | CN113976117B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114436389A (zh) * | 2022-02-11 | 2022-05-06 | 盐城工学院 | 一种可磁分离零价铝-四氧化三铁复合物的制备方法及应用 |
CN117123221B (zh) * | 2023-09-18 | 2024-05-07 | 华南农业大学 | 一种生物质铁碳复合材料及其制备与应用方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112811557A (zh) * | 2019-11-15 | 2021-05-18 | 四川大学 | 一种利用零价金属强化铜活化过硫酸盐的水处理方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106111156B (zh) * | 2016-06-23 | 2018-09-11 | 上海交通大学 | 基于粘土矿物的高效类芬顿磁性催化剂及制备方法与应用 |
CN106944054B (zh) * | 2017-03-16 | 2019-07-16 | 华南理工大学 | 一种零价铁柱撑蒙脱石修复材料及其制备方法与应用 |
CN111675379A (zh) * | 2020-06-17 | 2020-09-18 | 武汉工程大学 | 一种利用粘土原矿还原-催化处理水中复合污染的方法 |
CN111995035B (zh) * | 2020-08-11 | 2021-08-10 | 中国海洋大学 | 一种全固相芬顿试剂的机械化学干法制备方法及应用 |
-
2021
- 2021-10-28 CN CN202111262890.XA patent/CN113976117B/zh active Active
-
2022
- 2022-07-21 US US17/870,781 patent/US11534738B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112811557A (zh) * | 2019-11-15 | 2021-05-18 | 四川大学 | 一种利用零价金属强化铜活化过硫酸盐的水处理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113976117A (zh) | 2022-01-28 |
US11534738B1 (en) | 2022-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Zn-Fe-CNTs catalytic in situ generation of H2O2 for Fenton-like degradation of sulfamethoxazole | |
CN113976117B (zh) | 一种用于催化过硫酸盐氧化有机物的零价铝/含铁粘土复合材料的制法及应用 | |
Zhou et al. | Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics: a review | |
Han et al. | Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions | |
Tizhoosh et al. | Ultrasound-engineered synthesis of WS2@ CeO2 heterostructure for sonocatalytic degradation of tylosin | |
Nasseh et al. | FeNi3/SiO2 magnetic nanocomposite as an efficient and recyclable heterogeneous fenton-like catalyst for the oxidation of metronidazole in neutral environments: Adsorption and degradation studies | |
Chen et al. | Catalytic ozonation of norfloxacin using Co3O4/C composite derived from ZIF-67 as catalyst | |
Wang et al. | Heterogeneous Photo‐Fenton Reaction Catalyzed by Nanosized Iron Oxides for Water Treatment | |
Chen et al. | Fenton-like degradation of sulfamerazine at nearly neutral pH using Fe-Cu-CNTs and Al0-CNTs for in-situ generation of H2O2/OH/O2− | |
Khodadadi et al. | The catalytic activity of FeNi3@ SiO2 magnetic nanoparticles for the degradation of tetracycline in the heterogeneous Fenton-like treatment method | |
Luo et al. | Green synthesis of manganese–cobalt–tungsten composite oxides for degradation of doxycycline via efficient activation of peroxymonosulfate | |
CN105709755B (zh) | 一种生物炭催化剂、铁碳催化剂及其应用 | |
CN106807376B (zh) | 一种磁性纳米复合催化剂及其制备方法与应用 | |
Tian et al. | Heterogeneous Fenton-like degradation of ofloxacin over a wide pH range of 3.6–10.0 over modified mesoporous iron oxide | |
Dong et al. | Persulfate activation with rice husk-based magnetic biochar for degrading PAEs in marine sediments | |
Li et al. | One-step synthesis of mixed valence FeOX nanoparticles supported on biomass activated carbon for degradation of bisphenol A by activating peroxydisulfate | |
Yoon et al. | Novel synthesis of nanoscale zerovalent iron from coal fly ash and its application in oxidative degradation of methyl orange by Fenton reaction | |
CN107930629A (zh) | 负载型生物炭催化材料的制备方法 | |
CN106045130B (zh) | 一种利用白云鄂博矿石催化过硫酸盐降解有机废水的方法 | |
Wu et al. | Degradation mechanisms of cefotaxime using biochar supported Co/Fe bimetallic nanoparticles | |
CN108178246A (zh) | 一种环保型微电解陶粒及其制备方法 | |
CN110152702A (zh) | 一种有机骨架衍生氮碳纳米材料及其制备方法和应用 | |
CN112958108B (zh) | 一种磁性氧缺位纳米笼状铁锰复合催化剂的制备方法及其应用 | |
Wang et al. | Effect and mechanism of simultaneous cadmium-tetracycline removal by a self-assembled microbial-photocatalytic coupling system | |
CN110180560B (zh) | 一种纳米棒状铋掺杂硫化钼球体多相芬顿催化剂及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |