CN113378330A - 用于超长柔性下风向风力机叶片有效扫风半径的计算方法 - Google Patents

用于超长柔性下风向风力机叶片有效扫风半径的计算方法 Download PDF

Info

Publication number
CN113378330A
CN113378330A CN202110802008.XA CN202110802008A CN113378330A CN 113378330 A CN113378330 A CN 113378330A CN 202110802008 A CN202110802008 A CN 202110802008A CN 113378330 A CN113378330 A CN 113378330A
Authority
CN
China
Prior art keywords
blade
ultra
wind
long flexible
parameter value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110802008.XA
Other languages
English (en)
Other versions
CN113378330B (zh
Inventor
许波峰
李振
朱紫璇
罗乔
戴成军
汪亚洲
蔡新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Nanjing Vocational University of Industry Technology NUIT
Original Assignee
Hohai University HHU
Nanjing Vocational University of Industry Technology NUIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU, Nanjing Vocational University of Industry Technology NUIT filed Critical Hohai University HHU
Priority to CN202110802008.XA priority Critical patent/CN113378330B/zh
Publication of CN113378330A publication Critical patent/CN113378330A/zh
Application granted granted Critical
Publication of CN113378330B publication Critical patent/CN113378330B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/20Design reuse, reusability analysis or reusability optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Wind Motors (AREA)

Abstract

本发明涉及用于超长柔性下风向风力机叶片有效扫风半径的计算方法,具体为:采集风力发电机组的运行参数值和必要的超长柔性叶片参数值;根据风力发电机组的气动模型和所采集参数值确定风力作用于风力发电机组的外载参数值;根据风力发电机组的外载参数值、所采集参数值和超长柔性叶片的变形计算模型确定超长柔性叶片的挠度值;根据超长柔性叶片的挠度值、所采集参数值和超长柔性叶片的数学等效模型确定超长柔性下风向风力发电机组风轮有效扫风半径。使用该方法能较为便捷地计算超长柔性叶片在运行工况下的实际风轮扫风半径,进而计算出风力发电机组的输出功率,在超长柔性下风向风力机叶片的设计及优化方面有很好的应用前景。

Description

用于超长柔性下风向风力机叶片有效扫风半径的计算方法
技术领域
本发明属于风力发电技术领域,特别涉及用于超长柔性下风向风力机叶片有效扫风半径的计算方法。
背景技术
为了使风电与传统化石能源相比具备价格优势,进一步降低其单位发电成本成为风力发电技术研究的目标。为实现这一目标,增大单机容量成为最便捷和最有效的方式,叶片大型化成为风力机发展的必由之路。当前风力发电已经进入10MW级时代,叶片长度达到100m级,超长叶片设计的难点在于叶片气动设计与结构设计之间的矛盾,以及叶片轻质要求与结构性能要求之间的矛盾。传统的上风向叶片必须维持足够的刚度以避免与塔架发生干涉,叶片大型化后质量急剧上升使得在达到临界尺寸之后将不再经济。下风向叶片通过锥角和向后弯曲的设计,离心力距可以抵消一部分推力距,具有被动降载特性,且风载荷将叶片推离塔更远,不存在塔架净空问题,叶片可以更轻更柔,这些优势在超长叶片设计中逐渐突显出来。
风载荷作用下,超长柔性下风向叶片会发生大的弯曲变形,且不同风速下其弯曲变形会有很大不同。叶片柔性变形虽然不会打塔,但会影响叶片的扫风面积,进而影响风轮的输出功率。所以在超长柔性下风向叶片设计时,需要考虑柔性变形对叶片有效扫风半径的影响,才能准确预估叶片的设计目标,如年发电量、度电成本等,对于超长柔性下风向风力机叶片的设计与优化至关重要。迄今为止,没有对下风向叶片由于柔性变形计算有效扫风半径的文献及报道。
发明内容
针对于上述现有技术的不足,本发明提供了用于超长柔性下风向风力机叶片有效扫风半径的计算方法,该方法用于下风向风力机运行状态下风轮有效扫风半径的计算。所述计算方法包括:采集风力发电机组的运行参数值和必要的超长柔性叶片参数值;根据风力发电机组的气动模型和所采集参数值确定风力作用于风力发电机组的外载参数值;根据风力发电机组的外载参数值、所采集参数值和超长柔性叶片的变形计算模型确定超长柔性叶片的挠度值;根据超长柔性叶片的挠度值、所采集参数值和超长柔性叶片的数学等效模型确定超长柔性下风向风力发电机组风轮有效扫风半径。其中涉及指示风力发电机组外载参数值与所采集参数值关系的风力发电机组气动模型、指示风力发电机组叶片的挠度值与外载参数值关系的超长柔性叶片变形计算模型、指示下风向风力发电机组风轮有效扫风半径与超长柔性叶片的挠度值关系的叶片数学等效模型。使用该方法能较为便捷地计算超长柔性叶片在运行工况下的实际风轮扫风半径,进而计算出风力发电机组的输出功率,在超长柔性下风向风力机叶片的设计及优化方面有很好的应用前景。
用于超长柔性下风向风力机叶片有效扫风半径的计算方法,其特征在于,所述计算方法包括:
采集风力发电机组的运行参数值和必要的超长柔性叶片参数值;根据风力发电机组的气动模型和所采集参数值确定风力作用于风力发电机组的外载参数值,其中,所述气动模型指示风力发电机组外载参数值与所采集参数值关系;根据风力发电机组外载参数值、所采集参数值和超长柔性叶片的变形计算模型确定超长柔性叶片的挠度值,并将叶片的挠曲线用二阶单项式进行拟合,其中,所述超长柔性叶片变形计算模型指示风力发电机组叶片的挠度值与外载参数值关系;根据超长柔性叶片的挠度值、所采集参数值和超长柔性叶片的数学等效模型确定超长柔性下风向风力发电机组风轮有效扫风半径,其中,所述超长柔性叶片数学等效模型指示超长柔性下风向风力发电机组风轮有效扫风半径与叶片的挠度值关系。
进一步的,所述运行参数值包括来流风速、风轮转速以及叶片桨距角,所述必要的超长柔性叶片参数值包括叶片长度、叶片各计算截面距离叶根长度、预弯、刚度等,所述风力发电机组外载参数值为叶片各叶素段气动推力值;其中,所述气动模型指示来流风速、叶尖速比、叶片桨距角以及叶片长度与风力发电机组叶片各叶素段气动推力值之间的对应关系,所述超长柔性叶片变形计算模型指示风力发电机组叶片各叶素段气动推力值、叶片各计算截面距离叶根长度、刚度等与叶片的挠度值之间的对应关系,所述超长柔性叶片数学等效模型指示超长柔性下风向风力发电机组叶片长度、迭代后预弯值与风轮有效扫风半径之间的对应关系;其中,所述叶尖速比根据所述来流风速和所述风轮转速确定。
进一步的,所述超长柔性叶片预弯参数为如下分布函数模型:
Figure BDA0003165025190000021
式中,无量纲数
Figure BDA0003165025190000022
为预弯后叶片上任一点的实际展向位置,无量纲数dx为展向
Figure BDA0003165025190000023
处的预弯量,a为叶片预弯段服从分布函数的系数,无量纲数
Figure BDA0003165025190000024
为预弯后叶片叶根线性段的实际展向位置,无量纲数Lf为预弯后叶片叶尖的实际展向位置。
进一步的,所述超长柔性叶片数学等效模型的计算公式为:
Figure BDA0003165025190000025
Figure BDA0003165025190000026
R'=R×Lf+R0
式中,无量纲数Lf为预弯后叶片叶尖的实际展向位置,无量纲数
Figure BDA0003165025190000031
为预弯后叶片上任一点的实际展向位置,无量纲数
Figure BDA0003165025190000032
为预弯后叶片叶根线性段的实际展向位置,a为叶片预弯段服从分布函数的系数,r0为无预弯状态下叶片叶根线性段无量纲位置,R'为风轮有效扫风半径,R为无预弯状态下叶片的长度,R0为风轮轮毂半径。
进一步的,所述计算超长柔性下风向风轮有效扫风半径的步骤包括:根据所述运行参数值及叶片参数值、风力发电机组的气动模型、超长柔性叶片的变形计算模型和超长柔性叶片的数学等效模型,通过迭代求解得到所述风轮有效扫风半径。
进一步的,所述通过迭代求解得到超长柔性下风向风轮有效扫风半径的步骤包括:
步骤1:根据所采集参数值和超长柔性下风向叶片数学等效模型计算风轮有效扫风半径,并更新预弯后的部分叶片展向参数值;
步骤2:根据所述运行参数值及更新后的叶片参数值、风力发电机组的气动模型确定风力发电机组的外载参数值;
步骤3:根据风力发电机组外载参数值、所采集参数值和叶片的变形计算模型确定超长柔性下风向风力发电机组叶片的挠度值,并将叶片的挠曲线用二阶单项式进行拟合,二阶单项式系数记为a′;
步骤4:当a′与a差值不小于预定阈值时,更新叶片的预弯值a=a′,返回步骤1,重新计算叶片的挠度值,当a′与a差值小于预定阈值时,输出当前的超长柔性下风向风轮有效扫风半径,并结束所述迭代求解。
进一步的,所述气动模型为基于叶素动量理论、涡方法等针对风力发电机组建立的气动模型;所述超长柔性叶片变形计算模型为基于奇异函数法等针对风力发电机组建立的叶片变形模型。
本发明的有益效果为:通过采集较少的叶片参数和简单的叶片所服从分布函数,能有效且准确地构建超长柔性下风向风力发电机组叶片的预弯参数模型;采用该计算方法,能便捷地计算不同风况下的超长柔性下风向风轮有效扫风半径,进而计算实际的风轮输出功率,在超长柔性下风向风力机叶片的设计及优化方面有很好的应用前景。
附图说明
图1为本发明用于超长柔性下风向风力机叶片有效扫风半径的计算方法流程图。
图2为本发明实施例的超长柔性无预弯叶片与不同预弯叶片的比较图。
图3为本发明实施例的超长柔性不同刚度叶片输出功率曲线的比较图。
图4为本发明实施例的不同风况下所采集运行参数的示意表格。
图5为本发明实施例的不同风况下所计算的超长柔性下风向风轮有效扫风半径结果图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
以美国可再生能源实验室(NREL)发布的5MW叶片为参考叶片建立超长柔性下风向顺载叶片模型,轮毂半径R0为2m、无预弯状态下的叶片长度R=66.5m、叶片叶根线性段无量纲位置r0=0.1,叶片初始预弯服从的二阶单项式系数a=0.1,如图2所示。不同风况下所采集的运行参数如图3所示。
具体计算步骤如下:
步骤1:采集以下参数值:来流风速v、风轮转速n以及叶片桨距角βi、叶片数B、轮毂半径R0、无预弯叶片长度R、各计算截面距离叶根长度ri、弦长ci刚度ki以及初始预弯模型系数a和叶根线性段无量纲位置r0等。
步骤2:根据所采集参数值和超长柔性叶片数学等效模型计算风轮有效扫风半径,计算公式为:
Figure BDA0003165025190000041
Figure BDA0003165025190000051
R'=R×Lf+R0
式中,无量纲数
Figure BDA0003165025190000052
为预弯后叶根线性段的实际展向位置,无量纲数Lf为预弯后叶片叶尖的实际展向位置,无量纲数
Figure BDA0003165025190000053
为预弯后各计算截面实际展向位置,R'为风轮有效扫风半径,R0为风轮轮毂半径。
步骤3:根据无量纲数Lf更新各计算截面距离叶根长度ri
ri′=ri×Lf
步骤4:根据所采集参数值和风力发电机组的气动模型计算风载荷作用于风力发电机组叶片第i个计算截面叶素段dr的气动推力值Fi
Fi=ρBv2CTiii)cidr/2
式中,ρ为空气密度,CTi为推力系数,叶尖速比λi=πnri′/30v,dr=r′i+1-ri′,i=1,2,3,…,。
步骤5:根据风力发电机组叶片第i个计算截面叶素段dr的气动推力值Fi、所采集其他参数值和超长柔性叶片的变形计算模型确定风力发电机组叶片第i个计算截面的挠度值ωi
Figure BDA0003165025190000054
式中,θi为第i个计算截面的转角,Mi为第i个叶素段固定端面弯矩,Fi′为第i个叶素段固定端面反力,i=1,2,3,…,,
Figure BDA0003165025190000055
步骤6:将超长柔性下风向风力发电机组叶片的挠度曲线用二阶单项式函数进行拟合,二阶单项式系数a′计算公式为:
Figure BDA0003165025190000056
步骤7:当二阶单项式系数a′与初始预弯模型系数a差值不小于预定阈值时,更新叶片的预弯值,a=a′,返回步骤2,重新计算;当二阶单项式系数a′与初始预弯模型系数a差值小于预定阈值时,输出超长柔性下风向风轮有效扫风半径R',并结束计算。
上述说明示出并描述了本发明的优选实施例,如前所述,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (7)

1.用于超长柔性下风向风力机叶片有效扫风半径的计算方法,其特征在于,包括以下步骤:
采集风力发电机组的运行参数值和超长柔性叶片参数值;
根据风力发电机组的气动模型和所采集参数值确定风力作用于风力发电机组的外载参数值,其中,所述气动模型指示风力发电机组外载参数值与所采集参数值关系;
根据风力发电机组外载参数值、所采集参数值和超长柔性叶片的变形计算模型确定超长柔性叶片的挠度值,并将叶片的挠曲线用二阶单项式进行拟合,其中,所述超长柔性叶片变形计算模型指示风力发电机组叶片的挠度值与外载参数值关系;
根据超长柔性叶片的挠度值、所采集参数值和超长柔性叶片的数学等效模型确定超长柔性下风向风力发电机组风轮有效扫风半径,其中,所述超长柔性叶片数学等效模型指示超长柔性下风向风力发电机组风轮有效扫风半径与叶片的挠度值关系。
2.根据权利要求1所述的超长柔性下风向风轮有效扫风半径计算方法,其特征在于,所述运行参数值包括来流风速、风轮转速以及叶片桨距角,所述超长柔性叶片参数值包括叶片长度、叶片各计算截面距离叶根长度、预弯和刚度,所述风力发电机组外载参数值为叶片各叶素段气动推力值;
其中,所述气动模型指示来流风速、叶尖速比、叶片桨距角以及叶片长度与风力发电机组叶片各叶素段气动推力值之间的对应关系,所述超长柔性叶片变形计算模型指示风力发电机组叶片各叶素段气动推力值、叶片各计算截面距离叶根长度、刚度与叶片的挠度值之间的对应关系,所述超长柔性叶片数学等效模型指示超长柔性下风向风力发电机组叶片长度、迭代后预弯值与风轮有效扫风半径之间的对应关系;
其中,所述叶尖速比根据所述来流风速和所述风轮转速确定。
3.根据权利要求2所述的超长柔性下风向风轮有效扫风半径计算方法,其特征在于,所述叶片预弯参数为如下分布函数模型:
Figure FDA0003165025180000011
式中,无量纲数
Figure FDA0003165025180000012
为预弯后叶片上任一点的实际展向位置,无量纲数dx为展向
Figure FDA0003165025180000013
处的预弯量,a为叶片预弯段服从分布函数的系数,无量纲数
Figure FDA0003165025180000014
为预弯后叶片叶根线性段的实际展向位置,无量纲数Lf为预弯后叶片叶尖的实际展向位置。
4.根据权利要求2和3所述的超长柔性下风向风轮有效扫风半径计算方法,其特征在于,所述超长柔性叶片数学等效模型的计算公式为:
Figure FDA0003165025180000021
Figure FDA0003165025180000022
R'=R×Lf+R0
式中,无量纲数Lf为预弯后叶片叶尖的实际展向位置,无量纲数
Figure FDA0003165025180000023
为预弯后叶片上任一点的实际展向位置,无量纲数
Figure FDA0003165025180000024
为预弯后叶片叶根线性段的实际展向位置,a为叶片预弯段服从分布函数的系数,r0为无预弯状态下叶片叶根线性段无量纲位置,R'为风轮有效扫风半径,R为无预弯状态下叶片的长度,R0为风轮轮毂半径。
5.根据权利要求1所述的超长柔性下风向风轮有效扫风半径计算方法,其特征在于,计算风轮有效扫风半径的步骤包括:根据所述运行参数值及叶片参数值、风力发电机组的气动模型、超长柔性叶片的变形计算模型和超长柔性叶片的数学等效模型,通过迭代求解得到所述风轮有效扫风半径。
6.根据权利要求5所述的超长柔性下风向风轮有效扫风半径计算方法,其特征在于,所述通过迭代求解得到风轮有效扫风半径的步骤包括:
步骤1:根据所采集参数值和超长柔性下风向叶片数学等效模型计算风轮有效扫风半径,并更新预弯后的部分叶片展向参数值;
步骤2:根据所述运行参数值及更新后的叶片参数值、风力发电机组的气动模型确定风力发电机组的外载参数值;
步骤3:根据风力发电机组外载参数值、所采集参数值和叶片的变形计算模型确定超长柔性下风向风力发电机组叶片的挠度值,并将叶片的挠曲线用二阶单项式进行拟合,二阶单项式系数记为a′;
步骤4:当a′与a差值不小于预定阈值时,更新叶片的预弯值a=a′,返回步骤1,重新计算叶片的挠度值,当a′与a差值小于预定阈值时,输出当前的超长柔性下风向风轮有效扫风半径,并结束所述迭代求解。
7.根据权利要求1至6中任意一项所述的超长柔性下风向风轮有效扫风半径计算方法,其特征在于,所述气动模型为基于叶素动量理论、涡方法针对风力发电机组建立的气动模型;所述超长柔性叶片变形计算模型为基于奇异函数法针对风力发电机组建立的叶片变形模型。
CN202110802008.XA 2021-07-15 2021-07-15 用于超长柔性下风向风力机叶片有效扫风半径的计算方法 Active CN113378330B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110802008.XA CN113378330B (zh) 2021-07-15 2021-07-15 用于超长柔性下风向风力机叶片有效扫风半径的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110802008.XA CN113378330B (zh) 2021-07-15 2021-07-15 用于超长柔性下风向风力机叶片有效扫风半径的计算方法

Publications (2)

Publication Number Publication Date
CN113378330A true CN113378330A (zh) 2021-09-10
CN113378330B CN113378330B (zh) 2023-09-08

Family

ID=77582269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110802008.XA Active CN113378330B (zh) 2021-07-15 2021-07-15 用于超长柔性下风向风力机叶片有效扫风半径的计算方法

Country Status (1)

Country Link
CN (1) CN113378330B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113962045A (zh) * 2021-12-22 2022-01-21 东方电气风电股份有限公司 一种以风力发电机组叶片运行轨迹计算净空距离方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107061190A (zh) * 2016-12-18 2017-08-18 孟英志 一种带加长装置的风机风轮或叶片及风力机
CN109409019A (zh) * 2018-12-15 2019-03-01 江西理工大学南昌校区 一种风力机叶片气动外形的预弯优化方法
CN109902384A (zh) * 2019-02-28 2019-06-18 上海交通大学 一种基于气弹模型的风力机柔性叶片预弯预扭设计方法
CN109960823A (zh) * 2017-12-22 2019-07-02 北京金风科创风电设备有限公司 风力发电机组的等效风速确定方法和设备
US20200049127A1 (en) * 2017-02-14 2020-02-13 Universite Paris Diderot Paris 7 Method For Designing A Wind Turbine Or A Water Turbine Blade

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107061190A (zh) * 2016-12-18 2017-08-18 孟英志 一种带加长装置的风机风轮或叶片及风力机
US20200049127A1 (en) * 2017-02-14 2020-02-13 Universite Paris Diderot Paris 7 Method For Designing A Wind Turbine Or A Water Turbine Blade
CN109960823A (zh) * 2017-12-22 2019-07-02 北京金风科创风电设备有限公司 风力发电机组的等效风速确定方法和设备
CN109409019A (zh) * 2018-12-15 2019-03-01 江西理工大学南昌校区 一种风力机叶片气动外形的预弯优化方法
CN109902384A (zh) * 2019-02-28 2019-06-18 上海交通大学 一种基于气弹模型的风力机柔性叶片预弯预扭设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘颖;严军;: "基于叶素动量理论的水平轴风力机叶片设计方法", 兰州理工大学学报, no. 06 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113962045A (zh) * 2021-12-22 2022-01-21 东方电气风电股份有限公司 一种以风力发电机组叶片运行轨迹计算净空距离方法
CN113962045B (zh) * 2021-12-22 2022-03-15 东方电气风电股份有限公司 一种以风力发电机组叶片运行轨迹计算净空距离方法

Also Published As

Publication number Publication date
CN113378330B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
CN103244348B (zh) 变速变桨风力发电机组功率曲线优化方法
EP1152148A1 (en) Airfoil profiles for wind turbines
US20100135811A1 (en) Root sleeve for wind turbine blade
US20100166556A1 (en) Partial arc shroud for wind turbine blades
EP2342453B2 (en) Wind turbine with low induction tips
CN105971821A (zh) 一种风力发电机组基于风轮推力预估的控制算法
CN109902384B (zh) 一种基于气弹模型的风力机柔性叶片预弯预扭设计方法
CN110145436A (zh) 应用于风机的非线性经济模型预测控制方法
CN104405596A (zh) 一种风力发电机组低风速翼型族
DK2128434T3 (en) Wind turbine blades with twisted and tapered tips
CN113378330A (zh) 用于超长柔性下风向风力机叶片有效扫风半径的计算方法
CN103410657B (zh) 一种加肋开槽型风力机叶片
CN112610412A (zh) 一种基于载荷检测的风电机组叶片净空控制方法
EP3077661B1 (en) Pre-bent wind turbine blade
Ding et al. An optimal design method of swept blades for HAWTs
CN109611268B (zh) 一种双叶轮水平轴风力机设计优化方法
CN101418775B (zh) 一种水平轴风车及风电机组叶片的制作方法
CN103375332A (zh) 变速变桨风力发电机组最优阻力矩动态优化方法
JP5602060B2 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
CN203515970U (zh) 一种加肋开槽型风力机叶片
KR101454258B1 (ko) 두께비 25%의 대용량 풍력터빈 블레이드용 에어포일
Yass et al. Experimental study to design and manufacturing of NACA 0012 horizontal axis wind turbine blade
CN202140253U (zh) 一种垂直轴风力发电机
CN114251222B (zh) 风力发电机组的风能捕获方法及装置
Zhou et al. Analysis of extreme operating gust influence on aerodynamic performance of wind turbine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant