CN113969322B - A set of SNP core sites, primers and high-throughput purity identification methods for identifying the purity of corn hybrids - Google Patents

A set of SNP core sites, primers and high-throughput purity identification methods for identifying the purity of corn hybrids Download PDF

Info

Publication number
CN113969322B
CN113969322B CN202010723797.3A CN202010723797A CN113969322B CN 113969322 B CN113969322 B CN 113969322B CN 202010723797 A CN202010723797 A CN 202010723797A CN 113969322 B CN113969322 B CN 113969322B
Authority
CN
China
Prior art keywords
dna
seq
nucleotide sequence
artificial sequence
amplified nucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010723797.3A
Other languages
Chinese (zh)
Other versions
CN113969322A (en
Inventor
王凤格
王蕊
田红丽
易红梅
赵久然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING ACADEMY OF AGRICULTURE AND FORESTRY SCIENCES
Original Assignee
BEIJING ACADEMY OF AGRICULTURE AND FORESTRY SCIENCES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING ACADEMY OF AGRICULTURE AND FORESTRY SCIENCES filed Critical BEIJING ACADEMY OF AGRICULTURE AND FORESTRY SCIENCES
Priority to CN202010723797.3A priority Critical patent/CN113969322B/en
Publication of CN113969322A publication Critical patent/CN113969322A/en
Application granted granted Critical
Publication of CN113969322B publication Critical patent/CN113969322B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一组鉴定玉米杂交种纯度的SNP核心位点、引物和高通量鉴定纯度的方法,属于基因工程技术领域,所述SNP核心位点包括玉米1号染色体第8974336位、1号染色体第289408285位等20个核心位点。采用本发明提供的SNP位点能够鉴定玉米杂交种的纯度。

The present invention provides a set of SNP core sites, primers and high-throughput purity identification methods for identifying the purity of corn hybrids, and belongs to the field of genetic engineering technology. The SNP core sites include No. 8974336 and No. 1 of maize chromosome 1. 20 core sites including chromosome 289408285. The purity of corn hybrids can be identified using the SNP sites provided by the present invention.

Description

一组鉴定玉米杂交种纯度的SNP核心位点、引物和高通量鉴定 纯度的方法A set of SNP core sites, primers and high-throughput identification to identify the purity of corn hybrids Purity method

技术领域Technical field

本发明属于基因工程技术领域,尤其涉及一组鉴定玉米杂交种纯度的SNP核心位点、引物和鉴定纯度的方法。The invention belongs to the technical field of genetic engineering, and in particular relates to a set of SNP core sites, primers and purity identification methods for identifying the purity of corn hybrids.

背景技术Background technique

玉米杂交种的纯度高低是影响田间产量、产品品质以及农民收益的关键因素之一。因此,玉米杂交种纯度鉴定是把控玉米种子质量的重要手段尤其是对于杂交种中自交苗的检测,在种子企业质量自控、政府市场监测等多个环节提供重要依据。The purity of corn hybrids is one of the key factors affecting field yield, product quality and farmers' income. Therefore, the purity identification of corn hybrids is an important means to control the quality of corn seeds, especially the detection of self-crossed seedlings in hybrids. It provides important basis for quality self-control of seed companies, government market monitoring and other aspects.

目前用于玉米杂交种纯度鉴定的方法主要包括田间小区种植鉴定法、盐溶蛋白法和SSR分子标记法等。田间小区种植鉴定是目前广泛使用的纯度鉴定方法,在检验规程中也标注其是最准确的鉴定方法,但这种方法存在一些问题,主要包括以下几个方面。第一,鉴定周期长,需要等待一个种植周期才能得到结果,不能及时发现纯度问题并将经济损失降到最低。第二,结果易受环境因素影响,由于地力不均或病虫害产生的弱株和病株容易和自交株混淆,使得出现错判或漏判的结果,最终影响纯度结果。由于玉米品种适宜的种植生态区不同,如若种植鉴定不在品种适宜生态区,很有可能导致品种表型出现较大变化,增加判定的难度。第三,对检验员要求高,容易受人员因素影响,检验员需要充分了解不同品种的特征及其和亲本、近似品种的差别,要求检验员具有丰富的田间鉴定经验。Currently, the methods used to identify the purity of corn hybrids mainly include field plot identification method, salt-soluble protein method and SSR molecular marker method. Field planting identification is currently a widely used purity identification method, and it is also marked in the inspection procedures as the most accurate identification method. However, this method has some problems, mainly including the following aspects. First, the identification cycle is long, and you need to wait for a planting cycle to get the results. Purity problems cannot be discovered in time and economic losses can be minimized. Second, the results are easily affected by environmental factors. Weak and diseased strains caused by uneven soil fertility or pests and diseases are easily confused with inbred strains, resulting in wrong or missed judgments, which ultimately affects the purity results. Since the suitable planting ecological zones of corn varieties are different, if the planting identification is not in the suitable ecological zone of the variety, it is likely to cause large changes in the phenotype of the variety, making the determination more difficult. Third, the requirements for inspectors are high and they are easily affected by personnel factors. Inspectors need to fully understand the characteristics of different varieties and their differences from parents and similar varieties. Inspectors are required to have rich field identification experience.

盐溶蛋白法由于其快速简便目前也广泛应用于玉米品种纯度鉴定中,但其也存在一些问题,蛋白电泳在某些品种上找不到双亲差异或无法区分自交苗,不能鉴定所有品种。SSR等分子标记鉴定法无法满足样本高通量的检测需求,尤其是制种到市场销售期间短期大量品种纯度鉴定的需求。The salt-soluble protein method is currently widely used in the purity identification of corn varieties because of its speed and simplicity. However, it also has some problems. Protein electrophoresis cannot find parental differences in some varieties or cannot distinguish self-crossed seedlings, and cannot identify all varieties. Molecular marker identification methods such as SSR cannot meet the high-throughput detection needs of samples, especially the short-term needs for purity identification of a large number of varieties during the period from seed production to market sales.

对于杂交种纯度鉴定,从制种环节到市场销售期间短期大量品种纯度鉴定的需求,因此探索出一套高效准确且适用于市场上绝大多数的玉米杂交种纯度鉴定的高通量方案具有很重要的意义。For hybrid purity identification, there is a need for short-term purity identification of a large number of varieties from seed production to market sales. Therefore, it is of great significance to explore a set of high-throughput solutions that are efficient, accurate and suitable for the purity identification of most corn hybrids on the market. Significance.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一组鉴定玉米杂交种纯度的SNP核心位点、引物和高通量鉴定纯度的方法,采用本发明提供的位点能够鉴定玉米杂交种的纯度。In view of this, the purpose of the present invention is to provide a set of SNP core sites, primers and high-throughput purity identification methods for identifying the purity of corn hybrids. The sites provided by the present invention can be used to identify the purity of corn hybrids.

为了实现上述发明目的,本发明提供了以下技术方案:In order to achieve the above-mentioned object of the invention, the present invention provides the following technical solutions:

本发明提供了一组鉴定玉米杂交种纯度的SNP核心位点,包括玉米1号染色体第8974336位、1号染色体第289408285位、2号染色体第109563976位、2号染色体第186339948位、3号染色体第27775731位、3号染色体第118083714位、4号染色体第20077010位、4号染色体第128874466位、5号染色体第13402375位、5号染色体第204879476位、6号染色体第39822979位、6号染色体第141476300位、7号染色体第126677146位、7号染色体第15521714位、8号染色体第20978845位、8号染色体第118299376位、9号染色体第104695670位、9号染色体第127197714位、10号染色体第39960289位和10号染色体第109396730位。The invention provides a set of SNP core sites for identifying the purity of corn hybrids, including corn chromosome 1 at position 8974336, chromosome 1 at position 289408285, chromosome 2 at position 109563976, chromosome 2 at position 186339948, and chromosome 3. No. 27775731 of chromosome 3, No. 118083714 of chromosome 3, No. 20077010 of chromosome 4, No. 128874466 of chromosome 4, No. 13402375 of chromosome 5, No. 204879476 of chromosome 5, No. 39822979 of chromosome 6, No. 141476300, chromosome 7, 126677146, chromosome 7, 15521714, chromosome 8, 20978845, chromosome 8, 118299376, chromosome 9, 104695670, chromosome 9, 127197714, chromosome 10, 39960289 and chromosome 10, position 109396730.

本发明还提供了一组扩增上述技术方案所述的SNP核心位点的引物,所述引物的核苷酸序列如SEQ ID No.1~60所示。The present invention also provides a set of primers for amplifying the SNP core site described in the above technical solution, and the nucleotide sequences of the primers are shown in SEQ ID Nos. 1 to 60.

优选的,扩增玉米1号染色体第8974336位的核苷酸序列如SEQ ID No.1~3所示;Preferably, the amplified nucleotide sequence at position 8974336 of maize chromosome 1 is shown in SEQ ID No. 1 to 3;

扩增玉米1号染色体第289408285位的核苷酸序列如SEQ ID No.4~6所示;The amplified nucleotide sequence at position 289408285 of maize chromosome 1 is shown in SEQ ID No. 4 to 6;

扩增玉米2号染色体第109563976位的核苷酸序列如SEQ ID No.7~9所示;The amplified nucleotide sequence at position 109563976 of maize chromosome 2 is shown in SEQ ID No. 7 to 9;

扩增玉米2号染色体第186339948位的核苷酸序列如SEQ ID No.10~12所示;The amplified nucleotide sequence at position 186339948 of maize chromosome 2 is shown in SEQ ID No. 10-12;

扩增玉米3号染色体第27775731位的核苷酸序列如SEQ ID No.13~15所示;The amplified nucleotide sequence at position 27775731 of maize chromosome 3 is shown in SEQ ID No. 13-15;

扩增玉米3号染色体第118083714位的核苷酸序列如SEQ ID No.16~18所示;The amplified nucleotide sequence at position 118083714 of maize chromosome 3 is shown in SEQ ID No. 16-18;

扩增玉米4号染色体第20077010位的核苷酸序列如SEQ ID No.19~21所示;The amplified nucleotide sequence at position 20077010 of maize chromosome 4 is shown in SEQ ID No. 19-21;

扩增玉米4号染色体第128874466位的核苷酸序列如SEQ ID No.22~24所示;The amplified nucleotide sequence at position 128874466 of maize chromosome 4 is shown in SEQ ID No. 22 to 24;

扩增玉米5号染色体第13402375位的核苷酸序列如SEQ ID No.25~27所示;The amplified nucleotide sequence at position 13402375 of maize chromosome 5 is shown in SEQ ID No. 25-27;

扩增玉米5号染色体第204879476位的核苷酸序列如SEQ ID No.28~30所示;The amplified nucleotide sequence at position 204879476 of maize chromosome 5 is shown in SEQ ID No. 28-30;

扩增玉米6号染色体第39822979位的核苷酸序列如SEQ ID No.31~33所示;The amplified nucleotide sequence at position 39822979 of maize chromosome 6 is shown in SEQ ID No. 31 to 33;

扩增玉米6号染色体第141476300位的核苷酸序列如SEQ ID No.34~36所示;The amplified nucleotide sequence at position 141476300 of maize chromosome 6 is shown in SEQ ID No. 34-36;

扩增玉米7号染色体第126677146位的核苷酸序列如SEQ ID No.37~39所示;The amplified nucleotide sequence at position 126677146 of maize chromosome 7 is shown in SEQ ID No. 37~39;

扩增玉米7号染色体第15521714位的核苷酸序列如SEQ ID No.40~42所示;The amplified nucleotide sequence at position 15521714 of maize chromosome 7 is shown in SEQ ID No. 40-42;

扩增玉米8号染色体第20978845位的核苷酸序列如SEQ ID No.43~45所示;The amplified nucleotide sequence at position 20978845 of maize chromosome 8 is shown in SEQ ID No. 43~45;

扩增玉米8号染色体第118299376位的核苷酸序列如SEQ ID No.46~48所示;The amplified nucleotide sequence at position 118299376 of maize chromosome 8 is shown in SEQ ID No. 46~48;

扩增玉米9号染色体第104695670位的核苷酸序列如SEQ ID No.49~51所示;The amplified nucleotide sequence at position 104695670 of maize chromosome 9 is shown in SEQ ID No. 49-51;

扩增玉米9号染色体第127197714位的核苷酸序列如SEQ ID No.52~54所示;The amplified nucleotide sequence at position 127197714 of maize chromosome 9 is shown in SEQ ID No. 52~54;

扩增玉米10号染色体第39960289位的核苷酸序列如SEQ ID No.55~57所示;The amplified nucleotide sequence at position 39960289 of maize chromosome 10 is shown in SEQ ID No. 55-57;

扩增玉米10号染色体第109396730位的核苷酸序列如SEQ ID No.58~60所示。The amplified nucleotide sequence at position 109396730 of maize chromosome 10 is shown in SEQ ID No. 58-60.

本发明还提供了一种利用上述技术方案所述的引物高通量鉴定玉米杂交种纯度的方法,包括以下步骤:The invention also provides a method for high-throughput identification of the purity of corn hybrids using the primers described in the above technical solution, which includes the following steps:

1)提取玉米材料的DNA,将所述DNA利用上述技术方案所述的引物进行PCR;1) Extract the DNA of the corn material, and perform PCR using the primers described in the above technical solution;

2)收集原始荧光信号后进行基因分型,将得到的分型结果导入SNP数据库管理系统,去除双亲不互补和遗传不稳定的位点,统计至少两个位点的结果,计算玉米纯度。2) Collect the original fluorescence signals and perform genotyping. Import the obtained typing results into the SNP database management system to remove non-complementary and genetically unstable sites in the parents, count the results of at least two sites, and calculate the purity of the corn.

优选的,所述步骤1)玉米包括玉米的籽粒、幼苗或叶片。Preferably, the corn in step 1) includes corn kernels, seedlings or leaves.

优选的,所述步骤1)PCR的体系每1μL包括:20ng烘干的DNA、0.5μL 2×KASP PCR预混液、0.486μL去离子水和0.014μL引物工作液。Preferably, each 1 μL of the PCR system in step 1) includes: 20 ng of dried DNA, 0.5 μL of 2×KASP PCR master mix, 0.486 μL of deionized water and 0.014 μL of primer working solution.

优选的,所述步骤1)PCR的体系每3μL包括:1.45μL DNA、1.5μL 2×KASP PCR预混液和0.05μL引物工作液。Preferably, each 3 μL of the PCR system in step 1) includes: 1.45 μL DNA, 1.5 μL 2×KASP PCR master mix and 0.05 μL primer working solution.

优选的,所述步骤1)PCR的体系每10μL包括:1.5μL DNA、5μL 2×KASP PCR预混液、3.36μL去离子水和0.14μL引物工作液。Preferably, each 10 μL of the PCR system in step 1) includes: 1.5 μL DNA, 5 μL 2×KASP PCR master mix, 3.36 μL deionized water and 0.14 μL primer working solution.

优选的,所述引物工作液中上游引物的浓度为12μmol/L,下游引物的浓度为30μmol/L。Preferably, the concentration of the upstream primer in the primer working solution is 12 μmol/L, and the concentration of the downstream primer is 30 μmol/L.

优选的,所述PCR的程序包括:94℃15min;94℃20s,61-55℃1min 10个循环;94℃20s,55℃60s,30个循环。Preferably, the PCR program includes: 94°C for 15min; 94°C for 20s, 10 cycles of 61-55°C for 1min; and 94°C for 20s, 55°C for 60s, for 30 cycles.

本发明提供了一组鉴定玉米杂交种纯度的SNP核心位点,包括玉米1号染色体第8974336位、1号染色体第289408285位、2号染色体第109563976位、2号染色体第186339948位、3号染色体第27775731位、3号染色体第118083714位、4号染色体第20077010位、4号染色体第128874466位、5号染色体第13402375位、5号染色体第204879476位、6号染色体第39822979位、6号染色体第141476300位、7号染色体第126677146位、7号染色体第15521714位、8号染色体第20978845位、8号染色体第118299376位、9号染色体第104695670位、9号染色体第127197714位、10号染色体第39960289位和10号染色体第109396730位。采用本发明提供的位点能够坚定玉米杂交种的纯度。The invention provides a set of SNP core sites for identifying the purity of corn hybrids, including corn chromosome 1 at position 8974336, chromosome 1 at position 289408285, chromosome 2 at position 109563976, chromosome 2 at position 186339948, and chromosome 3. No. 27775731 of chromosome 3, No. 118083714 of chromosome 3, No. 20077010 of chromosome 4, No. 128874466 of chromosome 4, No. 13402375 of chromosome 5, No. 204879476 of chromosome 5, No. 39822979 of chromosome 6, No. 141476300, chromosome 7, 126677146, chromosome 7, 15521714, chromosome 8, 20978845, chromosome 8, 118299376, chromosome 9, 104695670, chromosome 9, 127197714, chromosome 10, 39960289 and chromosome 10, position 109396730. The purity of corn hybrids can be determined by using the sites provided by the present invention.

附图说明Description of the drawings

图1为测试位点分型效果图(MG279),a为CTAB法分型效果,b为快提法分型效果;Figure 1 shows the typing effect of the test site (MG279), a is the typing effect of CTAB method, and b is the typing effect of quick extraction method;

图2为样品双亲互补基因型比率对比图,横坐标为按照20个位点双亲互补率从低到高的样品排序,纵坐标为样品双亲互补基因型比率;Figure 2 is a comparison chart of the complementary genotype ratios of the sample's parents. The abscissa is the order of the samples from low to high according to the 20-site parental complementation rate. The ordinate is the sample's parent complementary genotype ratio;

图3为样品双亲互补基因型比率区间统计图,柱状图表示杂合率每增加10%区间的样品数。Figure 3 is a statistical diagram of the sample's parental complementary genotype ratio intervals. The bar graph represents the number of samples in the interval for each 10% increase in the heterozygosity rate.

具体实施方式Detailed ways

本发明提供了一组鉴定玉米杂交种纯度的SNP核心位点,包括玉米1号染色体第8974336位、1号染色体第289408285位、2号染色体第109563976位、2号染色体第186339948位、3号染色体第27775731位、3号染色体第118083714位、4号染色体第20077010位、4号染色体第128874466位、5号染色体第13402375位、5号染色体第204879476位、6号染色体第39822979位、6号染色体第141476300位、7号染色体第126677146位、7号染色体第15521714位、8号染色体第20978845位、8号染色体第118299376位、9号染色体第104695670位、9号染色体第127197714位、10号染色体第39960289位和10号染色体第109396730位。The invention provides a set of SNP core sites for identifying the purity of corn hybrids, including corn chromosome 1 at position 8974336, chromosome 1 at position 289408285, chromosome 2 at position 109563976, chromosome 2 at position 186339948, and chromosome 3. No. 27775731 of chromosome 3, No. 118083714 of chromosome 3, No. 20077010 of chromosome 4, No. 128874466 of chromosome 4, No. 13402375 of chromosome 5, No. 204879476 of chromosome 5, No. 39822979 of chromosome 6, No. 141476300, chromosome 7, 126677146, chromosome 7, 15521714, chromosome 8, 20978845, chromosome 8, 118299376, chromosome 9, 104695670, chromosome 9, 127197714, chromosome 10, 39960289 and chromosome 10, position 109396730.

本发明还提供了一组扩增上述技术方案所述的SNP核心位点的引物,所述引物的核苷酸序列如SEQ ID No.1~60所示。The present invention also provides a set of primers for amplifying the SNP core site described in the above technical solution, and the nucleotide sequences of the primers are shown in SEQ ID Nos. 1 to 60.

在本发明中,扩增玉米1号染色体第8974336位的核苷酸序列如SEQ ID No.1~3所示;扩增玉米1号染色体第289408285位的核苷酸序列如SEQ ID No.4~6所示;扩增玉米2号染色体第109563976位的核苷酸序列如SEQ ID No.7~9所示;扩增玉米2号染色体第186339948位的核苷酸序列如SEQ ID No.10~12所示;扩增玉米3号染色体第27775731位的核苷酸序列如SEQ ID No.13~15所示;扩增玉米3号染色体第118083714位的核苷酸序列如SEQ ID No.16~18所示;扩增玉米4号染色体第20077010位的核苷酸序列如SEQ ID No.19~21所示;扩增玉米4号染色体第128874466位的核苷酸序列如SEQ ID No.22~24所示;扩增玉米5号染色体第13402375位的核苷酸序列如SEQ ID No.25~27所示;扩增玉米5号染色体第204879476位的核苷酸序列如SEQ ID No.28~30所示;扩增玉米6号染色体第39822979位的核苷酸序列如SEQ ID No.31~33所示;扩增玉米6号染色体第141476300位的核苷酸序列如SEQ ID No.34~36所示;扩增玉米7号染色体第126677146位的核苷酸序列如SEQ IDNo.37~39所示;扩增玉米7号染色体第15521714位的核苷酸序列如SEQ ID No.40~42所示;扩增玉米8号染色体第20978845位的核苷酸序列如SEQ ID No.43~45所示;扩增玉米8号染色体第118299376位的核苷酸序列如SEQ ID No.46~48所示;扩增玉米9号染色体第104695670位的核苷酸序列如SEQ ID No.49~51所示;扩增玉米9号染色体第127197714位的核苷酸序列如SEQ ID No.52~54所示;扩增玉米10号染色体第39960289位的核苷酸序列如SEQ ID No.55~57所示;扩增玉米10号染色体第109396730位的核苷酸序列如SEQ IDNo.58~60所示。In the present invention, the amplified nucleotide sequence at position 8974336 of maize chromosome 1 is shown in SEQ ID No. 1 to 3; the amplified nucleotide sequence at position 289408285 of maize chromosome 1 is shown in SEQ ID No. 4. ~6 is shown; the amplified nucleotide sequence at position 109563976 of maize chromosome 2 is shown in SEQ ID No. 7~9; the amplified nucleotide sequence at position 186339948 of maize chromosome 2 is shown in SEQ ID No. 10 ~12; the amplified nucleotide sequence at position 27775731 of maize chromosome 3 is shown in SEQ ID No. 13~15; the amplified nucleotide sequence at position 118083714 of maize chromosome 3 is shown in SEQ ID No. 16 ~18; the amplified nucleotide sequence at position 20077010 of maize chromosome 4 is shown in SEQ ID No. 19~21; the amplified nucleotide sequence at position 128874466 of maize chromosome 4 is shown in SEQ ID No. 22 ~24; the amplified nucleotide sequence at position 13402375 of maize chromosome 5 is shown in SEQ ID No. 25~27; the amplified nucleotide sequence at position 204879476 of maize chromosome 5 is shown in SEQ ID No. 28 ~30; the amplified nucleotide sequence at position 39822979 of maize chromosome 6 is shown in SEQ ID No. 31~33; the amplified nucleotide sequence at position 141476300 of maize chromosome 6 is shown in SEQ ID No. 34 ~36 is shown; the amplified nucleotide sequence at position 126677146 of maize chromosome 7 is shown in SEQ ID No. 37~39; the amplified nucleotide sequence at position 15521714 of maize chromosome 7 is shown in SEQ ID No. 40~ 42; the amplified nucleotide sequence at position 20978845 of maize chromosome 8 is shown in SEQ ID No. 43~45; the amplified nucleotide sequence at position 118299376 of maize chromosome 8 is shown in SEQ ID No. 46~ 48; the amplified nucleotide sequence at position 104695670 of maize chromosome 9 is shown in SEQ ID No. 49~51; the amplified nucleotide sequence at position 127197714 of maize chromosome 9 is shown in SEQ ID No. 52~ 54; the amplified nucleotide sequence at position 39960289 of maize chromosome 10 is shown in SEQ ID No. 55~57; the amplified nucleotide sequence at position 109396730 of maize chromosome 10 is shown in SEQ ID No. 58~60 shown.

在本发明中,所述引物的核苷酸序列具体见表1。In the present invention, the nucleotide sequence of the primer is specifically shown in Table 1.

表1玉米纯度鉴定SNP核心位点表和引物序列Table 1 Maize purity identification SNP core site list and primer sequences

本发明优选在正向引物1的5’端连接FAM荧光对应接头序列;在正向引物2的5’端连接HEX荧光对应接头序列。In the present invention, it is preferred to connect the FAM fluorescence corresponding linker sequence to the 5' end of the forward primer 1; to connect the HEX fluorescence corresponding linker sequence to the 5' end of the forward primer 2.

本发明还提供了一种利用上述技术方案所述的引物高通量鉴定玉米杂交种纯度的方法,包括以下步骤:The invention also provides a method for high-throughput identification of the purity of corn hybrids using the primers described in the above technical solution, which includes the following steps:

1)提取玉米材料的DNA,将所述DNA利用上述技术方案所述的引物进行PCR;1) Extract the DNA of the corn material, and perform PCR using the primers described in the above technical solution;

2)收集原始荧光信号后进行基因分型,将得到的分型结果导入SNP数据库管理系统,去除双亲不互补和遗传不稳定的位点,统计至少两个位点的结果,计算玉米纯度。2) Collect the original fluorescence signals and perform genotyping. Import the obtained typing results into the SNP database management system to remove non-complementary and genetically unstable sites in the parents, count the results of at least two sites, and calculate the purity of the corn.

在本申请中,所述玉米优选包括玉米的籽粒、幼苗或叶片。本发明对所述提取玉米DNA的方法没有特殊限定,采用常规提取植物DNA的方法即可,在本发明具体实施方式中具体优选采用改良DNA快速提取法提取。In this application, the corn preferably includes corn kernels, seedlings or leaves. The present invention has no special limitations on the method for extracting corn DNA. Conventional methods for extracting plant DNA can be used. In the specific embodiments of the present invention, it is particularly preferred to use an improved DNA rapid extraction method for extraction.

在本发明中,所述PCR的体系每1μL优选包括:20ng烘干的DNA、0.5μL 2×KASP PCR预混液、0.486μL去离子水和0.014μL引物工作液。在本发明中,所述PCR的体系每3μL优选包括:1.45μL DNA、1.5μL 2×KASP PCR预混液和0.05μL引物工作液。在本发明中,所述PCR的体系每10μL优选包括:1.5μLDNA、5μL 2×KASP PCR预混液、3.36μL去离子水和0.14μL引物工作液。在本发明中,所述引物工作液中上游引物的浓度优选为12μmol/L,下游引物的浓度优选为30μmol/L。在本发明中,所述PCR的程序优选包括:94℃15min;94℃20s,61-55℃1min10个循环;94℃20s,55℃60s,30个循环。In the present invention, each 1 μL of the PCR system preferably includes: 20 ng of dried DNA, 0.5 μL of 2×KASP PCR master mix, 0.486 μL of deionized water, and 0.014 μL of primer working solution. In the present invention, each 3 μL of the PCR system preferably includes: 1.45 μL DNA, 1.5 μL 2×KASP PCR master mix and 0.05 μL primer working solution. In the present invention, each 10 μL of the PCR system preferably includes: 1.5 μL DNA, 5 μL 2×KASP PCR master mix, 3.36 μL deionized water and 0.14 μL primer working solution. In the present invention, the concentration of the upstream primer in the primer working solution is preferably 12 μmol/L, and the concentration of the downstream primer is preferably 30 μmol/L. In the present invention, the PCR program preferably includes: 94°C for 15 min; 94°C for 20 s, 10 cycles of 61-55°C for 1 min; and 30 cycles of 94°C for 20 s, 55°C for 60 s.

本发明优选使用Pherastar荧光扫描仪采集原始荧光信号。本发明优选使用Kraken(v16.3.16.16288)软件进行基因分型。本发明优选将分型结果导入SNP数据库管理系统(V1.0.0,软件登记号:2018SR043088)分析玉米纯度。In the present invention, the Pherastar fluorescence scanner is preferably used to collect original fluorescence signals. The present invention preferably uses Kraken (v16.3.16.16288) software for genotyping. The present invention preferably imports the typing results into the SNP database management system (V1.0.0, software registration number: 2018SR043088) to analyze the corn purity.

下面结合实施例对本发明提供的技术方案进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。The technical solutions provided by the present invention will be described in detail below with reference to the examples, but they should not be understood as limiting the protection scope of the present invention.

实施例1Example 1

玉米杂交种纯度鉴定核心引物的确定Determination of core primers for purity identification of corn hybrids

1.实验样品:供试材料12组三联体样品(表2)。1. Experimental samples: 12 groups of triplet samples of test materials (Table 2).

表2玉米三联体样品信息表Table 2 Corn triplet sample information table

编号serial number 杂交种hybrid 母本maternal parent 父本Paternal parent 11 先玉335Xianyu 335 PH6WCPH6WC PH4CVPH4CV 22 郑单958Zhengdan958 郑58Zheng 58 昌7-2Chang 7-2 33 农大108Agricultural University 108 X178X178 黄CHuang C 44 鲁单981Ludan 981 齐319Qi 319 Lx9801Lx9801 55 沈单16Shen Dan 16 K12K12 沈137Shen 137 66 东单60Dongdan 60 A801A801 丹598Dan 598 77 丹玉39Danyu 39 C8605-2C8605-2 丹598Dan 598 88 中单2号Mid lane number 2 Mo17Mo17 自330Since 330 99 掖单13Tuck single 13 掖478tuck478 丹340Dan 340 1010 SC704SC704 B73B73 Mo17Mo17 1111 京科糯2000Jingke Nuo 2000 京糯6Jingnuo 6 白糯6Bai Nuo 6 1212 农华101Nonghua 101 NH60NH60 S121S121

2.核酸提取:三联体样品采用改良CTAB法混株提取。匿名杂交种样品采用改良DNA快提法(K-MateDNA提取试剂盒,LGC Genomic)单株提取,向微孔板中加入100μL 1*提取液,95℃15min,4℃放置10min,加入100μL 1*缓冲液,1000rpm混匀1min,2500rpm离心30s静置,吸适量上清液,加入5倍去离子水制备为工作液备用。2. Nucleic acid extraction: Triplet samples were extracted from mixed strains using the modified CTAB method. Anonymous hybrid samples were extracted from individual strains using an improved DNA rapid extraction method (K-Mate DNA extraction kit, LGC Genomic). Add 100 μL 1* extraction solution to the microplate, 95°C for 15 min, place at 4°C for 10 min, and add 100 μL 1*. Buffer, mix at 1000rpm for 1 minute, centrifuge at 2500rpm for 30s and let stand. Aspirate an appropriate amount of supernatant, add 5 times of deionized water to prepare a working solution for later use.

3.纯度侯选位点及引物设计:根据335份国家审定玉米杂交种标准样品384个SNP位点的SNP指纹数据统计各个位点的杂合率、最小等位基因频率(MAF,Minor AlleleFrequency)、多态性信息含量(PIC,Polymorphic Information Content)等参数,挑选出在染色体上分布均匀,多态性好的60个位点作为纯度候选位点(表3)。将60个侯选位点设计合成KASP引物,在两条正向引物序列的5′端加上FAM或HEX荧光基团的接头序列,并按照上游引物12μmol/L,下游引物30μmol/L混合制备成引物工作液备用。3. Purity candidate sites and primer design: Based on the SNP fingerprint data of 384 SNP sites in 335 nationally approved corn hybrid standard samples, the heterozygosity rate and minimum allele frequency (MAF, Minor Allele Frequency) of each site were calculated. , polymorphic information content (PIC, Polymorphic Information Content) and other parameters, 60 sites with even distribution on the chromosome and good polymorphism were selected as purity candidate sites (Table 3). Design and synthesize KASP primers from 60 candidate sites, add the linker sequence of FAM or HEX fluorophore to the 5' end of the two forward primer sequences, and mix and prepare the upstream primer at 12 μmol/L and the downstream primer at 30 μmol/L. Prepare primer working solution for later use.

表3玉米纯度鉴定SNP候选位点信息表Table 3 Corn Purity Identification SNP Candidate Site Information Table

4.PCR反应体系:20ng烘干的DNA,0.5μL 2×KASP PCR预混液(英国,LGC Genomic,1536格式,标准含量ROX),0.486μL去离子水,0.014μL引物工作液。反应程序:94℃15min;94℃20s,61-55℃1min 10个循环;94℃20s,55℃60s,30个循环。4. PCR reaction system: 20ng dried DNA, 0.5μL 2×KASP PCR master mix (UK, LGC Genomic, 1536 format, standard content ROX), 0.486μL deionized water, 0.014μL primer working solution. Reaction program: 94°C for 15min; 94°C for 20s, 10 cycles of 61-55°C for 1min; 94°C for 20s, 55°C for 60s, 30 cycles.

5.荧光、数据采集及分析:利用Pherastar荧光扫描仪采集原始荧光信号,Kraken(v16.3.16.16288)软件进行基因分型,将分型结果导入SNP数据库管理系统(V1.0.0,软件登记号:2018SR043088)分析样品纯度。使用SNP比对统计工具软件(V1.0,软件登记号:2018SR026743)计算位点杂合率、MAF、PIC等参数。5. Fluorescence, data collection and analysis: Use Pherastar fluorescence scanner to collect original fluorescence signals, Kraken (v16.3.16.16288) software for genotyping, and import the typing results into the SNP database management system (V1.0.0, software registration number : 2018SR043088) to analyze sample purity. SNP comparison statistical tool software (V1.0, software registration number: 2018SR026743) was used to calculate site heterozygosity rate, MAF, PIC and other parameters.

6.试验结果:基于玉米384SNP基础位点组合,根据位点双亲互补区分能力、试验分型效果、染色均匀分布等条件筛选确定1套适于玉米杂交种纯度鉴定的核心位点组合。具体筛选过程为:(1)确定候选位点组合:基于335份国审品种基础位点的指纹数据计算位点双亲互补率、多态性等参数,筛选条件为位点双亲互补率高于40%,MAF≥0.3,PIC≥0.3,从而优选60个候选位点。(2)KASP引物评估:将候选位点设计合成KASP引物,使用12组玉米杂交种及其亲本三联体材料进行测试。其中57个引物都能分成紧密的三群,分型结果与预期结果一致,符合孟德尔遗传定律,并且试验重复结果一致(图1中的a)。(3)快速DNA提取法评估:为缩短DNA制备时间,提高纯度鉴定的效率,进一步使用快提法对CTAB法分型表现好的位点进行测试,共有48个位点使用CTAB法和快提法均能清晰的分成三个紧密的分型,且与预期分型结果一致的位点(图1中的b)。(4)确定纯度鉴定核心位点:综合位点区分能力及染色体均匀分布等,筛选出20个位点作为纯度鉴定核心位点(表1)。6. Test results: Based on the corn 384 SNP basic locus combination, a set of core locus combinations suitable for the purity identification of corn hybrids was screened and determined based on the complementary discrimination ability of the loci's parents, test typing effect, uniform distribution of staining and other conditions. The specific screening process is: (1) Determine candidate site combinations: Calculate site parent complementation rate, polymorphism and other parameters based on the fingerprint data of 335 national-approved variety basic sites. The screening condition is that the site parent complementation rate is higher than 40 %, MAF≥0.3, PIC≥0.3, thus 60 candidate sites were preferred. (2) KASP primer evaluation: KASP primers were designed and synthesized for candidate sites, and 12 groups of corn hybrids and their parental triplet materials were used for testing. Among them, 57 primers can be divided into three close groups. The typing results are consistent with the expected results, consistent with Mendelian inheritance laws, and the results of repeated experiments are consistent (a in Figure 1). (3) Evaluation of rapid DNA extraction method: In order to shorten the DNA preparation time and improve the efficiency of purity identification, the rapid extraction method was further used to test the sites that performed well in the CTAB method. A total of 48 sites were tested using the CTAB method and the rapid extraction method. Both methods can be clearly divided into three closely classified sites, and the sites are consistent with the expected classification results (b in Figure 1). (4) Determine the core sites for purity identification: Based on the site discrimination ability and uniform distribution of chromosomes, 20 sites were selected as the core sites for purity identification (Table 1).

实施例2Example 2

SNP核心位点区分能力验证SNP core site discrimination ability verification

1.实验样品:供试材料为335份1984-2013年国家审定玉米品种指纹数据(名单略)。1. Experimental samples: The test materials are 335 fingerprint data of nationally approved corn varieties from 1984 to 2013 (list omitted).

2.核酸提取:采用改良CTAB法(方法同实施例1)混株提取每95份样品至少放置一个空白对照。2. Nucleic acid extraction: Use the modified CTAB method (the method is the same as Example 1) to extract mixed strains, and place at least one blank control for every 95 samples.

3.引物、反应体系及反应程序:同实施例1。3. Primers, reaction system and reaction procedures: same as Example 1.

4.荧光、数据采集及分析:同实施例1。4. Fluorescence, data collection and analysis: same as Example 1.

5.试验结果:83.6%的样品双亲互补基因型比率在核心位点上高于基础位点(图2)。在335份杂交种样品中,99.7%样品的双亲互补基因型比率超过10%,多个双亲互补位点可供筛选用于纯度鉴定(图3)。综合各项参数说明,20个纯度鉴定核心位点均明显优于基础位点和候选位点,也证明这20个核心位点组合能够有效应用于目前国内市场绝大部分玉米杂交种进行纯度鉴定。5. Test results: 83.6% of the samples had a higher parent-complementary genotype ratio at the core locus than at the basic locus (Figure 2). Among the 335 hybrid samples, 99.7% of the samples had a parental complementary genotype ratio exceeding 10%, and multiple parental complementary sites can be screened for purity identification (Figure 3). Based on various parameter descriptions, the 20 purity identification core sites are significantly better than the basic sites and candidate sites, which also proves that these 20 core site combinations can be effectively used for purity identification of most corn hybrids currently in the domestic market. .

实施例3Example 3

利用玉米纯度核心位点对供试样品进行纯度鉴定Purity identification of test samples using corn purity core sites

1.实验样品:供试样品京科968种子若干,京科968亲本种子。1. Experimental samples: The test samples include several Jingke 968 seeds and Jingke 968 parent seeds.

2.核酸提取:采用改良DNA快提法(K-Mate DNA提取试剂盒,LGC Genomic)单株提取,制备成DNA工作液备用。每93个单株中至少放置2份亲本DNA及一个空白对照。2. Nucleic acid extraction: Use an improved DNA rapid extraction method (K-Mate DNA extraction kit, LGC Genomic) to extract a single strain and prepare a DNA working solution for later use. At least 2 copies of parental DNA and a blank control are placed for every 93 individual plants.

3.引物、反应体系及反应程序:同实施例1。3. Primers, reaction system and reaction procedures: same as Example 1.

4.荧光、数据采集及分析:同实施例1。4. Fluorescence, data collection and analysis: same as Example 1.

5.去除双亲不互补及遗传不稳定的位点,统计至少两个位点的结果,计算样品纯度。5. Remove the non-complementary and genetically unstable sites between the parents, count the results of at least two sites, and calculate the purity of the sample.

6.试验结果:供试样品在20个核心位点中有15个位点上都显示为双亲互补基因分型,从中选择MG072、MG135、MG175、MG215等四个位点进行纯度鉴定。在检测的110个个体中,共检出1个自交株,2个异型株,供试样品纯度为97.3%。根据国家标准规定,玉米单交种的纯度不低于96.0%,实验结果表明该供试样品纯度符合标准。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。6. Test results: The test sample showed parental complementation genotyping at 15 of the 20 core sites. Four sites, including MG072, MG135, MG175, and MG215, were selected for purity identification. Among the 110 individuals tested, 1 inbred strain and 2 heterotypic strains were detected, and the purity of the test sample was 97.3%. According to national standards, the purity of single-cross corn varieties is not less than 96.0%. The experimental results show that the purity of the test sample meets the standards. The above are only preferred embodiments of the present invention. It should be noted that those skilled in the art can make several improvements and modifications without departing from the principles of the present invention. These improvements and modifications can also be made. should be regarded as the protection scope of the present invention.

序列表sequence list

<110> 北京市农林科学院<110> Beijing Academy of Agriculture and Forestry Sciences

<120> 一组鉴定玉米杂交种纯度的SNP核心位点、引物和高通量鉴定纯度的方法<120> A set of SNP core sites, primers and high-throughput purity identification methods for identifying the purity of corn hybrids

<160> 180<160> 180

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 1<400> 1

ggaactgtgc gtagttcctg aga 23ggaactgtgc gtagttcctg aga 23

<210> 2<210> 2

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

gaactgtgcg tagttcctga gg 22gaactgtgcg tagttcctga gg 22

<210> 3<210> 3

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

tgatcgagga ggacccctgc aa 22tgatcgagga ggacccctgc aa 22

<210> 4<210> 4

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

ccgtatcatt tagtgcatca gaacc 25ccgtatcatt tagtgcatca gaacc 25

<210> 5<210> 5

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

ccgtatcatt tagtgcatca gaact 25ccgtatcatt tagtgcatca gaact 25

<210> 6<210> 6

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

gagaaatgca atgcatcaga tccggat 27gagaaatgca atgcatcaga tccggat 27

<210> 7<210> 7

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

gactaaacac actcactttc ctgc 24gactaaacac actcactttc ctgc 24

<210> 8<210> 8

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

ctgactaaac acactcactt tcctga 26ctgactaaacacactcactttcctga 26

<210> 9<210> 9

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 9<400> 9

aatcggtgat gagtgagtgt ctaactaaa 29aatcggtgat gagtgagtgt ctaactaaa 29

<210> 10<210> 10

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 10<400> 10

gagttgtgct ctgatccacc ct 22gagttgtgct ctgatccacc ct 22

<210> 11<210> 11

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 11<400> 11

agttgtgctc tgatccaccc g 21agttgtgctc tgatccaccc g 21

<210> 12<210> 12

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 12<400> 12

tattgcggca ttaaacaagg gaaaggaaa 29tattgcggca ttaaacaagg gaaaggaaa 29

<210> 13<210> 13

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 13<400> 13

acgtctgact tgcacgaaac gg 22acgtctgact tgcacgaaac gg 22

<210> 14<210> 14

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 14<400> 14

gacgtctgac ttgcacgaaa cga 23gacgtctgac ttgcacgaaa cga 23

<210> 15<210> 15

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 15<400> 15

ctccggagat gatctcccgt aattt 25ctccggagatgatctcccgt aattt 25

<210> 16<210> 16

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 16<400> 16

caattcctcc cctgcaattt caacaa 26caattcctcc cctgcaattt caacaa 26

<210> 17<210> 17

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 17<400> 17

aattcctccc ctgcaatttc aacac 25aattcctccc ctgcaatttc aacac 25

<210> 18<210> 18

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 18<400> 18

cagcctggtc gttgcttctg taatt 25cagcctggtc gttgcttctg taatt 25

<210> 19<210> 19

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 19<400> 19

cgcatcctaa taacataatt actcacg 27cgcatcctaa taacataatt actcacg 27

<210> 20<210> 20

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 20<400> 20

acgcatccta ataacataat tactcact 28acgcatccta ataacataat tactcact 28

<210> 21<210> 21

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 21<400> 21

gcgaaacggg gtgttagata gagtt 25gcgaaacggg gtgttagata gagtt 25

<210> 22<210> 22

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 22<400> 22

agcttagcag agctgcatct g 21agcttagcag agctgcatct g 21

<210> 23<210> 23

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 23<400> 23

ctagcttagc agagctgcat ctt 23ctagcttagc agagctgcat ctt 23

<210> 24<210> 24

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 24<400> 24

cccacgtcac ctagataagc caaaa 25cccacgtcac ctagataagc caaaa 25

<210> 25<210> 25

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 25<400> 25

gatatttctg caactaaaca tggcaag 27gatatttctg caactaaaca tggcaag 27

<210> 26<210> 26

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 26<400> 26

ggatatttct gcaactaaac atggcaaa 28ggatatttct gcaactaaac atggcaaa 28

<210> 27<210> 27

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 27<400> 27

atactggggt tgtggggata ggatt 25atactggggt tgtggggata ggatt 25

<210> 28<210> 28

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 28<400> 28

acttctccat cctcttccaa catatta 27acttctccat cctcttccaa catatta 27

<210> 29<210> 29

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 29<400> 29

cttctccatc ctcttccaac atattg 26cttctccatc ctcttccaac atattg 26

<210> 30<210> 30

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 30<400> 30

agctgtccac catcagtact ggaat 25agctgtccac catcagtact ggaat 25

<210> 31<210> 31

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 31<400> 31

agatggcatt gtgatctgtg caca 24agatggcatt gtgatctgtg caca 24

<210> 32<210> 32

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 32<400> 32

gatggcattg tgatctgtgc acg 23gatggcattg tgatctgtgc acg 23

<210> 33<210> 33

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 33<400> 33

agccgaagga ttgatcctcc tcat 24agccgaagga ttgatcctcc tcat 24

<210> 34<210> 34

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 34<400> 34

gaaacatgaa tgccctaaat ccttcg 26gaaacatgaa tgccctaaat ccttcg 26

<210> 35<210> 35

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 35<400> 35

agaaacatga atgccctaaa tccttct 27agaaacatga atgccctaaa tccttct 27

<210> 36<210> 36

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 36<400> 36

attatgttca ccaagtatcc agatggcat 29attatgttca ccaagtatcc agatggcat 29

<210> 37<210> 37

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 37<400> 37

ggttccatgg ctacctgaca agt 23ggttccatgg ctacctgaca agt 23

<210> 38<210> 38

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 38<400> 38

gttccatggc tacctgacaa gg 22gttccatggc tacctgacaa gg 22

<210> 39<210> 39

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 39<400> 39

taggagctag ccaagagcct acta 24taggagctag ccaagagcct acta 24

<210> 40<210> 40

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 40<400> 40

aacgtatgag atgaactcac cagaaa 26aacgtatgag atgaactcac cagaaa 26

<210> 41<210> 41

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 41<400> 41

acgtatgaga tgaactcacc agaag 25acgtatgaga tgaactcacc agaag 25

<210> 42<210> 42

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 42<400> 42

ctccgccgct ggtggagcta 20ctccgccgct ggtggagcta 20

<210> 43<210> 43

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 43<400> 43

gacctgaaat gcttggcgag tca 23gacctgaaat gcttggcgag tca 23

<210> 44<210> 44

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 44<400> 44

acctgaaatg cttggcgagt cc 22acctgaaatg cttggcgagt cc 22

<210> 45<210> 45

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 45<400> 45

gcaggagcct tagcgtggct at 22gcaggagcct tagcgtggct at 22

<210> 46<210> 46

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 46<400> 46

cctcagatct catctatgct gcc 23cctcagatct catctatgct gcc 23

<210> 47<210> 47

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 47<400> 47

cctcagatct catctatgct gct 23cctcagatct catctatgct gct 23

<210> 48<210> 48

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 48<400> 48

cgtttccaca ttttctgaag gtttcacaa 29cgtttccaca ttttctgaag gtttcacaa 29

<210> 49<210> 49

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 49<400> 49

aacacgagct ggttgatgga ttagt 25aacacgagct ggttgatgga ttagt 25

<210> 50<210> 50

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 50<400> 50

cacgagctgg ttgatggatt agc 23cacgagctgg ttgatggatt agc 23

<210> 51<210> 51

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 51<400> 51

gcctctggta cgttagtttg cagtt 25gcctctggta cgttagtttg cagtt 25

<210> 52<210> 52

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 52<400> 52

tactgaccga gcgatgctgc t 21tactgaccga gcgatgctgc t 21

<210> 53<210> 53

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 53<400> 53

ctgaccgagc gatgctgcc 19ctgaccgagcgatgctgcc 19

<210> 54<210> 54

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 54<400> 54

cgctgatggt cacagaaaca tcgtt 25cgctgatggt cacagaaaca tcgtt 25

<210> 55<210> 55

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 55<400> 55

gaagcaatcc ttccggagga atg 23gaagcaatcc ttccggagga atg 23

<210> 56<210> 56

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 56<400> 56

gaagcaatcc ttccggagga ata 23gaagcaatcc ttccggagga ata 23

<210> 57<210> 57

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 57<400> 57

gaatgtgcag attggatttg agggataaa 29gaatgtgcag attggatttg agggataaa 29

<210> 58<210> 58

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 58<400> 58

ggttgacatg agacttgcag aga 23ggttgacatg agacttgcag aga 23

<210> 59<210> 59

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 59<400> 59

ggttgacatg agacttgcag agg 23ggttgacatg agacttgcag agg 23

<210> 60<210> 60

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 60<400> 60

tcgggaagcc atacttcaca tgcat 25tcgggaagcc atacttcaca tgcat 25

<210> 61<210> 61

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 61<400> 61

ccggagctgg cttctgaatc aa 22ccggagctgg cttctgaatc aa 22

<210> 62<210> 62

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 62<400> 62

cggagctggc ttctgaatca g 21cggagctggc ttctgaatca g 21

<210> 63<210> 63

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 63<400> 63

acatccccat cctggggagg aa 22acatccccat cctggggagg aa 22

<210> 64<210> 64

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 64<400> 64

gagcgtcaac gacaaagcca agt 23gagcgtcaac gacaaagcca agt 23

<210> 65<210> 65

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 65<400> 65

agcgtcaacg acaaagccaa gc 22agcgtcaacg acaaagccaa gc 22

<210> 66<210> 66

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 66<400> 66

cctgttaggt tgtaagaatt gagccttat 29cctgttaggt tgtaagaatt gagccttat 29

<210> 67<210> 67

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 67<400> 67

ggagatgctc tacaagtttg tca 23ggagatgctc tacaagtttg tca 23

<210> 68<210> 68

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 68<400> 68

ggagatgctc tacaagtttg tcg 23ggagatgctc tacaagtttg tcg 23

<210> 69<210> 69

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 69<400> 69

ccttcgagga ggccaaggac tt 22ccttcgagga ggccaaggac tt 22

<210> 70<210> 70

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 70<400> 70

ccatggtttt aaggaactat cgaaaga 27ccatggtttt aaggaactat cgaaaga 27

<210> 71<210> 71

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 71<400> 71

catggtttta aggaactatc gaaagg 26catggtttta aggaactatc gaaagg 26

<210> 72<210> 72

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 72<400> 72

atcaatgtac tcccataagc agcaacttt 29atcaatgtac tcccataagc agcaacttt 29

<210> 73<210> 73

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 73<400> 73

catcgaatgg ctgatcatgt tgcat 25catcgaatgg ctgatcatgt tgcat 25

<210> 74<210> 74

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 74<400> 74

atcgaatggc tgatcatgtt gcac 24atcgaatggc tgatcatgtt gcac 24

<210> 75<210> 75

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 75<400> 75

ccattccctg tatgacagac acgat 25ccattccctg tatgacagac acgat 25

<210> 76<210> 76

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 76<400> 76

gcccctgcat tgtttgcagc 20gcccctgcat tgtttgcagc 20

<210> 77<210> 77

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 77<400> 77

ctgcccctgc attgtttgca gt 22ctgcccctgc attgtttgca gt 22

<210> 78<210> 78

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 78<400> 78

gccactgcaa atccaaagaa tccgta 26gccactgcaa atccaaagaa tccgta 26

<210> 79<210> 79

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 79<400> 79

aggatcacaa tccatctgct gcaaa 25aggatcacaa tccatctgct gcaaa 25

<210> 80<210> 80

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 80<400> 80

gatcacaatc catctgctgc aac 23gatcacaatc catctgctgc aac 23

<210> 81<210> 81

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 81<400> 81

cctgcagttg ctactgatag ttctcaa 27cctgcagttg ctactgatag ttctcaa 27

<210> 82<210> 82

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 82<400> 82

atgtttctca ggacggtaat agtgat 26atgtttctca ggacggtaat agtgat 26

<210> 83<210> 83

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 83<400> 83

gtttctcagg acggtaatag tgac 24gtttctcagg acggtaatag tgac 24

<210> 84<210> 84

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 84<400> 84

cccatccatt ccacatattc ggcaa 25cccatccatt ccacatattc ggcaa 25

<210> 85<210> 85

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 85<400> 85

cggcctccat gcttgatgat g 21cggcctccat gcttgatgat g 21

<210> 86<210> 86

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 86<400> 86

ccggcctcca tgcttgatga ta 22ccggcctcca tgcttgatga ta 22

<210> 87<210> 87

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 87<400> 87

gtcggtcgag tcaaaattca ttttggat 28gtcggtcgag tcaaaattca ttttggat 28

<210> 88<210> 88

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 88<400> 88

attcgaactg ctgccttgac taatc 25attcgaactg ctgccttgac taatc 25

<210> 89<210> 89

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 89<400> 89

attcgaactg ctgccttgac taata 25attcgaactg ctgccttgac taata 25

<210> 90<210> 90

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 90<400> 90

gcagcagtga ctatccttct gaagaa 26gcagcagtgactatccttctgaagaa 26

<210> 91<210> 91

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 91<400> 91

ccaatcaagg cggcaacata cc 22ccaatcaagg cggcaacata cc 22

<210> 92<210> 92

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 92<400> 92

accaatcaag gcggcaacat act 23accaatcaag gcggcaacat act 23

<210> 93<210> 93

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 93<400> 93

gcgttcatgt tcatggaagg ccaaa 25gcgttcatgt tcatggaagg ccaaa 25

<210> 94<210> 94

<211> 30<211> 30

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 94<400> 94

attctgaatg taaaacttaa catgctgcta 30attctgaatg taaaacttaa catgctgcta 30

<210> 95<210> 95

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 95<400> 95

ctgaatgtaa aacttaacat gctgctg 27ctgaatgtaa aacttaacat gctgctg 27

<210> 96<210> 96

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 96<400> 96

aagtccttcc aactttcagc ataagcaaa 29aagtccttcc aactttcagc ataagcaaa 29

<210> 97<210> 97

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 97<400> 97

ggttacacga ccaaatgagt accat 25ggttacacga ccaaatgagt accat 25

<210> 98<210> 98

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 98<400> 98

gttacacgac caaatgagta ccag 24gttacacgac caaatgagtaccag 24

<210> 99<210> 99

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 99<400> 99

taggcagagc agccattgac aagta 25taggcagagc agccattgac aagta 25

<210> 100<210> 100

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 100<400> 100

tatcacttgt ggatctatat ctgtg 25tatcacttgt ggatctatat ctgtg 25

<210> 101<210> 101

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 101<400> 101

gcttatcact tgtggatcta tatctgtt 28gctttatcact tgtggatcta tatctgtt 28

<210> 102<210> 102

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 102<400> 102

tgaacccaaa gcctcggtgt tcttt 25tgaacccaaa gcctcggtgt tcttt 25

<210> 103<210> 103

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 103<400> 103

atacagtgaa acagcttgca ctgga 25atacagtgaa acagcttgca ctgga 25

<210> 104<210> 104

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 104<400> 104

cagtgaaaca gcttgcactg gg 22cagtgaaaca gcttgcactg gg 22

<210> 105<210> 105

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 105<400> 105

ttaatttttg gaagagcttg cgttgggaa 29ttaatttttg gaagagcttg cgttgggaa 29

<210> 106<210> 106

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 106<400> 106

agttacctgt catcgatctc tggat 25agttacctgt catcgatctc tggat 25

<210> 107<210> 107

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 107<400> 107

acctgtcatc gatctctgga c 21acctgtcatc gatctctgga c 21

<210> 108<210> 108

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 108<400> 108

aaagccctct gacaatgctc cagta 25aaagccctct gacaatgctc cagta 25

<210> 109<210> 109

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 109<400> 109

cctctgtaag cgcagtactg gt 22cctctgtaag cgcagtactg gt 22

<210> 110<210> 110

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 110<400> 110

ctctgtaagc gcagtactgg c 21ctctgtaagc gcagtactgg c 21

<210> 111<210> 111

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 111<400> 111

aaattgctat gcaaacaggt tctggagta 29aaattgctat gcaaacaggt tctggagta 29

<210> 112<210> 112

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 112<400> 112

gagctagtaa atattgttgt tgttcctc 28gagctagtaa atattgttgt tgttcctc 28

<210> 113<210> 113

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 113<400> 113

agagctagta aatattgttg ttgttcctt 29agagctagta aatattgttg ttgttcctt 29

<210> 114<210> 114

<211> 19<211> 19

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 114<400> 114

cgccgacggg acgacggat 19cgccgacggg acgacggat 19

<210> 115<210> 115

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 115<400> 115

cataaacagt aggtttatcg ctgacataa 29cataaacagt aggtttatcg ctgacataa 29

<210> 116<210> 116

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 116<400> 116

aaacagtagg tttatcgctg acatag 26aaacagtagg tttatcgctg acatag 26

<210> 117<210> 117

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 117<400> 117

gtgataaccg atgcaaaatg ctgcttaat 29gtgataaccg atgcaaaatg ctgcttaat 29

<210> 118<210> 118

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 118<400> 118

ccaaaggata gcacatcttg gtg 23ccaaaggata gcacatcttg gtg 23

<210> 119<210> 119

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 119<400> 119

gtccaaagga tagcacatct tggta 25gtccaaagga tagcacatct tggta 25

<210> 120<210> 120

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 120<400> 120

tgtcaaccgc atcctggcag ataat 25tgtcaaccgc atcctggcag ataat 25

<210> 121<210> 121

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 121<400> 121

gacgacgact ccatcgtgac c 21gacgacgact ccatcgtgac c 21

<210> 122<210> 122

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 122<400> 122

gacgacgact ccatcgtgac a 21gacgacgact ccatcgtgac a 21

<210> 123<210> 123

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 123<400> 123

tcaacccatg gctgctcaca tgtaa 25tcaacccatg gctgctcaca tgtaa 25

<210> 124<210> 124

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 124<400> 124

ggcattctga tttgacagcc cac 23ggcattctga tttgacagcc cac 23

<210> 125<210> 125

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 125<400> 125

ggcattctga tttgacagcc caa 23ggcattctga tttgacagcc caa 23

<210> 126<210> 126

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 126<400> 126

tcctgattct gtacttgatt ggaccaaa 28tcctgattct gtacttgatt ggaccaaa 28

<210> 127<210> 127

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 127<400> 127

gcagctgaga aacaattgca aagtg 25gcagctgaga aacaattgca aagtg 25

<210> 128<210> 128

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 128<400> 128

gcagctgaga aacaattgca aagta 25gcagctgaga aacaattgca aagta 25

<210> 129<210> 129

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 129<400> 129

gtactctcag atggttttgt gacatcaa 28gtactctcag atggttttgt gacatcaa 28

<210> 130<210> 130

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 130<400> 130

gtgctcgaac gaatcgacca g 21gtgctcgaac gaatcgacca g 21

<210> 131<210> 131

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 131<400> 131

cgtgctcgaa cgaatcgacc aa 22cgtgctcgaa cgaatcgacc aa 22

<210> 132<210> 132

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 132<400> 132

catccatggc gaagctcatg aacaa 25catccatggc gaagctcatg aacaa 25

<210> 133<210> 133

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 133<400> 133

gtagcgtgtc tctacgctct g 21gtagcgtgtc tctacgctct g 21

<210> 134<210> 134

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 134<400> 134

atgtagcgtg tctctacgct ctt 23atgtagcgtg tctctacgct ctt 23

<210> 135<210> 135

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 135<400> 135

cagcgcgtta cgacgaactc caa 23cagcgcgtta cgacgaactc caa 23

<210> 136<210> 136

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 136<400> 136

cagcgacctc aagaagttga agtaa 25cagcgacctc aagaagttga agtaa 25

<210> 137<210> 137

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 137<400> 137

agcgacctca agaagttgaa gtag 24agcgacctca agaagttgaa gtag 24

<210> 138<210> 138

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 138<400> 138

gtacgacatg cagtttgaca tcaagtat 28gtacgacatg cagtttgaca tcaagtat 28

<210> 139<210> 139

<211> 30<211> 30

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 139<400> 139

gaagctacta ttagcaatga tctatatgat 30gaagctacta ttagcaatga tctatatgat 30

<210> 140<210> 140

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 140<400> 140

aagctactat tagcaatgat ctatatgac 29aagctactat tagcaatgat ctatatgac 29

<210> 141<210> 141

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 141<400> 141

acaggattga taaacattac ctgcaggaa 29acaggattga taaacattac ctgcaggaa 29

<210> 142<210> 142

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 142<400> 142

gatcgttgtc ttcacaaatg aagaatagt 29gatcgttgtc ttcacaaatg aagaatagt 29

<210> 143<210> 143

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 143<400> 143

cgttgtcttc acaaatgaag aatagc 26cgttgtcttc acaaatgaag aatagc 26

<210> 144<210> 144

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 144<400> 144

gcgagatatt gaaagctagt ggtgcta 27gcgagatatt gaaagctagt ggtgcta 27

<210> 145<210> 145

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 145<400> 145

gaactaactg agtgttaaag gagcttat 28gaactaactg agtgttaaag gagctttat 28

<210> 146<210> 146

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 146<400> 146

aactaactga gtgttaaagg agcttag 27aactaactga gtgttaaagg agcttag 27

<210> 147<210> 147

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 147<400> 147

ccttgacaca accgctctcc ttaaa 25ccttgacaca accgctctcc ttaaa 25

<210> 148<210> 148

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 148<400> 148

aaccattccc ttcatacttc ttctct 26aaccattccc ttcatacttc ttctct 26

<210> 149<210> 149

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 149<400> 149

accattccct tcatacttct tctcc 25accattccct tcatacttct tctcc 25

<210> 150<210> 150

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 150<400> 150

gggagtatct tttaggaaga tgtacagat 29gggagtatct tttaggaaga tgtacagat 29

<210> 151<210> 151

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 151<400> 151

caatccaaag cagaaagaag ttgttct 27caatccaaag cagaaagaag ttgttct 27

<210> 152<210> 152

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 152<400> 152

aatccaaagc agaaagaagt tgttcc 26aatccaaagc agaaagaagt tgttcc 26

<210> 153<210> 153

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 153<400> 153

ccaaaacagt gaagtgaccg ccat 24ccaaaacagt gaagtgaccg ccat 24

<210> 154<210> 154

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 154<400> 154

caaagtggtg taaatggatg gatcg 25caaagtggtg taaatggatg gatcg 25

<210> 155<210> 155

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 155<400> 155

caaagtggtg taaatggatg gatca 25caaagtggtg taaatggatg gatca 25

<210> 156<210> 156

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 156<400> 156

ttggacactc caggggatcc tata 24ttggacactc caggggatcc tata 24

<210> 157<210> 157

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 157<400> 157

gcctcacaca tccatatacg tagaa 25gcctcacaca tccatatacg tagaa 25

<210> 158<210> 158

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 158<400> 158

cctcacacat ccatatacgt agag 24cctcacacat ccatatacgt agag 24

<210> 159<210> 159

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 159<400> 159

cttccatgca tcgccctatg gatat 25cttccatgca tcgccctatg gatat 25

<210> 160<210> 160

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 160<400> 160

aacactcatg tctgctccag gg 22aacactcatg tctgctccag gg 22

<210> 161<210> 161

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 161<400> 161

aaacactcat gtctgctcca gga 23aaacactcat gtctgctcca gga 23

<210> 162<210> 162

<211> 29<211> 29

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 162<400> 162

tcgatgtttt cgatcccaag ttcaacatt 29tcgatgtttt cgatcccaag ttcaacatt 29

<210> 163<210> 163

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 163<400> 163

ccacttctgc tcgtatgatc ttc 23ccacttctgc tcgtatgatc ttc 23

<210> 164<210> 164

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 164<400> 164

gccacttctg ctcgtatgat ctta 24gccacttctg ctcgtatgat ctta 24

<210> 165<210> 165

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 165<400> 165

tcccgtaatc atctgctcgt ctgta 25tcccgtaatc atctgctcgt ctgta 25

<210> 166<210> 166

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 166<400> 166

ataccctctc caccagttgt tgat 24ataccctctc caccagttgt tgat 24

<210> 167<210> 167

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 167<400> 167

accctctcca ccagttgttg ac 22accctctcca ccagttgttg ac 22

<210> 168<210> 168

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 168<400> 168

tcgcagggag gcgtcgttca a 21tcgcagggag gcgtcgttca a 21

<210> 169<210> 169

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 169<400> 169

aaaagtgcag ttccttgctg ttcattt 27aaaagtgcag ttccttgctg ttcattt 27

<210> 170<210> 170

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 170<400> 170

aagtgcagtt ccttgctgtt cattg 25aagtgcagtt ccttgctgtt cattg 25

<210> 171<210> 171

<211> 28<211> 28

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 171<400> 171

cccaatgagc aaaaagaata gcaccaaa 28cccaatgagc aaaaagaata gcaccaaa 28

<210> 172<210> 172

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 172<400> 172

tgttccgaat agcaagtgat ctcttt 26tgttccgaat agcaagtgat ctcttt 26

<210> 173<210> 173

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 173<400> 173

gttccgaata gcaagtgatc tcttc 25gttccgaata gcaagtgatc tcttc 25

<210> 174<210> 174

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 174<400> 174

gggaaacctg cagaatgctg ttgat 25gggaaacctg cagaatgctg ttgat 25

<210> 175<210> 175

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 175<400> 175

caagtgcgca gcaagccaaa ag 22caagtgcgca gcaagccaaa ag 22

<210> 176<210> 176

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 176<400> 176

aaacaagtgc gcagcaagcc aaaat 25aaacaagtgc gcagcaagcc aaaat 25

<210> 177<210> 177

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 177<400> 177

ccgttcttaa gcgctccatc ctttt 25ccgttcttaa gcgctccatc ctttt 25

<210> 178<210> 178

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 178<400> 178

cacgaagctc tcgcgctctt c 21cacgaagctc tcgcgctctt c 21

<210> 179<210> 179

<211> 21<211> 21

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 179<400> 179

cacgaagctc tcgcgctctt t 21cacgaagctc tcgcgctctt t 21

<210> 180<210> 180

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 180<400> 180

ggcatggagc ccctatcctt gat 23ggcatggagc ccctatcctt gat 23

Claims (8)

1.一组扩增玉米杂交种纯度的SNP核心位点的引物组,其特征在于,所述引物组由如SEQ ID No.1~60所示的引物组成,1. A set of primers for amplifying the SNP core site of corn hybrid purity, characterized in that the primer set is composed of primers shown in SEQ ID No. 1 to 60, 其中,扩增玉米1号染色体第8974336位的核苷酸序列如SEQ ID No.1~3所示;Among them, the amplified nucleotide sequence at position 8974336 of maize chromosome 1 is shown in SEQ ID No. 1~3; 扩增玉米1号染色体第289408285位的核苷酸序列如SEQ ID No.4~6所示;The amplified nucleotide sequence at position 289408285 of maize chromosome 1 is shown in SEQ ID No. 4~6; 扩增玉米2号染色体第109563976位的核苷酸序列如SEQ ID No.7~9所示;The amplified nucleotide sequence at position 109563976 of maize chromosome 2 is shown in SEQ ID No. 7~9; 扩增玉米2号染色体第186339948位的核苷酸序列如SEQ ID No.10~12所示;The amplified nucleotide sequence at position 186339948 of maize chromosome 2 is shown in SEQ ID No. 10~12; 扩增玉米3号染色体第27775731位的核苷酸序列如SEQ ID No.13~15所示;The amplified nucleotide sequence at position 27775731 of maize chromosome 3 is shown in SEQ ID No. 13~15; 扩增玉米3号染色体第118083714位的核苷酸序列如SEQ ID No.16~18所示;The amplified nucleotide sequence at position 118083714 of maize chromosome 3 is shown in SEQ ID No. 16~18; 扩增玉米4号染色体第20077010位的核苷酸序列如SEQ ID No.19~21所示;The amplified nucleotide sequence at position 20077010 of maize chromosome 4 is shown in SEQ ID No. 19~21; 扩增玉米4号染色体第128874466位的核苷酸序列如SEQ ID No.22~24所示;The amplified nucleotide sequence at position 128874466 of maize chromosome 4 is shown in SEQ ID No. 22~24; 扩增玉米5号染色体第13402375位的核苷酸序列如SEQ ID No.25~27所示;The amplified nucleotide sequence at position 13402375 of maize chromosome 5 is shown in SEQ ID No. 25~27; 扩增玉米5号染色体第204879476位的核苷酸序列如SEQ ID No.28~30所示;The amplified nucleotide sequence at position 204879476 of maize chromosome 5 is shown in SEQ ID No. 28~30; 扩增玉米6号染色体第39822979位的核苷酸序列如SEQ ID No.31~33所示;The amplified nucleotide sequence at position 39822979 of maize chromosome 6 is shown in SEQ ID No. 31~33; 扩增玉米6号染色体第141476300位的核苷酸序列如SEQ ID No.34~36所示;The amplified nucleotide sequence at position 141476300 of maize chromosome 6 is shown in SEQ ID No. 34~36; 扩增玉米7号染色体第126677146位的核苷酸序列如SEQ ID No.37~39所示;The amplified nucleotide sequence at position 126677146 of maize chromosome 7 is shown in SEQ ID No. 37~39; 扩增玉米7号染色体第15521714位的核苷酸序列如SEQ ID No.40~42所示;The amplified nucleotide sequence at position 15521714 of maize chromosome 7 is shown in SEQ ID No. 40~42; 扩增玉米8号染色体第20978845位的核苷酸序列如SEQ ID No.43~45所示;The amplified nucleotide sequence at position 20978845 of maize chromosome 8 is shown in SEQ ID No. 43~45; 扩增玉米8号染色体第118299376位的核苷酸序列如SEQ ID No.46~48所示;The amplified nucleotide sequence at position 118299376 of maize chromosome 8 is shown in SEQ ID No. 46~48; 扩增玉米9号染色体第104695670位的核苷酸序列如SEQ ID No.49~51所示;The amplified nucleotide sequence at position 104695670 of maize chromosome 9 is shown in SEQ ID No. 49~51; 扩增玉米9号染色体第127197714位的核苷酸序列如SEQ ID No.52~54所示;The amplified nucleotide sequence at position 127197714 of maize chromosome 9 is shown in SEQ ID No. 52~54; 扩增玉米10号染色体第39960289位的核苷酸序列如SEQ ID No.55~57所示;The amplified nucleotide sequence at position 39960289 of maize chromosome 10 is shown in SEQ ID No. 55~57; 扩增玉米10号染色体第109396730位的核苷酸序列如SEQ ID No.58~60所示。The amplified nucleotide sequence at position 109396730 of maize chromosome 10 is shown in SEQ ID No. 58~60. 2.一种利用权利要求1所述的引物组高通量鉴定玉米杂交种纯度的方法,其特征在于,包括以下步骤:2. A method for high-throughput identification of the purity of corn hybrids using the primer set of claim 1, characterized in that it includes the following steps: 1)提取玉米材料的DNA,将所述DNA利用权利要求1所述的引物组进行PCR;1) Extract the DNA of the corn material, and perform PCR using the primer set of claim 1 on the DNA; 2)收集原始荧光信号后进行基因分型,将得到的分型结果导入SNP数据库管理系统,去除双亲不互补和遗传不稳定的位点,统计至少两个位点的结果,计算玉米纯度。2) Collect the original fluorescence signals and perform genotyping. Import the obtained typing results into the SNP database management system to remove non-complementary and genetically unstable sites in the parents, count the results of at least two sites, and calculate the purity of the corn. 3.根据权利要求2所述的方法,其特征在于,所述步骤1)玉米材料包括玉米的籽粒、幼苗或叶片。3. The method according to claim 2, characterized in that the corn material in step 1) includes corn kernels, seedlings or leaves. 4.根据权利要求2所述的方法,其特征在于,所述步骤1)PCR的体系每1μL包括:20ng 烘干的DNA、0.5μL 2×KASP PCR预混液、0.486μL去离子水和0.014μL引物工作液。4. The method according to claim 2, characterized in that each 1 μL of the PCR system in step 1) includes: 20 ng of dried DNA, 0.5 μL of 2×KASP PCR master mix, 0.486 μL of deionized water and 0.014 μL. Primer working solution. 5.根据权利要求2所述的方法,其特征在于,所述步骤1)PCR的体系每3μL包括:1.45μLDNA 、1.5μL 2×KASP PCR预混液和0.05μL引物工作液。5. The method according to claim 2, characterized in that each 3 μL of the PCR system in step 1) includes: 1.45 μL DNA, 1.5 μL 2×KASP PCR master mix and 0.05 μL primer working solution. 6.根据权利要求2所述的方法,其特征在于,所述步骤1)PCR的体系每10μL包括:1.5μLDNA、5μL 2×KASP PCR预混液、3.36μL去离子水和0.14μL引物工作液。6. The method according to claim 2, characterized in that each 10 μL of the PCR system in step 1) includes: 1.5 μL DNA, 5 μL 2×KASP PCR master mix, 3.36 μL deionized water and 0.14 μL primer working solution. 7.根据权利要求4~6任一项所述的方法,其特征在于,所述引物工作液中上游引物的浓度为12μmol/L,下游引物的浓度为30μmol/L。7. The method according to any one of claims 4 to 6, characterized in that the concentration of the upstream primer in the primer working solution is 12 μmol/L, and the concentration of the downstream primer is 30 μmol/L. 8.根据权利要求2、4~6任一项所述的方法,其特征在于,所述PCR的程序包括:94 ℃ 15min;94 ℃ 20 s,61-55 ℃ 1 min 10个循环;94 ℃ 20 s,55 ℃ 60 s,30个循环。8. The method according to any one of claims 2 and 4 to 6, characterized in that the PCR program includes: 94°C for 15min; 94°C for 20 s, 61-55°C for 1 min for 10 cycles; 94°C 20 s, 55 ℃ 60 s, 30 cycles.
CN202010723797.3A 2020-07-24 2020-07-24 A set of SNP core sites, primers and high-throughput purity identification methods for identifying the purity of corn hybrids Active CN113969322B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010723797.3A CN113969322B (en) 2020-07-24 2020-07-24 A set of SNP core sites, primers and high-throughput purity identification methods for identifying the purity of corn hybrids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010723797.3A CN113969322B (en) 2020-07-24 2020-07-24 A set of SNP core sites, primers and high-throughput purity identification methods for identifying the purity of corn hybrids

Publications (2)

Publication Number Publication Date
CN113969322A CN113969322A (en) 2022-01-25
CN113969322B true CN113969322B (en) 2023-09-15

Family

ID=79585972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010723797.3A Active CN113969322B (en) 2020-07-24 2020-07-24 A set of SNP core sites, primers and high-throughput purity identification methods for identifying the purity of corn hybrids

Country Status (1)

Country Link
CN (1) CN113969322B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118389729A (en) * 2024-02-21 2024-07-26 北京康普森生物技术有限公司 SNP marker for identifying purity of Qingzao 510 maize hybrid and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724758A (en) * 2019-11-27 2020-01-24 北京市农林科学院 Method for identifying purity of Jingnongke 728 corn hybrid based on SNP marker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724758A (en) * 2019-11-27 2020-01-24 北京市农林科学院 Method for identifying purity of Jingnongke 728 corn hybrid based on SNP marker

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于高通量测序开发玉米高效KASP 分子标记;陆海燕等;作物学报;第45卷(第6期);872-878 *
玉米纯度分子鉴定标准研制相关问题的探讨;王凤格等;玉米科学;第23卷(第4期);48-53 *

Also Published As

Publication number Publication date
CN113969322A (en) 2022-01-25

Similar Documents

Publication Publication Date Title
Morgil et al. Single Nucleotide Polymorphisms (SNPs) in Plant Genetics and
CN103282519B (en) Corn authenticity detection and molecular breeding SNP chip-maizeSNP3072 and its detection method
CN112195264B (en) A SNP site, primer set and application for identifying the purity of tomato hybrids
CN110724758B (en) Method for identifying purity of Jingnongke 728 corn hybrid based on SNP marker
CN110872633B (en) Method for identifying purity of Jingke 968 corn hybrid based on SNP marker
CN111893203A (en) A Fluorescent Molecular Marker and Its Primer for Molecular-Assisted Breeding of Maize Haploid Inducible Lines
CN112195265B (en) SNP (Single nucleotide polymorphism) locus and primer set for identifying purity of pepper hybrid and application
CN111893209B (en) Indel site detection marker related to thousand grain weight of wheat and application thereof
CN111575400B (en) Wheat stripe rust resistance QTL molecular marker IWB12253 and application thereof
CN115505648A (en) Development and Application of KASP Molecular Marker of Maize Drought Tolerance Gene
CN113969322B (en) A set of SNP core sites, primers and high-throughput purity identification methods for identifying the purity of corn hybrids
CN113046467B (en) A group of SNP loci significantly associated with resistance to wheat stripe rust and its application in genetic breeding
CN112029898B (en) A SNP marker for identification of broccoli variety &#39;Zheqing 100&#39;
CN117286287B (en) KASP (KASP) marker of soybean shade-tolerance gene GmYUC2 and application thereof
CN108359720A (en) The detection method of mutant and its application
CN109880932B (en) SSR primer pair for identifying cotton 1279 in hybrid cotton variety, product thereof and identification method
WO2015010008A1 (en) Detection methods for oil palm shell alleles
CN113151259B (en) Molecular marker, primer group and application of indica-japonica hybrid rice
CN114606335A (en) Development and application of KASP molecular marker for sugarcane mosaic virus disease resistance gene in maize
CN115948603A (en) Method for screening wheat with different plant heights, tillering and yields
CN112080580B (en) SNP marker for identifying broccoli variety Zhe Qing 60
CN114606334A (en) Development and Application of SNP Molecular Markers for Maize Flowering Stage Gene
CN115125326A (en) Development and application of KASP molecular marker for maize S-type cytoplasmic sterility gene
CN104278025B (en) Cabbage type rape full-length genome SCAR molecular labelings and preparation method and application
CN113637790A (en) KASP molecular markers and primers, kits and applications of stripe rust resistance gene YrAS2388R

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant