CN113962045B - 一种以风力发电机组叶片运行轨迹计算净空距离方法 - Google Patents

一种以风力发电机组叶片运行轨迹计算净空距离方法 Download PDF

Info

Publication number
CN113962045B
CN113962045B CN202111575918.5A CN202111575918A CN113962045B CN 113962045 B CN113962045 B CN 113962045B CN 202111575918 A CN202111575918 A CN 202111575918A CN 113962045 B CN113962045 B CN 113962045B
Authority
CN
China
Prior art keywords
blade
tower
clearance
point
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111575918.5A
Other languages
English (en)
Other versions
CN113962045A (zh
Inventor
李玉霞
张坤
王秉旭
曾一鸣
宁琨
郭自强
杨鹤立
苏坤林
付斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongfang Electric Wind Power Co Ltd
Original Assignee
Dongfang Electric Wind Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfang Electric Wind Power Co Ltd filed Critical Dongfang Electric Wind Power Co Ltd
Priority to CN202111575918.5A priority Critical patent/CN113962045B/zh
Publication of CN113962045A publication Critical patent/CN113962045A/zh
Application granted granted Critical
Publication of CN113962045B publication Critical patent/CN113962045B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms

Abstract

本发明公开了一种以风力发电机组叶片运行轨迹计算净空距离方法,通过已有的风力发电机组叶片轨迹监测系统给出的叶片GPS定位信息,计算出当前叶尖的实时三维坐标。建立塔筒结构模型,并完成以塔筒底部圆心为原点坐标系建立。将叶尖实时三维坐标通过球坐标换算算法换成成以塔筒底部圆心为原点坐标系中的三维坐标。建立叶尖位置到塔筒最近距离直线的动态方程。集合净空距离和机组状态数据,完成数据建模。当前叶片净空距离和下一个时间的叶片净空距离通过通讯实时进入风力发电机组主控系统,参与主控控制,一旦叶片净空距离处于报警模式,主控通过降低转速、变桨等相关策略避免叶片扫塔。提供叶片塔筒的甚至整机的安全性。

Description

一种以风力发电机组叶片运行轨迹计算净空距离方法
技术领域
本发明涉及风力发电测控技术领域,尤其是一种以风力发电机组叶片运行轨迹计算净空距离方法。
背景技术
随着风力发电的大力发展,大家在追求快速批量发展过程中,风力发电机组的安全保障变得越来越重要。同时,随着2010年前大力发展的风电场,目前随着时间、机组性能、寿命都在缩减。风电机组扫塔、倒塔、叶片断裂等事故也是频繁出现。另外,目前三北平原地区风力发电机组装机容量已趋于饱和状态,现在风力发电机组安装正逐步向海上和山地区域发展,从而推动了高塔筒、长叶片技术发展。通过以GPS监测的叶片轨迹,计算出任何时刻叶片和塔筒的净空距离。并集合风力发电机组的状态数据,完成数据关联分析和数学建模,在风力发电机组运行过程中,可提前预知风力发电机组的叶片净空距离。将叶片净空距离反馈至风力发电机组控制系统,通过闭环控制,一旦叶片净空距离小于安全值,通过控制并干预当前状态,避免叶片扫塔,保证叶片和塔筒的安全,从而避免事故发生。
目前,风电行业叶片净空距离均采用监测系统直接测量获得,主要分为以下三种:
1、机舱安装激光雷达或则毫米波雷达方案:通过在机舱底部安装激光激光或则毫米波发生和接受装置,通过特定光束,一般为3束光。通过光反射原理,一旦反射距离发生改变,认为当前叶片到塔筒距离为当前光束到塔筒距离。该方案缺点:只有三个点位测量,数据误差大,无法实时感知当前叶片净空距离。同时,方案受气象天气影响较大,在多雾天气,数据基本不可用。
2、机舱安装摄像头方案:通过在机舱安装摄像头,拍摄叶片运行视频,通过机器学习的方法来推算当前叶片到塔筒的净空距离。该方案缺点:需要大量经验图片,容易漏选。摄像机摄像范围有限,只能拍摄固定区域的叶片情况。同时整套方案受外界天气影响较大,无法有效识别当前图像。另外,由于机器学习算法本身的缺陷,存在一定的误差和误报,无法精确预知当前叶片和塔筒净空距离。
3、塔筒相应高度安装雷达测距装置:通过在塔筒上安装导轨,导轨上测距装置根据机组当前偏航状态进行跟踪,并实时测量叶片净空距离。该方法安装复杂,同时安装过程可能会损坏塔筒,可能会带来新的安全隐患。同时该方案成本价格昂贵。
发明内容
本发明目的在于:针对上述问题,提出了一种以风力发电机叶片运行轨迹计算叶片净空方法,克服了现有技术无法精准获取叶片净空距离,也无法动态高效的的对机组安全性能进行防护的问题。
本发明是通过下述方案来实现的:
一种以风力发电机组叶片运行轨迹计算净空距离方法,包括以下步骤:
通过叶片轨迹计算出当前叶尖三维坐标;
建立以地球圆心为原点坐标系;
叶尖三维坐标换算,同时建立塔筒结构模型;最终获取以塔筒圆心为原点的坐标系统的叶尖三维坐标;
计算出过轮毂到塔筒顶部圆最短点投影到塔筒底内点并并行过轮毂到塔筒顶部圆最短点动态直线方程;
计算叶片净空距离;
通过机器学习方法构建叶片净空距离的预测模型;
据机组自身及环境状态、叶片净空距离,实时判断叶片塔筒安全。
在构建叶片净空距离的预测模型之后设置有叶片净空距离预测步骤。
叶片轨迹计算出当前叶尖三维坐标,借助已有风力发电机组叶片轨迹测量系统给出的叶尖定位位置数据;由于系统给出原始数据为经纬度和海拔,使用换算算法计算出当前叶尖的三维坐标。
构建叶尖三维坐标具体步骤为,通过测量塔筒底部经纬度海拔,计算出塔筒底部圆心的坐标为x0,y0,z0;同时计算得出的叶尖的得坐标为x,y,z;通过两个坐标计算,叶根轨迹的三维坐标分别为((x-x0),(y-y0),(z-z0))。
构建最短点动态直线方程步骤为:设塔筒上面连接机舱的部分的半径为r,塔基半径为R,θ为偏航角度,上塔筒顶部到塔筒底部的垂直距离为H,则塔筒上方距叶片最近点坐标为(r sinθ,r cosθ,H);
则塔筒塔基距叶片最近的点为(R sinθ,R cosθ,0);
现设叶片和塔筒发生碰撞的区域为从塔基往上的h米高度,那么以高度为h的与叶片最近的点在塔筒上的坐标点为
Figure GDA0003502408110000031
那么该点到塔基的投影为
Figure GDA0003502408110000032
与原点的向量为
Figure GDA0003502408110000033
该截面在塔基的投影线为:
Figure GDA0003502408110000034
因此叶片到该截面的距离可以抽象为该点在塔基的投影点到该截面到塔基的投影线的距离。因此,则叶片到塔筒的最短距离d的长度;
Figure GDA0003502408110000041
计算叶片净空距离具体为,根据叶尖当前位置坐标投影到塔底平面点的坐标,通过点到直接垂线计算方式,计算出当前的最短距离,从而计算出当前叶片净空距离。
数据建模具体步骤为,根据已计算出的叶片净空距离及主控私有通讯协议获取的风力发电机组状态数据,通过机器学习方法对上述数据进行分析建模和训练优化,得到基于风力发电机组状态数据的叶片净空距离的预测模型。
据机组状态和叶片净空距离,实时判断叶片塔筒安全的具体步骤为:
通过计算给出的当前叶片净空距离和预知的叶片净空距离;
通过通讯,数据接入主控系统,主控系统根据当前和预知叶片净空距离及风机当前运行状态,并结合规则抽象法判断当前机组状态当前安全状态;
一旦叶片净空距离处于危险状态及等级,机组通过降低转速、变桨等降载控制策略避免叶片扫塔,从而保证叶片和塔筒安全,提高机组安全性能;
最后,通过当前和预知叶片净空距离及风机当前运行状态结合规则抽象法发现当前机组安全状态,若机组回归安全状态,则脱离降载控制,正常发电,保障机组的发电量。
所述降载控制策略,通过当前和预知叶片净空距离及风机当前运行状态,机组危险状态及等级等数据结合风力发电机组主控控制逻辑和风力发电机组运行专家经验法得到的先进的降载控制策略,在保证机组安全运行的情况下,极大的保留机组的发电能力。
所述规则抽象法包括风力发电机组主控控制逻辑、风力发电机组运行状态和风力发电机组运行专家经验法一种或三种任意组合。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明可以通过采取并结合规则抽象法判断当前机组状态当前安全状态;一旦叶片净空距离处于危险状态及等级,机组通过降低转速、变桨等降载控制策略避免叶片扫塔,从而保证叶片和塔筒安全,提高机组安全性能;通过当前和预知叶片净空距离及风机当前运行状态结合规则抽象法发现当前机组安全状态,若机组回归安全状态,则脱离降载控制,正常发电,保障机组的发电量,整体上提升安全防护性能。
2、本发明通过实时感知当前净空距离,净空距离数据进入风力发电机组控制系统。并通过风力发电机组当前状态和算法结果预知下一时刻是否属于危险状态,一旦到达危险极限,风力发电机组控制系统向风机发出控制指令,或停机或偏航,让风力发电机组叶片避免扫塔,保证风力发电机组叶片塔筒处于安全状态。另外,由于高精度叶片净空距离的计算,通过数据分析可算出风力发电机组叶片扫塔的极限状态,并集合叶片本身载荷和相关技术指标,可为风力发电机组叶片降载提供数据支撑。
3、本发明采用使获得的叶片净空距离更准确。
附图说明
图1是以风力发电机组叶片运行轨迹计算叶片净空距离方法步骤图;
图2是以风力发电机组叶片运行轨迹计算叶片净空距离方法塔筒坐标图。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
在本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或隐含地包括一个或多个该特征。
实施例1
如图1~图2所示,一种以风力发电机组叶片运行轨迹计算净空距离方法,其包括以下步骤:
通过已有的风力发电机组叶片轨迹监测系统获取叶尖的GPS定位信息数据。
通过当前GPS定位信息,使用经纬度、海拔转换算法,计算出当前叶尖以地球球心为原点的三维坐标。
查询塔筒设计图纸,建立塔筒的结构模型,为一个正圆锥形。
使用RTK技术测量出塔筒底部圆心的定位数据,并转换成平面坐标系中的三维坐标,并建立以塔筒底部圆心为原点的坐标系。
完成叶尖已有的三维坐标转换,最终获取以塔筒圆心为原点的坐标系统的叶尖三维坐标。
根据点到直线原理,并集合当前机组偏航角度和塔筒参数,计算出过轮毂到塔筒顶部圆最短点投影到塔筒底内点并并行过轮毂到塔筒顶部圆最短点动态直线方程。
点到直线最短距离为垂线,计算当前叶尖点到当前直线的距离。
集合已经计算出的叶片净空距离和机组状态数据,完成数据建模,建立数学模型。
根据当前机组状态和数据模型,可预测叶片净空距离。
叶片净空距离实时闭环到主控系统中,根据机组状态和叶片净空距离,实时判断,一旦超过安全阈值,及时干预机组控制,保证叶片和塔筒安全。
其中通过叶片轨迹计算出当前叶尖三维坐标,需要借助已有风力发电机组叶片轨迹测量系统给出的叶尖定位位置数据;由于系统给出原始数据为经纬度和海拔,需要使用换算算法计算出当前叶尖的三维坐标。
本方法中计算出当前叶尖的三维坐标的具体步骤如下;
该算法通过地理坐标的定义规则,计算公式如下:
第一步:查询相关参数
Ra_WGS84=6378137.0 //地球长轴半径,单位:米
f_WGS84=1/298.257223563 //扁率
Rb_WGS84=(Ra_WGS84*(1-f_WGS84))//短轴半径,单位:米
e_WGS84=(0.081819190842621494334802451753867) //第一偏心率
e2_WGS84=(0.0066943799901413169961372335400465) //第一偏心率的平方
第二步:换算
当前系统测量的经纬度为:latitude(经度)、longitude(纬度)、height(海拔高度)
cosphi=cos(rad(latitude))
coslamda=cos(rad(longitude))
sinphi=sin(rad(latitude))
sinlamda=sin(rad(longitude))
N=Ra_WGS84/sqrt(1-e2_WGS84*sinphi*sinphi),其中cosphi、coslamda、sinphi、sinlamda和N均为自定义的中间常量;
则当前叶尖的三维坐标可表示为:
x=(N+height)*cosphi*coslamda
y=(N+height)*cosphi*sinlamda
z=(N*(1.0-e2_WGS84)+height)*sinphi
其中建立塔筒结构模型,需要利用塔筒机械结构,塔筒属于锥形结构,并查询塔筒相关参数,包括塔筒顶部小圆半径,塔筒底部大圆半径,塔筒高度。绘制出塔筒结构模型图。
步骤如下:
1、塔筒结构属于锥形结构,查询塔筒相关参数,包括:顶部小圆半径:r,底部大圆半径;R,塔筒中心轴高度为:H;建立塔筒锥形结构模型如下如图2所示;
其中在建立以塔筒底部圆心为原点坐标系,需要使用RTK技术,测量塔筒底部圆心经纬度和海拔,并通过坐标系换算,计算出当前塔筒圆心三维坐标,并以该点为原点绘制出塔筒的平面坐标系;
其中叶尖三维坐标换算,由于直接测量后换算的叶尖三维坐标,是以地球球心为原点球坐标下的三维坐标;使用相关算法,完成坐标系转换成,最终转换成以塔筒底部圆心为原点的塔筒坐标系中的三维坐标;
其中具体步骤为:通过测量塔筒底部经纬度海拔,并通过前面公式,计算出塔筒底部圆心的坐标为x0,y0,z0
通过前面公式,计算得出的叶尖的得坐标为x,y,z。通过两个坐标计算,叶根轨迹的三维坐标分别为((x-x0),(y-y0),(z-z0))。
其中建立最短距离直线动态方程,是根据点到直线原理,根据机组偏航角度值和塔筒相关参数,计算出过轮毂到塔筒顶部圆最短点投影到塔筒底内点并并行过轮毂到塔筒顶部圆最短点动态直线方程;
其具体步骤为如下:
如图2所示,塔筒一般为上面半径较小,下面半径较大的圆台,那么设塔筒上面连接机舱的部分的半径为r,塔基半径为R,θ为偏航角度(从主控状态数据表中查询),上塔筒顶部到塔筒底部的垂直距离(塔筒长度)为H,则塔筒上方距叶片最近点(轮毂中心到底部塔筒圆周上最近点,图中a点)坐标为(r sinθ,r cosθ,H);
则塔筒塔基距叶片最近的点(图中c点)为(R sinθ,R cosθ,0),
现假设叶片和塔筒发生碰撞的区域为从塔基往上的h米高度,那么设以高度为h的与叶片最近的点为塔筒上的坐标点(图中h0点),则图中h0点的坐标可由h0、h1和c点及a、a1和c点购成的相似三角形得到,为
Figure GDA0003502408110000091
那么该点到塔基的投影(h1点)坐标点位为
Figure GDA0003502408110000092
与原点的向量为
Figure GDA0003502408110000093
那么,可以h1与原点的向量为法向量,h0和h1点位为截面坐标点,形成截面,那么该截面在塔基的投影线(图中L)为:
Figure GDA0003502408110000094
因此叶片到该截面的距离可以抽象为该点在塔基的投影点到该截面到塔基的投影线的距离。因此,则叶片到塔筒的最短距离d的长度;
Figure GDA0003502408110000095
上述公式即为最短距离直线动态方程。
其中计算叶片净空距离,根据点直线最短距离原理,根据叶尖当前位置坐标投影到塔底平面点的坐标,通过点到直接垂线计算方式,计算出当前的最短距离,从而计算出当前叶片净空距离;
其中数据建模具体步骤为,根据已计算出的叶片净空距离及主控私有通讯协议获取的风力发电机组状态数据,通过专家经验法、聚类方法、深度学习和多重线性分析方法等机器学习方法对上述数据进行分析建模和训练优化,得到基于风力发电机组状态数据的叶片净空距离的预测模型;
其中叶片净空距离的预测模型,可依据历史运行的数据和风力发电机组实时状态数据,提前预知未来的一段时间的叶片净空距离;
其中闭环控制保证叶片塔筒安全步骤为:
通过计算给出的当前叶片净空距离和预知的叶片净空距离;
通过通讯,数据接入主控系统,主控系统根据当前和预知叶片净空距离及风机当前运行状态,并结合规则抽象法判断当前机组状态当前安全状态;
一旦叶片净空距离处于危险状态及等级,机组通过降低转速、变桨等降载控制策略避免叶片扫塔,从而保证叶片和塔筒安全,提高机组安全性能;
最后,通过当前和预知叶片净空距离及风机当前运行状态结合规则抽象法发现当前机组安全状态,若机组回归安全状态,则脱离降载控制,正常发电,保障机组的发电量。
所述降载控制策略,则通过上述数据(包括当前和预知叶片净空距离及风机当前运行状态,机组危险状态及等级等数据)结合风力发电机组主控控制逻辑和风力发电机组运行专家经验法得到的先进的降载控制策略,在保证机组安全运行的情况下,极大的保留机组的发电能力。
所述规则抽象法包括风力发电机组主控控制逻辑、风力发电机组运行状态和风力发电机组运行专家经验法一种或三种任意组合。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种以风力发电机组叶片运行轨迹计算净空距离方法,其特征在于:包括以下步骤:
通过叶片轨迹计算出当前叶尖三维坐标;借助已有风力发电机组叶片轨迹测量系统给出的叶尖定位位置数据;由于系统给出原始数据为经纬度和海拔,使用换算算法计算出当前叶尖的三维坐标;
建立以地球圆心为原点坐标系;
叶尖三维坐标换算,通过测量塔筒底部经纬度海拔,计算出塔筒底部圆心的坐标为x0,y0,z0;同时计算得出的叶尖的得坐标为x,y,z;通过两个坐标计算,叶根轨迹的三维坐标分别为((x-x0),(y-y0),(z-z0)); 同时建立塔筒结构模型;最终获取以塔筒圆心为原点的坐标系统的叶尖三维坐标;
计算出过轮毂到塔筒顶部圆最短点投影到塔筒底内点并并行过轮毂到塔筒顶部圆最短点动态直线方程;具体为设塔筒上面连接机舱的部分的半径为r,塔基半径为R,θ为偏航角度,上塔筒顶部到塔筒底部的垂直距离为H,则塔筒上方距叶片最近点坐标为(r sinθ,rcosθ,H);则塔筒塔基距叶片最近的点为(R sinθ,R cosθ,0);
现设叶片和塔筒发生碰撞的区域为从塔基往上的h米高度,那么以高度为h的与叶片最近的点在塔筒上的坐标点为
Figure FDA0003502408100000011
那么该点到塔基的投影为
Figure FDA0003502408100000012
与原点的向量为
Figure FDA0003502408100000013
以叶片最近的点为塔筒上的坐标点到塔基的投影与原点的向量为法向量,叶片最近的点为塔筒上的坐标点和叶片最近的点为塔筒上的坐标点到塔基的投影点位为截面坐标点,形成截面,那么该截面在塔基的投影线为,则截面在塔基的投影线为:
Figure FDA0003502408100000021
因此叶片到该截面的距离可以抽象为该点在塔基的投影点到该截面到塔基的投影线的距离,因此,则叶片到塔筒的最短距离d的长度;
Figure FDA0003502408100000022
计算叶片净空距离;根据叶尖当前位置坐标投影到塔底平面点的坐标,通过点到直接垂线计算方式,计算出当前的最短距离,从而计算出当前叶片净空距离;
通过机器学习方法构建叶片净空距离的预测模型;
据机组自身及环境状态、叶片净空距离,实时判断叶片塔筒安全;
通过计算给出的当前叶片净空距离和预知的叶片净空距离;
通过通讯,数据接入主控系统,主控系统根据当前和预知叶片净空距离及风机当前运行状态,并结合规则抽象法判断当前机组状态当前安全状态;
一旦叶片净空距离处于危险状态及等级,机组通过降低转速或变桨降载控制策略避免叶片扫塔,从而保证叶片和塔筒安全,提高机组安全性能;
最后,通过当前和预知叶片净空距离及风机当前运行状态结合规则抽象法发现当前机组安全状态,若机组回归安全状态,则脱离降载控制,正常发电,保障机组的发电量;
所述规则抽象法包括风力发电机组主控控制逻辑、风力发电机组运行状态和风力发电机组运行专家经验法一种或三种任意组合。
2.如权利要求1所述的一种以风力发电机组叶片运行轨迹计算净空距离方法,其特征在于:在通过机器学习方法构建叶片净空距离的预测模型步骤之后设置有叶片净空距离预测步骤。
3.如权利要求1所述的一种以风力发电机组叶片运行轨迹计算净空距离方法,其特征在于:构建叶片净空距离的预测模型具体步骤为,根据已计算出的叶片净空距离及主控私有通讯协议获取的风力发电机组状态数据,通过机器学习方法对上述数据进行分析建模和训练优化,得到基于风力发电机组状态数据的叶片净空距离的预测模型。
4.如权利要求2所述的一种以风力发电机组叶片运行轨迹计算净空距离方法,其特征在于:所述降载控制策略,通过当前和预知叶片净空距离及风机当前运行状态,机组危险状态及等级数据结合风力发电机组主控控制逻辑和风力发电机组运行专家经验法得到的先进的降载控制策略,在保证机组安全运行的情况下,极大的保留机组的发电能力。
CN202111575918.5A 2021-12-22 2021-12-22 一种以风力发电机组叶片运行轨迹计算净空距离方法 Active CN113962045B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111575918.5A CN113962045B (zh) 2021-12-22 2021-12-22 一种以风力发电机组叶片运行轨迹计算净空距离方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111575918.5A CN113962045B (zh) 2021-12-22 2021-12-22 一种以风力发电机组叶片运行轨迹计算净空距离方法

Publications (2)

Publication Number Publication Date
CN113962045A CN113962045A (zh) 2022-01-21
CN113962045B true CN113962045B (zh) 2022-03-15

Family

ID=79473596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111575918.5A Active CN113962045B (zh) 2021-12-22 2021-12-22 一种以风力发电机组叶片运行轨迹计算净空距离方法

Country Status (1)

Country Link
CN (1) CN113962045B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114718811B (zh) * 2022-06-09 2022-09-16 东方电气风电股份有限公司 一种基于gps监测风机叶片状态的自适应控制方法
CN116027314B (zh) * 2023-02-21 2023-06-20 湖南联智监测科技有限公司 一种基于雷达数据的风机叶片净空距离监测方法
CN116107260B (zh) * 2023-04-13 2023-06-23 西安中科原子精密制造科技有限公司 一种通过时序控制三通道雷达依次采样减少干扰的方法
CN116163882B (zh) * 2023-04-24 2023-07-21 西安中科原子精密制造科技有限公司 一种基于三轴姿态传感器的风机净空距离调整方法及系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289114A (zh) * 2016-10-19 2017-01-04 吴尧增 一种间接式风机转子几何参数测量及性能优化的方法
CN110778452A (zh) * 2019-11-15 2020-02-11 东方电气风电有限公司 一种大型风力风电机组降载及安全控制系统及方法
CN111911364A (zh) * 2020-09-11 2020-11-10 上海电气风电集团股份有限公司 叶尖塔筒净空监测方法
CN112267980A (zh) * 2020-10-26 2021-01-26 无锡风电设计研究院有限公司 风力发电机组的叶片净空监测系统和方法
CN112502911A (zh) * 2020-11-30 2021-03-16 东方电气风电有限公司 一种实时预测叶片通过塔筒时扫塔风险的方法
CN112539143A (zh) * 2020-11-30 2021-03-23 明阳智慧能源集团股份公司 一种通过叶尖发射信号的风力发电机组净空监测方法
CN112761897A (zh) * 2021-01-13 2021-05-07 国电联合动力技术有限公司 风电机组叶片监控方法、装置及风力发电机
CN112901426A (zh) * 2021-02-26 2021-06-04 中国华能集团清洁能源技术研究院有限公司 风电机组叶片净空监测装置、方法、系统、设备及介质
CN112926218A (zh) * 2021-03-23 2021-06-08 芜湖森思泰克智能科技有限公司 净空距离的获取方法、装置、设备和存储介质
CN112943558A (zh) * 2021-01-27 2021-06-11 浙江大学 一种风力发电机组叶片损伤监测系统及方法
CN113250912A (zh) * 2021-05-24 2021-08-13 郑州爱因特电子科技有限公司 一种风电机组叶片净空监测方法
CN113378330A (zh) * 2021-07-15 2021-09-10 河海大学 用于超长柔性下风向风力机叶片有效扫风半径的计算方法
WO2021218541A1 (zh) * 2020-04-30 2021-11-04 北京金风科创风电设备有限公司 风力发电机组的净空监测系统、监测方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9542849B1 (en) * 2015-07-31 2017-01-10 Rockwell Collins, Inc. Risk-based flight path data generating system, device, and method
CN106091941A (zh) * 2016-06-21 2016-11-09 远景能源(江苏)有限公司 风力发电机叶尖塔筒净空的测量方法
CN111336073B (zh) * 2020-03-04 2022-04-05 南京航空航天大学 一种风力发电机塔架净空视觉监测装置及方法
CN113775483A (zh) * 2021-09-28 2021-12-10 中国船舶重工集团海装风电股份有限公司 基于净空监测的叶片叶尖距的控制方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289114A (zh) * 2016-10-19 2017-01-04 吴尧增 一种间接式风机转子几何参数测量及性能优化的方法
CN110778452A (zh) * 2019-11-15 2020-02-11 东方电气风电有限公司 一种大型风力风电机组降载及安全控制系统及方法
WO2021218541A1 (zh) * 2020-04-30 2021-11-04 北京金风科创风电设备有限公司 风力发电机组的净空监测系统、监测方法及装置
CN111911364A (zh) * 2020-09-11 2020-11-10 上海电气风电集团股份有限公司 叶尖塔筒净空监测方法
CN112267980A (zh) * 2020-10-26 2021-01-26 无锡风电设计研究院有限公司 风力发电机组的叶片净空监测系统和方法
CN112502911A (zh) * 2020-11-30 2021-03-16 东方电气风电有限公司 一种实时预测叶片通过塔筒时扫塔风险的方法
CN112539143A (zh) * 2020-11-30 2021-03-23 明阳智慧能源集团股份公司 一种通过叶尖发射信号的风力发电机组净空监测方法
CN112761897A (zh) * 2021-01-13 2021-05-07 国电联合动力技术有限公司 风电机组叶片监控方法、装置及风力发电机
CN112943558A (zh) * 2021-01-27 2021-06-11 浙江大学 一种风力发电机组叶片损伤监测系统及方法
CN112901426A (zh) * 2021-02-26 2021-06-04 中国华能集团清洁能源技术研究院有限公司 风电机组叶片净空监测装置、方法、系统、设备及介质
CN112926218A (zh) * 2021-03-23 2021-06-08 芜湖森思泰克智能科技有限公司 净空距离的获取方法、装置、设备和存储介质
CN113250912A (zh) * 2021-05-24 2021-08-13 郑州爱因特电子科技有限公司 一种风电机组叶片净空监测方法
CN113378330A (zh) * 2021-07-15 2021-09-10 河海大学 用于超长柔性下风向风力机叶片有效扫风半径的计算方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Measurement and control method of clearance between wind turbine tower and blade-tip based on millimeter-wave radar sensor;Zhang Le 等;《MECHANICAL SYSTEMS AND SIGNAL PROCESSING》;20210215;第149卷;第1-14页 *
一种风电机组光影影响评估方法;沈菲 等;《东方电气评论》;20210625;第35卷(第138期);第58-62页 *
全尺寸叶片结构非线性对静载测试的影响;攀祖金 等;《同济大学学报(自然科学版)》;20171031;第45卷(第10期);第1491-1497页 *
水平轴风力机锥形塔筒的静动态特性研究;陈严 等;《太阳能学报》;20101031;第31卷(第10期);第1359-1365页 *
预弯对风电叶片气动性能的影响;尹景勋 等;《东方汽轮机》;20170331(第1期);第78-83页 *

Also Published As

Publication number Publication date
CN113962045A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
CN113962045B (zh) 一种以风力发电机组叶片运行轨迹计算净空距离方法
EP3296563B1 (en) Wind turbine and operational control method and device therefor
JP6152123B2 (ja) 係留ジャイログライダーのコントロールシステム
CN104851322B (zh) 基于北斗卫星导航系统的低空飞行目标告警系统和方法
CN101834414B (zh) 一种电力线巡检直升机
CN112648150B (zh) 一种基于77GHz毫米波雷达的风力发电机机组叶片净空值的检测方法
US20230016798A1 (en) Device for determining the distance between a wind turbine blade and its wind turbine tower at passing
US20190120208A1 (en) Control System and Method for Operating a Plurality of Wind Turbines
CN112539143B (zh) 一种通过叶尖发射信号的风力发电机组净空监测方法
CN107664096B (zh) 偏航对风控制方法、装置及系统
CN111022270B (zh) 一种风力发电机组塔顶位移实时测量方法
CN111707232A (zh) 一种基于北斗定位多点解算的铁塔姿态预警装置
CN114895711A (zh) 一种面向风机叶片巡检的无人机自动航迹线规划方法
US20240117791A1 (en) A Turbine Provided with Data for Parameter Improvement
CN112925337A (zh) 一种大型起重机金属结构多旋翼无人机自动巡检方法
CN201766306U (zh) 电力线巡检直升机
CN108167119A (zh) 风力发电机组的主动偏航控制方法及控制器
CN113838190A (zh) 一种锅炉内壁巡检方法及系统
CN116501091B (zh) 基于无人机自动调整航线的风机巡检控制方法和装置
CN113137344A (zh) 一种风力发电机组净空测量装置、方法以及风力发电机组
CN116047499B (zh) 一种目标施工车辆的输电线路高精度实时防护系统和方法
CN115807741A (zh) 一种风电机组叶尖净空测量系统
CN115755096A (zh) 一种利用激光测风雷达实现沿跑道全覆盖风廓线探测方法
US20220235738A1 (en) Method and device for determining a rotor orientation of a rotor of a wind turbine
CN116163882B (zh) 一种基于三轴姿态传感器的风机净空距离调整方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant