CN113965078A - 基于异质集成的高功率密度同步升压dc-dc转换芯片 - Google Patents

基于异质集成的高功率密度同步升压dc-dc转换芯片 Download PDF

Info

Publication number
CN113965078A
CN113965078A CN202111083350.5A CN202111083350A CN113965078A CN 113965078 A CN113965078 A CN 113965078A CN 202111083350 A CN202111083350 A CN 202111083350A CN 113965078 A CN113965078 A CN 113965078A
Authority
CN
China
Prior art keywords
chip
switch tube
power switch
power
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111083350.5A
Other languages
English (en)
Inventor
王晨菲
孟凡易
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202111083350.5A priority Critical patent/CN113965078A/zh
Publication of CN113965078A publication Critical patent/CN113965078A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开一种基于异质集成的高功率密度同步升压DC‑DC转换芯片,包括片上集成部分及片外部分,片上集成部分包括高边增强型GaN功率开关管、低边增强型GaN功率开关管以及基于CMOS工艺的CMOS控制电路,CMOS控制电路包括带隙基准、误差放大器、箝位电路、比较器、锯齿波发生器、电平位移电路、驱动电路模块,片外部分包括电感L和电容C。本发明的本发明基于异质集成的高功率密度同步升压DC‑DC转换器芯片,可以有效提高芯片级DC‑DC转换器的输出功率;大大减小了高功率DC‑DC转换器的体积,有效降低其成本;具备宽输入电压范围,能在高开关频率下实现高的转换效率。

Description

基于异质集成的高功率密度同步升压DC-DC转换芯片
技术领域
本发明涉及电源装置技术领域,特别是涉及一种基于异质集成的高功率密度同步升压DC-DC转换芯片。
背景技术
DC-DC转换器因其具有高转换效率广泛应用于物联网、光伏、便携式移动电子设备中。DC-DC转换器有同步整流和非同步整流两种方式。非同步整流使用二极管作为整流器件,这种方法成本较低同时电路设计简单,但是由于整流二极管上存在压降以及内阻,在大电流情况下会带来较大的效率损耗。而同步整流DC-DC转换器使用功率开关管代替整流二极管能极大的降低其带来的损耗,但会提高电路设计的难度。
由于无源器件(电感、电容等)的大小与频率成反比,为减小DC-DC转换器的体积及成本,提高DC-DC转换器的集成度、开关频率以及功率密度逐渐成为人们关注的焦点。然而由于CMOS工艺受到有限电源电压、本征导通电阻以及寄生二极管等的限制,基于CMOS工艺的高功率、高开关频率的DC-DC转换芯片难以实现。其中电源电压限制了DC-DC转换器的输出功率,寄生二极管、导通电阻使得频率越高,器件和电路的开关与导通损耗越大,DC-DC转换器在高开关频率下难以得到高转换效率。目前市面上高功率、高开关频率的DC-DC转换器主要在印刷电路板上实现。其中部分DC-DC转换器的开关功率管使用GaN/SiC替代传统MOS开关管。这是因为GaN/SiC等第三代半导体相对于MOS管,具有更大的禁带宽度、高的临界击穿电场强度、高电子迁移率以及没有寄生二极管等特点,使其更适用与高压、高温、高频、大功率应用场合下。然而基于GaN/SiC的DC-DC转换器难以集成,往往具有较高的成本与体积。
因此,如何得到具有高功率密度的同步DC-DC转换芯片成为了下一代功率电子技术面临的关键问题。
发明内容
本发明的目的是针对现有技术中存在的技术缺陷,而提供一种基于异质集成的高功率密度同步升压DC-DC转换芯片,该芯片可实现宽输入电压范围内高效率工作,具有大的功率密度。
为实现本发明的目的所采用的技术方案是:
一种基于异质集成的高功率密度同步升压DC-DC转换芯片,包括片上集成部分及片外部分,片上集成部分包括高边增强型GaN功率开关管、低边增强型GaN功率开关管以及基于CMOS工艺的CMOS控制电路,CMOS控制电路包括带隙基准、误差放大器、箝位电路、比较器、锯齿波发生器、电平位移电路、驱动电路模块,片外部分包括电感L和电容C;
锯齿波发生器的锯齿波信号输出端与比较器的负相输入端连接,带隙基准的输出端与误差放大器正相输入端连接,误差放大器的输出端与箝位电路的一端连接,箝位电路的另一端与比较器的正相输入端连接,误差放大器的负相输入端接入反馈电压VFB信号,比较器的输出端接电平位移电路的输入端,电平位移电路输出端连接两个Buf缓冲器的输入端,两个Buf缓冲器的输出端对应的与高边增强型GaN功率开关管以及低边增强型GaN功率开关管的栅极连接,电感L的一端与低边低增强型GaN功率开关管的漏极以及高边增强型GaN功率开关管的漏极相接,电感L的一端与电源的正极相接,高边增强型GaN功率开关管的源极接电容C的一端、负载的一端以及电阻RFB1的一端,低边低增强型GaN功率开关管的源极、电容C的另一端以及负载的另一端接电源的负极,即接地;电阻RFB的另一端与电阻RFB2的一端相接,电阻RFB2的另一端接地,反馈电压VFB信号由电阻RFB1的另一端与电阻RFB2的一端相接点引出。
其中,CMOS控制电路与GaN异质集成方法如下:
设计CMOS控制电路流片得到CMOS晶圆,在设计好的用于flip-chip的键合pad上制作一层凸点下金属化层,将高边增强型GaN功率开关管及低边增强型GaN功率开关管上的金属焊球焊接在凸点下金属化层上,使高边增强型GaN功率开关管及低边增强型GaN功率开关管直接倒装在CMOS晶圆上。
该基于异质集成的高功率密度同步升压DC-DC转换芯片的制作步骤如下:
第一步:指标设计
选择电压模式反馈脉冲宽度调制方式:根据所需的开关频率以及电流电感纹波值计算得到所需电感电容值,对整个DC-DC转换器进行线性化分析,得到其传递函数,根据得到传递函数设计补偿网络,并在simulink中进行仿真,确定补偿网络中RC值;
第二步:原理图仿真
功率管控制电路以及驱动电路采用CMOS工艺设计,包括带隙基准、误差放大器、比较器、锯齿波发生器模块,高边功率管与低边功率管均使用增强型GaN HEMT器件,通过导入器件模型和CMOS工艺库联合仿真确定整体电路的原理图;
第三步:版图设计
采用两种形状pad,除了用于wire-bonding传统矩形pad,还需根据所选的GaN器件设计用于filp-chip的pad,版图绘制后提取RC参数进行后仿真,根据前仿性能对版图进行优化。
本发明的本发明基于异质集成的高功率密度同步升压DC-DC转换器芯片,可以有效提高芯片级DC-DC转换器的输出功率;大大减小了高功率DC-DC转换器的体积,有效降低其成本;具备宽输入电压范围,能在高开关频率下实现高的转换效率。
附图说明
图1是现有技术下的非同步升压DC-DC转换器原理图示意图。
图2是现有技术下的同步升压DC-DC转换器原理图示意图。
图3是本发明实施例的异质集成同步升压DC-DC转换芯片原理图示意图。
图4是本发明实施例的异质集成同步升压DC-DC转换芯片横截面示意图。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1为传统非同步DC-DC升压转换器原理图,该电路中无源元件电感L在开关管导通器件存储能量,关断时释放能量,电容C用于存储电荷,二极管控制单向导通整流,从而实现了能量转换。
图2为现有技术下的同步DC-DC升压转换器,其与图1的区别为,使用一个高边开关管来代替二极管,其开关状态与底边开关管相反从而实现单向导通整流功能。
本发明实施例的具体异质集成同步升压DC-DC转换芯片原理图如图3所示,I区域为片上集成部分,包括高边/低边增强型GaN功率开关管以及基于CMOS工艺的CMOS控制电路(CMOS PWM Controller),其中CMOS控制电路包括带隙基准(Band Gap)、误差放大器(EA)、箝位电路(Clamp)、比较器(Comp,Puls Width Generator)、锯齿波发生器(RampGenerator)、电平位移电路(Level Shift)、驱动电路模块,电感L和电容C为片外部分,其值由开关频率f与最小电流/电压纹波决定。
锯齿波发生器(Ramp generator)的锯齿波信号Ramp Singal输出端与比较器的负相输入端连接,带隙基准(Band Gap)的输出端与误差放大器(EA)正相输入端连接,误差放大器(EA)的输出端与箝位电路(Clamp)的一端连接,箝位电路(Clamp)的另一端与比较器的正相输入端连接,误差放大器(EA)的负相输入端接入反馈电压VFB信号,比较器(Comp)的输出端接电平位移电路(Level Shift)的输入端,电平位移电路(Level Shift)输出端连接两个Buf缓冲器的输入端,两个Buf缓冲器的输出端对应的与高边低边增强型GaN功率开关管、低边增强型GaN功率开关管的栅极连接,电感L的一端与低边低增强型GaN功率开关管的漏极以及高边增强型GaN功率开关管的漏极相接,电感L的一端与电源的正极相接,高边增强型GaN功率开关管的源极接电容C的一端、负载的一端以及电阻RFB1的一端,低边低增强型GaN功率开关管的源极、电容C的另一端以及负载的另一端接电源的负极,即接地;电阻RFB1的另一端与电阻RFB2的一端相接,电阻RFB2的另一端接地,反馈电压VFB信号由电阻RFB1的另一端与电阻RFB2的一端相接点引出。
其中,高边开关管与底边开关管可集成在同一块GaN器件上,相对于使用两个GaN器件,大大节约了DC-DC转换器的面积。
图4是本发明实施例的异质集成同步升压DC-DC转换器横截面示意图,其中,在CMOS晶圆1其上集成了PWM控制电路,其上的顶层金属2,未覆盖钝化层3,用做键合pad;顶层金属2的上方是GaN器件4;GaN器件4上有金属焊球5;与未覆盖钝化层3上的凸点下金属化层6焊接。
CMOS控制电路与GaN异质集成方法如下:
首先设计CMOS控制电路流片得到了CMOS晶圆,由于大部分工艺顶层金属为铝,不利于倒装,因此为了便于倒装GaN器件4,需要在设计好的八边形用于flip-chip的用做键合pad上制作一层凸点下金属化层6,使得GaN器件4上的金属焊球5能直接倒装在CMOS晶圆上,得到异质集成同步升压DC-DC转换器,实现了耐高压、高集成度的同步DC-DC转换器。
本发明提出的基于GaN/CMOS的异质集成同步DC-DC升压转换器芯片,可采用以下步骤设计实现:
第一步:指标设计。
选择电压模式反馈脉冲宽度调制方式。根据所需的开关频率以及电流电感纹波值计算得到所需电感电容值。对整个DC-DC转换器进行线性化分析,得到其传递函数。根据得到传递函数设计补偿网络,并在simulink中进行仿真,确定补偿网络中RC值。
第二步:原理图仿真。
功率管控制电路以及驱动电路采用CMOS工艺设计,其中包括带隙基准、误差放大器、比较器、锯齿波发生器等模块。高边功率管与低边功率管均使用增强型GaN HEMT器件,通过导入器件模型和CMOS工艺库联合仿真确定整体电路的原理图。
第三步:版图设计。
本设计需要采用两种形状pad,除了用于wire-bonding传统矩形pad,还需根据所选的GaN器件设计用于filp-chip的pad。版图绘制后提取RC参数进行后仿真,根据前仿性能对版图进行优化。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

1.基于异质集成的高功率密度同步升压DC-DC转换芯片,其特征在于,包括片上集成部分及片外部分,片上集成部分包括高边增强型GaN功率开关管、低边增强型GaN功率开关管以及基于CMOS工艺的CMOS控制电路,CMOS控制电路包括带隙基准、误差放大器、箝位电路、比较器、锯齿波发生器、电平位移电路、驱动电路模块,片外部分包括电感L和电容C;
锯齿波发生器的锯齿波信号输出端与比较器的负相输入端连接,带隙基准的输出端与误差放大器正相输入端连接,误差放大器的输出端与箝位电路的一端连接,箝位电路的另一端与比较器的正相输入端连接,误差放大器的负相输入端接入反馈电压VFB信号,比较器的输出端接电平位移电路的输入端,电平位移电路输出端连接两个Buf缓冲器的输入端,两个Buf缓冲器的输出端对应的与高边增强型GaN功率开关管以及低边增强型GaN功率开关管的栅极连接,电感L的一端与低边低增强型GaN功率开关管的漏极以及高边增强型GaN功率开关管的漏极相接,电感L的一端与电源的正极相接,高边增强型GaN功率开关管的源极接电容C的一端、负载的一端以及电阻RFB1的一端,低边低增强型GaN功率开关管的源极、电容C的另一端以及负载的另一端接电源的负极,即接地;电阻RFB1的另一端与电阻RFB2的一端相接,电阻RFB2的另一端接地,反馈电压VFB信号由电阻RFB1的另一端与电阻RFB2的一端相接点引出。
2.根据权利要求1所述基于异质集成的高功率密度同步升压DC-DC转换芯片,其特征在于,其中,所述的CMOS控制电路与高边增强型GaN功率开关管、低边增强型GaN功率开关管异质集成方法如下:
设计CMOS控制电路流片得到CMOS晶圆,在设计好的用于flip-chip的键合pad上制作一层凸点下金属化层,将高边增强型GaN功率开关管及低边增强型GaN功率开关管上的金属焊球焊接在凸点下金属化层上,使高边增强型GaN功率开关管及低边增强型GaN功率开关管直接倒装在CMOS晶圆上。
3.根据权利要求1所述基于异质集成的高功率密度同步升压DC-DC转换芯片,其特征在于,该基于异质集成的高功率密度同步升压DC-DC转换芯片的制作步骤如下:
第一步:指标设计
选择电压模式反馈脉冲宽度调制方式:根据所需的开关频率以及电流电感纹波值计算得到所需电感电容值,对整个DC-DC转换器进行线性化分析,得到其传递函数,根据得到传递函数设计补偿网络,并在simulink中进行仿真,确定补偿网络中RC值;
第二步:原理图仿真
功率管控制电路以及驱动电路采用CMOS工艺设计,包括带隙基准、误差放大器、比较器、锯齿波发生器模块,高边功率管与低边功率管均使用增强型GaN HEMT器件,通过导入器件模型和CMOS工艺库联合仿真确定整体电路的原理图;
第三步:版图设计
采用两种形状pad,除了用于wire-bonding传统矩形pad,还需根据所选的GaN器件设计用于filp-chip的pad,版图绘制后提取RC参数进行后仿真,根据前仿性能对版图进行优化。
CN202111083350.5A 2021-09-16 2021-09-16 基于异质集成的高功率密度同步升压dc-dc转换芯片 Pending CN113965078A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111083350.5A CN113965078A (zh) 2021-09-16 2021-09-16 基于异质集成的高功率密度同步升压dc-dc转换芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111083350.5A CN113965078A (zh) 2021-09-16 2021-09-16 基于异质集成的高功率密度同步升压dc-dc转换芯片

Publications (1)

Publication Number Publication Date
CN113965078A true CN113965078A (zh) 2022-01-21

Family

ID=79461934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111083350.5A Pending CN113965078A (zh) 2021-09-16 2021-09-16 基于异质集成的高功率密度同步升压dc-dc转换芯片

Country Status (1)

Country Link
CN (1) CN113965078A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102362418A (zh) * 2009-03-23 2012-02-22 三美电机株式会社 比较器以及dc-dc变换器
CN103475223A (zh) * 2012-06-08 2013-12-25 中国科学院深圳先进技术研究院 降压型转换器
CN105743343A (zh) * 2016-03-24 2016-07-06 西安电子科技大学昆山创新研究院 一种高效率dc-dc型升压转换器
US20190020272A1 (en) * 2017-07-12 2019-01-17 Globalfoundries Singapore Pte. Ltd. Integrated dc-dc boost converter with gallium nitride power transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102362418A (zh) * 2009-03-23 2012-02-22 三美电机株式会社 比较器以及dc-dc变换器
CN103475223A (zh) * 2012-06-08 2013-12-25 中国科学院深圳先进技术研究院 降压型转换器
CN105743343A (zh) * 2016-03-24 2016-07-06 西安电子科技大学昆山创新研究院 一种高效率dc-dc型升压转换器
US20190020272A1 (en) * 2017-07-12 2019-01-17 Globalfoundries Singapore Pte. Ltd. Integrated dc-dc boost converter with gallium nitride power transistor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FANYI MENG, ET AL.: "Heterogeneous Integration of GaN and BCD Technologies and Its Applications to High Conversion-Ratio DC–DC Boost Converter IC", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》, vol. 34, no. 3, 25 July 2018 (2018-07-25), pages 1993 - 1996, XP011708558, DOI: 10.1109/TPEL.2018.2859419 *

Similar Documents

Publication Publication Date Title
US9621044B2 (en) Zero voltage soft switching scheme for power converters
US9627972B2 (en) Power converter package structure and method
Reusch et al. Gallium Nitride based 3D integrated non-isolated point of load module
US6842346B2 (en) Semiconductor device
JP3175985U (ja) 電源装置および電子機器
JP2015126342A (ja) パワー回路およびパワーモジュール
TWI342655B (en) Circuit configuration and method to reduce ringing in the semiconductor power switching circuits
US7768033B2 (en) Single-chip common-drain JFET device and its applications
Shen et al. Lateral power MOSFET for megahertz-frequency, high-density DC/DC converters
TWI425730B (zh) 具有完整漏源電壓鉗位元的功率開關裝置及限制耦合變壓器推拉式整流器之主開關場效應電晶體的最大漏源電壓的裝置及方法
Dusmez et al. Designing a 1kW GaN PFC stage with over 99% efficiency and 155W/in 3 power density
Nune et al. Comparative analysis of power density in Si MOSFET and GaN HEMT based flyback converters
Slawinski et al. System study of SiC MOSFET and Si IGBT power module performance using a bidirectional buck-boost converter as evaluation platform
CN113965078A (zh) 基于异质集成的高功率密度同步升压dc-dc转换芯片
Basler et al. High-Power Density DC-DC Converters Using Highly-Integrated Half-Bridge GaN ICs
US11742268B2 (en) Package structure applied to power converter
CN211828761U (zh) 应用于功率转换器的封装结构
Fan et al. A high-voltage low-power switched-capacitor DC-DC converter based on GaN and SiC devices for LED drivers
CN111049387A (zh) 一种tlcⅱ型谐振电路及其应用的电源变换器
WO2022036598A1 (zh) 一种DrMOS、集成电路、电子设备及制备方法
Reusch et al. Review of Parasitic Minimization Techniques for High Frequency Power Conversion
CN110247550B (zh) 一种升压型同步dc-dc电路
CN114374318A (zh) 一种钳位电路及开关电源
Tong et al. Gate Drive for Very Fast Resonant Conversion using SiC Switch
Deng et al. Thermal Management for Buck Converters Using Co-Packaged GaN Power HEMTs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination