CN113969867A - Novel wind-powered electricity generation field computer monitored control system - Google Patents

Novel wind-powered electricity generation field computer monitored control system Download PDF

Info

Publication number
CN113969867A
CN113969867A CN202111093815.5A CN202111093815A CN113969867A CN 113969867 A CN113969867 A CN 113969867A CN 202111093815 A CN202111093815 A CN 202111093815A CN 113969867 A CN113969867 A CN 113969867A
Authority
CN
China
Prior art keywords
wind
power generation
wind power
module
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111093815.5A
Other languages
Chinese (zh)
Inventor
韩克珍
曹久亚
司书辉
田雨森
高刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huadian International Ningxia New Energy Power Generation Co ltd
Original Assignee
Huadian International Ningxia New Energy Power Generation Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huadian International Ningxia New Energy Power Generation Co ltd filed Critical Huadian International Ningxia New Energy Power Generation Co ltd
Priority to CN202111093815.5A priority Critical patent/CN113969867A/en
Publication of CN113969867A publication Critical patent/CN113969867A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • F03D7/0268Parking or storm protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/047Automatic control; Regulation by means of an electrical or electronic controller characterised by the controller architecture, e.g. multiple processors or data communications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/76Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/60Control system actuates through
    • F05B2270/602Control system actuates through electrical actuators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Wind Motors (AREA)

Abstract

The invention discloses a novel computer monitoring system for a wind power plant, which comprises a wind power generation module, a monitoring module, a control module and a power utilization module, wherein the wind power generation module converts input mechanical energy into electric energy by utilizing wind energy, the monitoring module monitors the wind power generation module, the control module receives signals transmitted by the monitoring module and controls the wind power generation module, and the power utilization module processes the electric energy generated by the wind power generation module and then uses the electric energy. The system can adjust the transmission ratio of the speed changing unit, the transmission ratio is reduced when wind power is low, the speed changing unit can drive the generator to rotate, the transmission ratio is increased when wind speed is high, the rotating speed of the blades is reduced, the power generation is increased, the blades are protected, the power generation is improved, the service life of the braking device is prolonged, the blades can be controlled to rotate only by arranging the pitch changing device, the cost is saved, and the space in the fairing is saved.

Description

Novel wind-powered electricity generation field computer monitored control system
Technical Field
The invention relates to the technical field of wind power generation, in particular to a novel computer monitoring system for a wind power plant.
Background
Wind energy resources are determined by wind energy density and the cumulative hours of available wind energy per year. The world meteorological organization estimates that the global wind energy is about 2.74 x 109MW, wherein the available wind energy is 2 x 107MW, which is 10 times greater than the total amount of water energy which can be developed and utilized on the earth, and is equivalent to the energy generated by 10800 hundred million tons of standard coal, which is about 100 times of the current energy consumption in the world. Wind has long been used mainly by windmills to pump water, mill surfaces, etc., and today, there is interest in how to use wind to generate electricity. The kinetic energy of wind is converted into mechanical kinetic energy, and then the mechanical energy is converted into electric kinetic energy, namely wind power generation.
The principle of wind power generation is that wind power drives windmill blades to rotate, and then the rotating speed is increased through a speed increaser, so that a generator is promoted to generate electricity. According to current windmill technology, the generation of electricity can be started at a breeze speed (in the order of breeze) of about three meters per second. Wind power generation is forming a hot tide in the world because it does not require the use of fuel and does not produce radiation or air pollution.
When wind energy is utilized, the rotating speeds of all blades of the wind driven generator cannot be too high, otherwise, a large centrifugal force is generated, and the blades fall off or are broken, in order to enable the generator to generate electricity, the rotating speed of a low-speed shaft is generally increased by using a speed-up gear box, but the transmission ratio of the speed-up gear box is a fixed value, when the wind and typhoon weather occurs, in order to prevent the rotating speeds of the blades from being too high, blade pitch angles and braking devices are generally required to be adjusted to stop the rotation of the blades or rotate at a conventional rotating speed, however, the wind weather cannot be utilized, resource waste is caused, the braking devices are easily damaged, and the conventional pitch-changing devices are all used for singly controlling one blade to rotate, a plurality of pitch-changing devices are required to be installed to realize the angle adjustment of a plurality of blades, and the operation in the cost is more complicated.
Disclosure of Invention
This section is for the purpose of summarizing some aspects of embodiments of the invention and to briefly introduce some preferred embodiments. In this section, as well as in the abstract and the title of the invention of this application, simplifications or omissions may be made to avoid obscuring the purpose of the section, the abstract and the title, and such simplifications or omissions are not intended to limit the scope of the invention.
The present invention has been made in view of the above and/or other problems with existing wind farm computer monitoring systems.
Therefore, the invention aims to solve the problems that the existing wind power plant computer monitoring system cannot reasonably utilize resources, waste is caused, and a plurality of blades can be adjusted only by installing a plurality of variable pitch devices.
In order to solve the technical problems, the invention provides the following technical scheme: a novel computer monitoring system for a wind power plant comprises a wind power generation module, a wind power generation module and a monitoring module, wherein the wind power generation module is used for converting input mechanical energy into electric energy by utilizing wind energy; the monitoring module is connected with the wind power generation module and used for monitoring the wind power generation module; the control module is connected with the wind power generation module and the monitoring module, receives the signal transmitted by the monitoring module and controls the wind power generation module; the power utilization module is connected with the wind power generation module and used after processing the electric energy generated by the wind power generation module; the wind power generation module comprises blades, a hub connected with the blades, a speed change unit connected with the hub, a generator connected with the speed change unit, and a variable pitch device for adjusting the pitch angle of the blades; the speed changing unit comprises a speed changing piece and a speed increasing gear box, and the speed changing piece is connected with the speed increasing gear box and the hub; the pitch control device comprises a first bevel gear fixedly connected to the root of each blade, a plurality of second bevel gears matched with the bevel gears, a bevel gear fixedly connected with the second bevel gears, a worm matched with the bevel gears, and a first motor driving the worm to rotate.
As a preferred scheme of the novel wind power plant computer monitoring system, the method comprises the following steps: the power utilization module comprises a data network switch, data network access equipment, a scheduling data network and a master station; the wind power generation system comprises a wind power generation module, a data network switch, a master station and a data network access device, wherein the wind power generation module generates power which firstly passes through the data network switch and enters the data network access device through longitudinal encryption authentication to reach the dispatching data network, then the power is accessed into the master station, and the master station distributes the power to a dispatching center and other systems.
As a preferred scheme of the novel wind power plant computer monitoring system, the method comprises the following steps: the monitoring module comprises a field wind driven generator monitoring unit, a high-speed ring-shaped redundant optical fiber Ethernet and a remote upper computer operator station, wherein the wind driven generator monitoring unit monitors parameters of the unit, the high-speed ring-shaped redundant optical fiber Ethernet transmits monitoring data of the field wind driven generator monitoring unit to the remote upper computer operator station, and an operator monitors and operates the unit in the remote upper computer operator station.
As a preferred scheme of the novel wind power plant computer monitoring system, the method comprises the following steps: the on-site wind driven generator monitoring unit comprises a wind direction detection device, a wind speed sensor, a blade rotating speed sensor and a generator rotating speed sensor.
As a preferred scheme of the novel wind power plant computer monitoring system, the method comprises the following steps: the speed changing piece comprises a box cover fixedly connected with the hub, an adjusting wheel arranged in the box cover, a first driving piece driving the adjusting wheel to rotate, an adjusting rod matched with the adjusting wheel, a fastening wheel clamping the adjusting rod on the adjusting wheel, a chain connecting the adjusting rod and a rotating shaft of the speed-up gear box, and a tensioning device enabling the chain to keep a tensioning force; the adjusting wheel is connected with the fastening wheel, an Archimedes spiral gear is arranged on the side face of the adjusting wheel, a thread matched with the Archimedes spiral gear is arranged on one side face of the adjusting rod, a breaking gear is connected to the other side face of the adjusting rod, and the adjusting rod is provided with a plurality of breaking gears which can be spliced into a complete gear.
As a preferred scheme of the novel wind power plant computer monitoring system, the method comprises the following steps: the fastening wheel is provided with a plurality of moving grooves for the adjusting rod to move up and down, and the broken gear and the threads are respectively arranged on two sides of the adjusting rod.
As a preferred scheme of the novel wind power plant computer monitoring system, the method comprises the following steps: the tensioning device comprises a tensioning wheel matched with the chain, a fixing plate for fixing the tensioning wheel and a spring for pulling the tensioning wheel; the fixed plate is provided with a sliding groove, a sliding block is arranged in the sliding groove, the tensioning wheel is fixed on the sliding block, and the spring is arranged in the sliding groove and connected with the sliding block.
As a preferred scheme of the novel wind power plant computer monitoring system, the method comprises the following steps: the sliding groove is obliquely arranged, and the oblique direction is the connecting line direction of the tension wheel and the rotating shaft of the speed-up gear box.
As a preferred scheme of the novel wind power plant computer monitoring system, the method comprises the following steps: the wind power generation module further comprises a fairing, a cabin and a tower, the fairing is in rotary fit with the cabin, the cabin is in rotary fit with the tower, the hub and the speed change part are arranged in the fairing, and the tensioning device is fixed on the cabin.
As a preferred scheme of the novel wind power plant computer monitoring system, the method comprises the following steps: the wind power generation module further includes a yaw device that rotates the nacelle and a brake device that stops the rotation of the blades; the control module controls starting and stopping of the variable pitch device, the first driving piece, the braking device and the yawing device.
The system has the advantages that the transmission ratio of the speed changing unit can be changed to be adjustable, when wind power is low, the transmission ratio is reduced, the generator can be driven to rotate, when the wind speed is high, the transmission ratio is increased, the rotating speed of the blades is reduced, the generated energy is increased, the blades are protected, the generated energy is improved, the service life of the braking device is prolonged, the blades can be controlled to rotate only by arranging the variable pitch device, the cost is saved, and the space in the fairing is saved.
Drawings
In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings needed to be used in the description of the embodiments will be briefly introduced below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art to obtain other drawings based on these drawings without inventive exercise. Wherein:
FIG. 1 is a system block diagram of a new wind farm computer monitoring system of example 1.
FIG. 2 is a schematic diagram of a control unit of the novel wind farm computer monitoring system of example 1.
FIG. 3 is a block diagram of a wind power generation module of the new wind farm computer monitoring system of example 1.
FIG. 4 is a schematic view of the internal structure of the nacelle of the novel wind farm computer monitoring system in example 1.
FIG. 5 is a block diagram of a pitch device of the new wind farm computer monitoring system of example 1.
FIG. 6 is a block diagram of the transmission of the new wind farm computer monitoring system of example 1.
FIG. 7 is an exploded view of the transmission of the new wind farm computer monitoring system of example 1.
FIG. 8 is a schematic diagram of the regulating wheel of the new wind farm computer monitoring system of example 1.
FIG. 9 is a block diagram of the tensioner of the new wind farm computer monitoring system of example 1.
Detailed Description
In order to make the aforementioned objects, features and advantages of the present invention comprehensible, embodiments accompanied with figures are described in detail below.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention, but the present invention may be practiced in other ways than those specifically described and will be readily apparent to those of ordinary skill in the art without departing from the spirit of the present invention, and therefore the present invention is not limited to the specific embodiments disclosed below.
Furthermore, reference herein to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one implementation of the invention. The appearances of the phrase "in one embodiment" in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
Example 1
Referring to fig. 1 to 9, a first embodiment of the present invention provides a computer monitoring system for a wind farm based on a novel wind turbine, the computer monitoring system for a wind farm based on a novel wind turbine includes a wind power generation module 100, a monitoring module 200, a control module 300 and a power utilization module 400, the wind power generation module 100 converts input mechanical energy into electrical energy by using wind energy, the monitoring module 200 is connected to the wind power generation module 100 to monitor the wind power generation module 100, the control module 300 is connected to the wind power generation module 100 and the monitoring module 200 to receive signals transmitted by the monitoring module 200 and control the wind power generation module 100, and the power utilization module 400 is connected to the wind power generation module 100 to process and use the electrical energy generated by the power utilization module.
Specifically, the wind power generation module 100 includes a blade 101, a hub 102 connected to the blade 101, a speed change unit 103 connected to the hub 102, a generator 104 connected to the speed change unit 103, and a pitch device 105 for adjusting a pitch angle of the blade 101; in the present embodiment, the number of the blades 101 is set to 3. The blades 101 and the hub 102 can rotate relatively, the number of the variable pitch devices 105 is 3, each variable pitch device 105 only controls one blade 101 to rotate, and the variable pitch devices 105 can be realized by adopting the prior art.
The speed change unit 103 comprises a speed change part 103a and a speed increasing gear box 103b, the speed change part 103a is connected with the speed increasing gear box 103b and the hub 102, the speed increasing gear box 103b is a speed change device connected with a low-speed shaft and a high-speed shaft, the rotating speed of the high-speed shaft can be increased to 100 times of that of the low-speed shaft, and the rotating speed cannot be too high due to the fact that the blades 101 are large in mass and size, generally the rotating speed is required to rotate about 15-30 circles per minute, the rotating speed generated by the generator 104 cannot be met far, and therefore the rotating speed needs to be increased through the speed increasing gear box 103 b.
The pitch device 105 comprises a first bevel gear 105a fixedly connected to the root of each blade 101, a second bevel gear 105b simultaneously matched with the bevel gears 105a, a bevel gear 105c fixedly connected with the second bevel gear 105b, a worm 105d matched with the bevel gear 105c, and a first motor 105e driving the worm 105d to rotate. The first motor 105e drives the worm 105d to rotate, then drives the bevel gear 105c matched with the worm 105d to rotate, the second bevel gear 105b fixedly connected with the bevel gear 105c rotates, then the first bevel gear 105a fixed at the root of each blade 101 drives the blade 101 to rotate, the pitch angle of the blade is adjusted, and the blades 101 can rotate in the same direction and at the same angle, so that the pitch angles of the blades 101 can be kept the same, and the cost can be saved.
Further, the power utilization module 400 includes a data network switch 401, a data network access device 402, a scheduling data network 403 and a master station 404; the power generated by the wind power generation module 100 firstly passes through the data network switch 401, enters the data network access device 402 through longitudinal encryption authentication to reach the scheduling data network 403, and then is accessed to the master station 404, and the master station 404 distributes the power to a scheduling center and other systems.
Preferably, the monitoring module 200 includes an on-site wind power generator monitoring unit 201, a high-speed ring-type redundant optical fiber ethernet network 202 and a remote upper computer operator station 203, the wind power generator monitoring unit 201 implements parameter monitoring of the plant, the high-speed ring-type redundant optical fiber ethernet network 202 transmits monitoring data of the on-site wind power generator monitoring unit 201 to the remote upper computer operator station 203, and an operator implements operation monitoring and operation of the plant in the remote upper computer operator station 203. The high-speed ring-type redundant optical fiber Ethernet 202 is a data highway of the system, and transmits real-time monitoring data of a unit to an interface of an upper computer, and the upper computer is arranged in a remote upper computer operator station 203. The on-site wind turbine monitoring unit 201 includes a wind direction detection device 201a, a wind speed sensor 201b, a blade rotation speed sensor 201c, and a generator rotation speed sensor 201 d.
Further, the speed changing member 103a includes a box cover 103a-1 fixedly connected to the hub 102, an adjusting wheel 103a-2 disposed in the box cover 103a-1, a first driving member 103a-3 for driving the adjusting wheel 103a-2 to rotate, an adjusting lever 103a-4 engaged with the adjusting wheel 103a-2, a fastening wheel 103a-5 for fastening the adjusting lever 103a-4 to the adjusting wheel 103a-2, a chain 103a-6 for connecting the adjusting lever 103a-4 and a rotating shaft of the speed increasing gear box 103b, and a tensioning device 103a-7 for maintaining a tension of the chain 103a-6, wherein the adjusting wheel 103a-2 is provided with a gear, the first driving member 103a-3 may be in the form of a motor driving another gear, the adjusting wheel 103a-2 is driven to rotate, and preferably, two first driving members 103a-3 are provided. The two advantages are that the two are symmetrically arranged at the two sides of the adjusting wheel 103a-2, firstly, the mass distribution of the speed changing piece 103a is uniform, and the deflection force can not be generated during the rotation; secondly, because the adjusting wheel 103a-2 has certain resistance when rotating, the driving force is increased by arranging the two first driving pieces 103a-3, so that the adjusting wheel 103a-2 can better rotate. The adjusting wheel 103a-2 is connected with the fastening wheel 103a-5, an Archimedes spiral gear 103a-21 is arranged on the side surface of the adjusting wheel 103a-4, a thread 103a-41 matched with the Archimedes spiral gear 103a-21 is arranged on one side surface of the adjusting wheel 103a-4, a broken gear 103a-42 is connected on the other side surface of the adjusting wheel, a plurality of adjusting wheels 103a-4 are arranged, and the broken gears 103a-42 can be spliced into a complete gear. In this embodiment, four break gears 103a-42 are provided, so each break gear 103a-42 is a full gear of one quarter size.
Preferably, the fastening wheel 103a-5 is provided with a plurality of moving grooves 103a-51 for the adjustment rod 103a-4 to move up and down, and the broken gear 103a-42 and the screw thread 103a-41 are respectively arranged on both sides of the adjustment rod 103 a-4.
Further, the tensioning device 103a-7 comprises a tensioning wheel 103a-71 matched with the chain 103a-6, a fixing plate 103a-72 for fixing the tensioning wheel 103a-71, and a spring 103a-73 for pulling the tensioning wheel 103 a-71. The fixed plates 103a-72 are provided with sliding grooves 103a-74, the sliding grooves 103a-74 are internally provided with sliders 103a-75, the tensioning wheels 103a-71 are fixed on the sliders 103a-75, and the springs 103a-73 are arranged in the sliding grooves 103a-74 and connected with the sliders 103 a-75.
Preferably, the sliding grooves 103a to 74 are disposed in an inclined manner, and the inclined direction is a direction of a line connecting the tension pulley 103a to 71 and the rotation shaft of the step-up gear box 103 b. The reason for the inclined arrangement is that the space in the fairing 106 is limited, so the distance between the broken gears 103a-42 and the transmission shaft of the speed-up gear box 103b is not too large, and when the broken gears 103a-42 are expanded, if the tension pulleys 103a-71 move horizontally, the broken gears 103a-42 may contact with each other to cause tooth clamping, so the sliding grooves 103a-74 are arranged obliquely, the broken gears 103a-42 move obliquely downwards, not only can the chain 103a-6 be tensioned, but also the tension pulleys 103a-71 and the broken gears 103a-42 are not contacted. The reason why the inclination direction is the connecting line direction of the tension pulleys 103a to 71 and the rotating shaft of the speed-up gear box 103b is that the contact tooth numbers of the chain 103a to 6 and the rotating shaft of the speed-up gear box 103b can be kept consistent, and the phenomenon that the contact tooth number of the rotating shaft of the speed-up gear box 103b and the chain 103a to 6 is reduced to cause sliding teeth can not occur. It should be noted that a gear engaged with the chain 103a-6 is provided on the rotation shaft of the step-up gear box 103 b.
Further, the wind power generation module 100 further includes a fairing 106, a nacelle 107 and a tower 108, the fairing 106 is rotatably engaged with the nacelle 107, the nacelle 107 is rotatably engaged with the tower 108, the hub 102 and the transmission 103a are both disposed in the fairing 106, and the tensioning devices 103a-7 are fixed on the nacelle 107.
Further, the wind power generation module 100 further includes a yaw device 109 for rotating the nacelle 107, and a brake device 110 for stopping the rotation of the blade 101, and the control module 300 controls the start and stop of the pitch device 105, the first driving member 103a-3, the brake device 110, and the yaw device 109. The brake device 110 is installed on the speed-up gearbox 103b and the generator 104, which restricts the transmission shaft between the generator 104 and the speed-up gearbox 103b to perform a braking function, and the brake device 110 may be implemented by using the prior art.
In summary, after the control module 300 receives the wind speed and wind direction information detected by the monitoring module 200, the yaw device 109 is controlled to rotate the nacelle 107 to the windward direction, the pitch device 105 is used to position the blades 101 at the optimal pitch angle, at this time, the area where the broken gears 103a-42 should be located is determined according to the wind speed and the blade rotation speed, the adjustment wheel 103a-2 is driven to rotate by the first driving member 103a-3, so that the broken gears 103a-42 are positioned in the area, and when the blade rotation speed and the generator rotation speed meet the requirements, the first driving member 103a-3 is stopped.
Through the system, the transmission ratio of the speed changing unit 103 can be adjusted, when the wind power is low, the transmission ratio is reduced, the generator 104 can be driven to rotate, when the wind speed is high, the transmission ratio is increased, the rotating speed of the blades 101 is reduced, the power generation is increased, namely the blades 101 are protected, the power generation is improved, the braking device 110 is not needed to brake constantly, the service life of the braking device 110 is prolonged, and the blades can be controlled to rotate only by arranging the variable pitch device 105, so that the cost is saved, and the space in the fairing 106 is saved.
It should be noted that the above-mentioned embodiments are only for illustrating the technical solutions of the present invention and not for limiting, and although the present invention has been described in detail with reference to the preferred embodiments, it should be understood by those skilled in the art that modifications or equivalent substitutions may be made on the technical solutions of the present invention without departing from the spirit and scope of the technical solutions of the present invention, which should be covered by the claims of the present invention.

Claims (10)

1. A novel wind-powered electricity generation field computer monitored control system which characterized in that: comprises the steps of (a) preparing a mixture of a plurality of raw materials,
a wind power generation module (100) for converting input mechanical energy into electric energy by using wind energy;
the monitoring module (200) is connected with the wind power generation module (100) and used for monitoring the wind power generation module (100);
the control module (300) is connected with the wind power generation module (100) and the monitoring module (200), receives the signal transmitted by the monitoring module (200), and controls the wind power generation module (100);
the power utilization module (400) is connected with the wind power generation module (100) and is used after processing the generated electric energy;
the wind power generation module (100) comprises a blade (101), a hub (102) connected with the blade (101), a speed change unit (103) connected with the hub (102), a generator (104) connected with the speed change unit (103), and a pitch device (105) for adjusting the pitch angle of the blade (101);
the speed changing unit (103) comprises a speed changing piece (103a) and a speed increasing gear box (103b), wherein the speed changing piece (103a) is connected with the speed increasing gear box (103b) and the hub (102);
the variable pitch device (105) comprises a first bevel gear (105a) fixedly connected to the root of each blade (101), a second bevel gear (105b) matched with the bevel gears (105a) simultaneously, a helical gear (105c) fixedly connected with the second bevel gear (105b), a worm (105d) matched with the helical gear (105c), and a first motor (105e) driving the worm (105d) to rotate.
2. A novel wind farm computer monitoring system according to claim 1, characterized in that: the power utilization module (400) comprises a data network switch (401), data network access equipment (402), a scheduling data network (403) and a master station (404);
the power generated by the wind power generation module (100) firstly passes through the data network switch (401), enters the data network access equipment (402) through longitudinal encryption authentication to reach the dispatching data network (403), then is accessed to the main station (404), and the main station (404) distributes the power to a dispatching center and other systems.
3. A novel wind farm computer monitoring system according to claim 1 or 2, characterized in that: the monitoring module (200) comprises an on-site wind driven generator monitoring unit (201), a high-speed ring-shaped redundant optical fiber Ethernet (202) and a remote upper computer operator station (203), the wind driven generator monitoring unit (201) realizes parameter monitoring of the unit, the high-speed ring-shaped redundant optical fiber Ethernet (202) transmits monitoring data of the on-site wind driven generator monitoring unit (201) to the remote upper computer operator station (203), and an operator realizes operation monitoring and operation of the unit in the remote upper computer operator station (203).
4. A novel wind farm computer monitoring system according to claim 3, characterized in that: the on-site wind driven generator monitoring unit (201) comprises a wind direction detection device (201a), a wind speed sensor (201b), a blade rotating speed sensor (201c) and a generator rotating speed sensor (201 d).
5. A novel wind farm computer monitoring system according to claim 1 or 4, characterized in that: the speed changing piece (103a) comprises a box cover (103a-1) fixedly connected with the hub (102), an adjusting wheel (103a-2) arranged in the box cover (103a-1), a first driving piece (103a-3) driving the adjusting wheel (103a-2) to rotate, an adjusting rod (103a-4) matched with the adjusting wheel (103a-2), a fastening wheel (103a-5) clamping the adjusting rod (103a-4) on the adjusting wheel (103a-2), a chain (103a-6) connecting the adjusting rod (103a-4) and a rotating shaft of the speed increasing gear box (103b), and a tensioning device (103a-7) enabling the chain (103a-6) to keep a tensioning force;
the adjusting wheel (103a-2) is connected with the fastening wheel (103a-5), an Archimedes spiral gear (103a-21) is arranged on the side surface of the adjusting wheel, threads (103a-41) matched with the Archimedes spiral gear (103a-21) are arranged on one side surface of the adjusting rod (103a-4), a broken gear (103a-42) is connected to the other side surface of the adjusting rod, a plurality of adjusting rods (103a-4) are arranged, and the broken gears (103a-42) can be spliced into a complete gear.
6. The novel wind farm computer monitoring system of claim 5, characterized in that: the fastening wheel (103a-5) is provided with a plurality of moving grooves (103a-51) for the adjustment rod (103a-4) to move up and down, and the broken gear (103a-42) and the thread (103a-41) are respectively arranged on two sides of the adjustment rod (103 a-4).
7. The novel wind farm computer monitoring system of claim 6, characterized in that: the tensioning device (103a-7) comprises a tensioning wheel (103a-71) matched with the chain (103a-6), a fixing plate (103a-72) for fixing the tensioning wheel (103a-71), and a spring (103a-73) for pulling the tensioning wheel (103 a-71);
the fixed plates (103a-72) are provided with sliding grooves (103a-74), the sliding grooves (103a-74) are internally provided with sliders (103a-75), the tensioning wheels (103a-71) are fixed on the sliders (103a-75), and the springs (103a-73) are arranged in the sliding grooves (103a-74) and connected with the sliders (103 a-75).
8. The novel wind farm computer monitoring system of claim 7, characterized by: the sliding grooves (103a-74) are arranged in an inclined manner, and the inclined direction is the direction of the connecting line of the tensioning wheels (103a-71) and the rotating shaft of the speed-increasing gear box (103 b).
9. A novel wind farm computer monitoring system according to claim 7 or 8, characterized in that: the wind power generation module (100) further comprises a fairing (106), a nacelle (107) and a tower (108), wherein the fairing (106) is in rotating fit with the nacelle (107), the nacelle (107) is in rotating fit with the tower (108), the hub (102) and the speed change part (103a) are arranged in the fairing (106), and the tensioning devices (103a-7) are fixed on the nacelle (107).
10. A novel wind farm computer monitoring system according to claim 9, characterized in that: the wind power generation module (100) further comprises a yaw device (109) for rotating the nacelle (107), and a brake device (110) for stopping the rotation of the blades (101); the control module (300) controls the start and stop of the pitch device (105), the first drive (103a-3), the brake device (110) and the yaw device (109).
CN202111093815.5A 2021-09-17 2021-09-17 Novel wind-powered electricity generation field computer monitored control system Pending CN113969867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111093815.5A CN113969867A (en) 2021-09-17 2021-09-17 Novel wind-powered electricity generation field computer monitored control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111093815.5A CN113969867A (en) 2021-09-17 2021-09-17 Novel wind-powered electricity generation field computer monitored control system

Publications (1)

Publication Number Publication Date
CN113969867A true CN113969867A (en) 2022-01-25

Family

ID=79586659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111093815.5A Pending CN113969867A (en) 2021-09-17 2021-09-17 Novel wind-powered electricity generation field computer monitored control system

Country Status (1)

Country Link
CN (1) CN113969867A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110018269A1 (en) * 2009-07-21 2011-01-27 George Moser Wind turbine
CN103233862A (en) * 2013-04-09 2013-08-07 浙江大学 Stepless speed-up type wind power generation system
DE102012205214A1 (en) * 2012-03-30 2013-10-02 Suzlon Energy Gmbh Wind turbine, has gear box including input shaft connected with rotor blades, vibration sensor arranged at rigid section of hub and detecting vibrations of hub in tangential direction, and evaluation device evaluating detected vibrations
WO2015046129A1 (en) * 2013-09-24 2015-04-02 Ntn株式会社 Monitoring system and monitoring method
CN107100796A (en) * 2017-06-09 2017-08-29 张秋达 A kind of model wind generating device with real time temperature monitoring function
CN108561278A (en) * 2018-04-09 2018-09-21 江苏艮德电力设备有限公司 A kind of wind power plant computer supervisory control system
CN208252270U (en) * 2018-04-26 2018-12-18 内蒙古机电职业技术学院 A kind of wind-driven generator pitching driving mechanism

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110018269A1 (en) * 2009-07-21 2011-01-27 George Moser Wind turbine
DE102012205214A1 (en) * 2012-03-30 2013-10-02 Suzlon Energy Gmbh Wind turbine, has gear box including input shaft connected with rotor blades, vibration sensor arranged at rigid section of hub and detecting vibrations of hub in tangential direction, and evaluation device evaluating detected vibrations
CN103233862A (en) * 2013-04-09 2013-08-07 浙江大学 Stepless speed-up type wind power generation system
WO2015046129A1 (en) * 2013-09-24 2015-04-02 Ntn株式会社 Monitoring system and monitoring method
CN107100796A (en) * 2017-06-09 2017-08-29 张秋达 A kind of model wind generating device with real time temperature monitoring function
CN108561278A (en) * 2018-04-09 2018-09-21 江苏艮德电力设备有限公司 A kind of wind power plant computer supervisory control system
CN208252270U (en) * 2018-04-26 2018-12-18 内蒙古机电职业技术学院 A kind of wind-driven generator pitching driving mechanism

Similar Documents

Publication Publication Date Title
EP2096301B1 (en) Method for operating a wind turbine plant during high wind conditions
US7750490B2 (en) Method and system for extracting inertial energy from a wind turbine
CN102116264A (en) Megawatt-stage vertical shaft wind power generator with adjustable attack angle
CN101440783A (en) Wind generating set, wind power generation and operation control method thereof
CN201730751U (en) Megawatt-level vertical axis wind driven generator with adjustable angle of attack
CN102748236A (en) Novel fluid transmission wind driven generator for guaranteeing stability of grid connection
Zhang et al. Controller design for a tidal turbine array, considering both power and loads aspects
CN113969867A (en) Novel wind-powered electricity generation field computer monitored control system
CN103225587B (en) A kind of leeward direction wind-driven generator group
CN107740754A (en) A kind of transmission device used for wind-energy power generation
CN113958457A (en) Wind-powered electricity generation field computer monitored control system based on novel wind-powered electricity generation machine
CN201198817Y (en) Separating and interconnecting network dual-purpose direct drive paddle-changing type wind power generator
CN106936372A (en) A kind of wind light mutual complementing integral type electrification structure
Milborrow Wind energy technology—the state of the art
CN203560036U (en) Wind turbine with tail-vane steering function
CN212642951U (en) Wind power generator
CN215860614U (en) Wind power plant unit monitoring system
CN203570515U (en) Tail vane steering mechanism applied to wind power generator
CN216554202U (en) Intelligent main control system of wind power plant unit
CN108361148A (en) A kind of real-time variable pitch H-type vertical axis aerogenerator
CN115263671B (en) Variable pitch control method, device and system and wind generating set
KR20140052447A (en) Method for control of wind turbine generation cut-out wind speed area
CN213392486U (en) Follow-up adjustment windmill assembly
RU2297550C2 (en) Windmill electric generating plant
CN207879521U (en) A kind of transmission device used for wind-energy power generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination