CN113956326A - 一种短肽单体,结构自愈型肽基水凝胶及其应用 - Google Patents

一种短肽单体,结构自愈型肽基水凝胶及其应用 Download PDF

Info

Publication number
CN113956326A
CN113956326A CN202111078635.XA CN202111078635A CN113956326A CN 113956326 A CN113956326 A CN 113956326A CN 202111078635 A CN202111078635 A CN 202111078635A CN 113956326 A CN113956326 A CN 113956326A
Authority
CN
China
Prior art keywords
hydrogel
monomer
short peptide
peptide
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111078635.XA
Other languages
English (en)
Inventor
杜蘅
王岚
杨红艳
苑立博
潘博远
卢奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Zhengzhou Institute of Technology
Original Assignee
Henan University of Technology
Zhengzhou Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology, Zhengzhou Institute of Technology filed Critical Henan University of Technology
Priority to CN202111078635.XA priority Critical patent/CN113956326A/zh
Publication of CN113956326A publication Critical patent/CN113956326A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof

Abstract

本发明提供了一种短肽单体,结构自愈型肽基水凝胶及其应用。所述的肽基水凝胶是通过合成的两端封端的三肽,其序列如下:Ac‑T‑F‑F‑NH2,在溶液中形成自组装体,在一定条件下肽的自组装小体继续组装形成纳米纤维形成空间三维网络结构。本发明提供的水凝胶具有较好的结构恢复能力和被生物降解能力,其制备方法所用原料均具有良好的生物相容性,在水凝胶封装过程以及人体摄入过程都有合适的流变特性便于应用。

Description

一种短肽单体,结构自愈型肽基水凝胶及其应用
技术领域
本发明涉及生物材料技术领域,具体涉及一种短肽单体,结构自愈型肽基水凝胶及其应用。
背景技术
由于肽基水凝胶具有高持水能力、多微孔结构、可调的机械性能、良好的生物相容性等性能,以及肽基凝胶剂通常具有主链可整合(调整枝节程度)、侧链可修饰的优势,可调整适用于不同领域。特别是,肽基水凝胶又可以设计得到肽结合位点的结构,所以在药物分子递送、组织工程以及创伤愈合方面具有极大的应用研究价值。短肽在促组装驱动力,如静电力、疏水力、氢键、π-π堆叠等相互作用下封包水相形成肽基水凝胶。
在肽基凝胶剂的设计上可以根据对pH敏感、对温度敏感等要求设计肽序,利用由氨基酸侧链电负性差异或极性不同的氨基酸侧链设计合成配对肽或两亲性多肽。但是目前的研究多集中于长肽链多肽或多聚肽,对于具有更好生物相容性的短肽水凝胶研究较少。仅有的研究成果显示成胶方式较为复杂,包括有自组装模板、pH调节或金属离子驱动等方式。在应用中这些条件可能会对结果产生明显影响,故本发明是具有更简单的成胶方式,且对应用过程影响较小的新产品的开发。
发明内容
要解决的技术问题:本发明的目的在于针对物质递送,设计发明一种具有结构恢复性的多肽单体,在一定条件下形成肽基水凝胶,利用其良好的生物相容性和结构可自愈的性能,开发其作为药物分子或食品功能因子的递送体系。该肽基水凝胶的肽序长度短,易于制备,成本较低,成交方式简单快速,可用于极性或非极性物质的封装递送体系。
技术方案:一种具有自组装行为的短肽单体,所述短肽单体的氨基酸序列通式为苏氨酸-苯丙氨酸-苯丙氨酸(TFF)。
优选的,所述的短肽单体的N端进行了乙酰化,C端进行氨基化。
优选的,所述短肽单体通过以下方法制备而成:利用固相合成法合成多肽单体序列,再以纯水溶解,经振荡并超声得到多肽单体水溶液,经冷冻干燥得到短肽单体粉末。
上述的短肽单体在制备肽基水凝胶中的应用。
优选的,所述超声功率为50-80W,超声温度低于40℃,超声时间为30min。
一种肽基水凝胶,所述的水凝胶是将权利要求1所述的多肽单体加入有机溶剂制备高浓度短肽储备液,在将储备液以纯水稀释混匀得到短肽水溶液,静置形成水凝胶;其中,所述短肽单体通过苯丙氨酸侧链苯环间产生的π-π堆积作用而形成有序的短肽单体反向平行排列,进而自组装为纤维链状结构,所组装的纤维结构的直径在30-50nm之间。
优选的,所述有机溶剂为六氟异丙醇、异丙醇或丙酮中的任意一种或两种及两种以上的组合物。
优选的,所述短肽储备液的浓度范围为100-25mg/mL,所述短肽水溶液浓度范围为大于0.5wt%。
优选的,所述静置温度及时间分别为4-25℃,5-120min。
上述的肽基水凝胶在制备可注射手术填充物、生物纳米材料、药物递送、组织修复和细胞支架中的应用。
有益效果:本发明的具有以下优点
1.本发明的短肽,该短肽具有一端亲水、一端疏水的两亲性特征,该短肽在生理条件下自组装形成纳米纤维结构且形成水凝胶,丰富了水凝胶形成的种类;
2.本发明的肽基水凝胶是由三肽TFF组装而成,操作简捷,快速,制备过程中无需引入任何引发剂和交联剂,安全无毒且环保;
3.本发明的肽基水凝胶,其可由肽分子间的自组装驱动形成水凝胶,其肽序列简单,肽链长度短,得到的水凝胶生物相容性好且具有结构破坏后可自愈的特性;
4.本发明的水凝胶其对极性和非极性小分子均具有封装性能,有助于肽基水凝胶材料在多个领域的开发利用。
附图说明:
图1为肽基凝胶剂,即三肽Ac-T-F-F-NH2的质谱图;
图2为浓度为0.5wt%的肽溶液形成水凝胶的宏观图及TEM、SEM图;
图3为浓度分别为0.3、0.5、0.8、1.0、1.5wt%的肽基水凝胶的储能模量图,及上述浓度形成水凝胶的宏观图;
图4为浓度为0.5wt%的肽基水凝胶结构破坏恢复试验宏观图及流变学三段式结构破坏恢复模量图。
具体实施方式
实施例1
利用固相合成法合成氨基酸序列为:Ac-T-F-F-NH2的多肽单体,将吹干乙醚的粗多肽单体中加入适量的纯水,在50W功率下,超声处理30min,过程中添加冰块保证超声温度不高于40℃。然后在气浴振荡器中振荡过夜,使肽完全溶解后进行冷冻干燥得到产品短肽粉末。
称取产品短肽5mg于样品瓶中,加入50μL六氟异丙醇制备为浓度100mg/mL肽储备液,加纯水至体系总重量为1g,得到浓度为0.5wt%的肽溶液,在4℃下静置10min。通过倒置样品瓶的方式判断溶液是否形成肽基水凝胶,若样品瓶倒置样品不滑落,即形成水凝胶。由该方法制备的水凝胶通过TEM、SEM进行水凝胶的微观形貌的观察。取肽基水凝胶100μL,用纯水稀释至200μL,通过涡旋使肽基水凝胶分散在纯水中,吸取20μL分散相滴于碳膜覆盖的铜网上,静置干燥,通过TEM观察。取1g肽基水凝胶进行冷冻干燥,取适量置于导电胶上,喷金5min后,通过SEM观察。从结果能明显看出水凝胶内部呈现纤维形成的空间网络结构,并且纤维直径在30-50nm之间。
实施例2
利用固相合成法合成氨基酸序列为:Ac-T-F-F-NH2的多肽单体,将吹干乙醚的粗多肽单体中加入适量的纯水,在50W功率下,超声处理30min,过程中添加冰块保证超声温度不高于40℃。然后在气浴振荡器中振荡过夜,使肽完全溶解后进行冷冻干燥得到产品短肽粉末。分别称取产品短肽3、5、8、10、1.5mg于样品瓶中,加入150μL六氟异丙醇制备为不同浓度的肽储备液,加纯水至体系总重量为1g,得到浓度分别为0.3、0.5、0.8、1.0、1.5wt%的肽溶液,在4℃下静置1H。通过倒置样品瓶的方式判断溶液是否形成肽基水凝胶,若样品瓶倒置样品不滑落,即形成水凝胶。
对不同浓度的肽基水凝胶进行振幅扫描及频率扫描,发现产品的线性黏弹区随产品浓度升高而增大,在振幅为0.5%的小形变,频率为0.1-10Hz的条件下,测定不同浓度水凝胶的储能及耗能模量。从结果可以看出储能模量均大于耗能模量,故所有测试浓度均形成了凝胶状态,并且随浓度的增大,凝胶强度增大。其中由于0.3wt%的凝胶强度较弱,所以在该频率范围内出现模量的明显变化,这是结构被破坏的证明,与宏观观察一致。
实施例3
利用固相合成法合成氨基酸序列为:Ac-T-F-F-NH2的多肽单体,将吹干乙醚的粗多肽单体中加入适量的纯水,在50W功率下,超声处理30min,过程中添加冰块保证超声温度不高于40℃。然后在气浴振荡器中振荡过夜,使肽完全溶解后进行冷冻干燥得到产品短肽粉末。称取产品短肽5mg于样品瓶中,加入50μL六氟异丙醇制备浓度为100mg/mL的肽储备液。加纯水至体系总重量为1g,得到浓度为0.5wt%的肽溶液,在4℃下静置10min。通过倒置样品瓶的方式判断溶液是否形成肽基水凝胶,若样品瓶倒置样品不滑落,即形成水凝胶。
将该水凝胶样品进行流变学结构破坏恢复试验。第一阶段,将肽基水凝胶置于振幅为0.01%的极小形变和频率为1Hz的条件下稳定结构180s;第二阶段,使振幅增至50%大形变量和频率为1Hz的条件下,60s时间内破坏原有结构;第三阶段,使振幅恢复至0.01%的极小形变和频率为1Hz的条件测定模量变化,判断结构恢复情况,破坏恢复过程重复一次,过程时长为1500s。得到在经历两次破坏后,1500s时结构可以恢复至样品未破坏时的49.7%,具有一定的结构破坏后自愈能力,与宏观观察到的结果一致。

Claims (10)

1.一种具有自组装行为的短肽单体,其特征在于,所述短肽单体的氨基酸序列通式为苏氨酸-苯丙氨酸-苯丙氨酸。
2.根据权利要求1所述的多肽,其特征在于,所述的短肽单体的N端进行了乙酰化,C端进行氨基化。
3.根据权利要求1所述的短肽单体,其特征在于,所述短肽单体通过以下方法制备而成:利用固相合成法合成多肽单体序列,再以纯水溶解,经振荡并超声得到多肽单体水溶液,经冷冻干燥得到短肽单体粉末。
4.权利要求1所述的短肽单体在制备肽基水凝胶中的应用。
5.根据权利要求3中所述的短肽单体,其特征在于:所述超声功率为50-80W,超声温度低于40℃,超声时间为30min。
6.一种肽基水凝胶,其特征在于,所述的水凝胶是将权利要求1所述的多肽单体加入有机溶剂制备高浓度短肽储备液,在将储备液以纯水稀释混匀得到短肽水溶液,静置形成水凝胶;其中,所述短肽单体通过苯丙氨酸侧链苯环间产生的π-π堆积作用而形成有序的短肽单体反向平行排列,进而自组装为纤维链状结构,所组装的纤维结构的直径在30-50nm之间。
7.根据权利要求6中所述肽基水凝胶,其特征在于:所述有机溶剂为六氟异丙醇、异丙醇或丙酮中的任意一种或两种及两种以上的组合物。
8.根据权利要求6中所述肽基水凝胶,其特征在于:所述短肽储备液的浓度范围为100-25mg/mL,所述短肽水溶液浓度范围为大于0.5wt%。
9.根据权利要求6中所述肽基水凝胶,其特征在于:所述静置温度及时间分别为4-25℃,5-120min。
10.权利要求6-9任一项所述的肽基水凝胶在制备可注射手术填充物、生物纳米材料、药物递送、组织修复和细胞支架中的应用。
CN202111078635.XA 2021-09-15 2021-09-15 一种短肽单体,结构自愈型肽基水凝胶及其应用 Pending CN113956326A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111078635.XA CN113956326A (zh) 2021-09-15 2021-09-15 一种短肽单体,结构自愈型肽基水凝胶及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111078635.XA CN113956326A (zh) 2021-09-15 2021-09-15 一种短肽单体,结构自愈型肽基水凝胶及其应用

Publications (1)

Publication Number Publication Date
CN113956326A true CN113956326A (zh) 2022-01-21

Family

ID=79461437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111078635.XA Pending CN113956326A (zh) 2021-09-15 2021-09-15 一种短肽单体,结构自愈型肽基水凝胶及其应用

Country Status (1)

Country Link
CN (1) CN113956326A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634548A (zh) * 2021-10-08 2022-06-17 河南工业大学 一种混合水凝胶的制备方法及其在封装系统中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840897A (en) * 1982-04-21 1989-06-20 Akzo N.V. Modified human insulin and its use as starting material for the preparation of human insulin
CN1141636A (zh) * 1994-02-21 1997-01-29 阿斯特拉公司 用于治疗疼痛的新的类阿片肽
US20170246237A1 (en) * 2014-10-09 2017-08-31 University Of Strathclyde Self-assembling tripeptides
US20190254740A1 (en) * 2018-02-20 2019-08-22 Boston Scientific Scimed, Inc. Devices, systems, and methods for regulating glucose levels including treating diabetes
CN110234407A (zh) * 2017-02-24 2019-09-13 利波特鲁有限公司 用于化妆品的肽和组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840897A (en) * 1982-04-21 1989-06-20 Akzo N.V. Modified human insulin and its use as starting material for the preparation of human insulin
CN1141636A (zh) * 1994-02-21 1997-01-29 阿斯特拉公司 用于治疗疼痛的新的类阿片肽
US20170246237A1 (en) * 2014-10-09 2017-08-31 University Of Strathclyde Self-assembling tripeptides
CN110234407A (zh) * 2017-02-24 2019-09-13 利波特鲁有限公司 用于化妆品的肽和组合物
US20190388325A1 (en) * 2017-02-24 2019-12-26 Lipotrue, S.L. Peptides and compositions for use in cosmetics
US20190254740A1 (en) * 2018-02-20 2019-08-22 Boston Scientific Scimed, Inc. Devices, systems, and methods for regulating glucose levels including treating diabetes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HENG DU 等: "Fabrication of the low molecular weight peptide-based hydrogels and analysis of gelation behaviors", FOOD HYDROCOLLOIDS, 27 April 2022 (2022-04-27), pages 1 - 13 *
付琳等: "小肽调控奶牛乳腺乳蛋白合成的作用机制", 动物营养学报, 31 December 2020 (2020-12-31), pages 1991 *
刘建新;刘红云;朱雯;金晓露;: "稳定和提高牛奶蛋白质含量的营养策略", 饲料工业, no. 04, 25 February 2013 (2013-02-25), pages 5 - 14 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634548A (zh) * 2021-10-08 2022-06-17 河南工业大学 一种混合水凝胶的制备方法及其在封装系统中的应用

Similar Documents

Publication Publication Date Title
Huang et al. Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery
Zheng et al. High-strength and high-toughness sodium alginate/polyacrylamide double physically crosslinked network hydrogel with superior self-healing and self-recovery properties prepared by a one-pot method
Martínez-Mejía et al. Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions
Zhuang et al. Anti-degradation gelatin films crosslinked by active ester based on cellulose
Toksoz et al. Electrostatic effects on nanofiber formation of self-assembling peptide amphiphiles
CN103342824B (zh) 一种环糊精多醛交联剂的应用方法
US10968286B2 (en) Site-selective modification of polysaccharides and applications thereof
CN109485845B (zh) 一种疏水改性聚谷氨酸的制备方法及其促进海藻糖载入细胞的应用
Peng et al. The preparation of α-chitin nanowhiskers-poly (vinyl alcohol) hydrogels for drug release
Carvajal et al. Physical properties of hierarchically ordered self-assembled planar and spherical membranes
Yu et al. Buckwheat self-assembling peptide-based hydrogel: Preparation, characteristics and forming mechanism
Li et al. A self-healing and multi-responsive hydrogel based on biodegradable ferrocene-modified chitosan
CN113956326A (zh) 一种短肽单体,结构自愈型肽基水凝胶及其应用
Das Mahapatra et al. L-Carnosine-derived Fmoc-tripeptides forming pH-sensitive and proteolytically stable supramolecular hydrogels
Tu et al. Modulation of the self-assembly of collagen by phytic acid: an in vitro study
CN112980010B (zh) 一种可注射导电凝胶及其制备方法和应用
Azaza et al. Chitosan/collagen-based hydrogels for sustainable development: Phycocyanin controlled release
CN112646202B (zh) 一种功能化双网络水凝胶及其制备方法和应用
Jia et al. One-pot synthesis of highly mechanical and redox-degradable polyurethane hydrogels based on tetra-PEG and disulfide/thiol chemistry
Schuster et al. Reversible peptide particle formation using a mini amino acid sequence
CN115073552A (zh) 一种多肽、水凝胶及其用途
CN110272548B (zh) 一种提高水凝胶导电性的方法
Yeelack et al. Preparation and characterization of coated silk fibroin films with mimicked re-self assembly type I collagen
Wei et al. Hybrid Hydrogels from Nongelling Polymers Using a Fibrous Peptide Hydrogelator at Low Concentrations
US20190117840A1 (en) Tissue scaffolds

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination