CN113956050A - C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层及其制备方法 - Google Patents

C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层及其制备方法 Download PDF

Info

Publication number
CN113956050A
CN113956050A CN202111182737.6A CN202111182737A CN113956050A CN 113956050 A CN113956050 A CN 113956050A CN 202111182737 A CN202111182737 A CN 202111182737A CN 113956050 A CN113956050 A CN 113956050A
Authority
CN
China
Prior art keywords
sic
zrb
coating
transition layer
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111182737.6A
Other languages
English (en)
Inventor
缪强
刘阳阳
梁文萍
林浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202111182737.6A priority Critical patent/CN113956050A/zh
Publication of CN113956050A publication Critical patent/CN113956050A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/507Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明公开了C‑C复合材料表面耐烧蚀ZrB2‑SiC‑La2O3‑SiC涂层及其制备方法。通过包埋渗技术和大气等离子喷涂法制备了SiC过渡层及ZrB2‑SiC‑La2O3复合涂层。制备的多层涂层能够承受20s的氧‑乙炔火焰烧蚀作用,有效保护C‑C复合材料基体。本发明通过喷雾造粒技术制备的ZrB2‑SiC‑La2O3团聚粉末球形度高、流动性好、粒径适宜、成分均匀;SiC过渡层有效缓解了复合涂层和基体之间的热膨胀系数不匹配问题,减少涂层开裂及剥落现象;ZrB2‑SiC‑La2O3‑SiC涂层同时具有抗高温氧化和气流冲刷效果,生成的多相氧化膜有效阻碍氧气侵蚀,避免基体剥蚀和质量损失。

Description

C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层及其制备 方法
技术领域
本发明属于表面技术领域,具体涉及一种C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层及其制备方法。
背景技术
C-C复合材料是指以碳纤维及其织物为增强材料,以碳或石墨为基体,通过致密化和石墨化处理制成的全碳质复合材料。作为一种新型结构的复合材料,C-C复合材料具有高比模量、比强度、刚度,优异的抗疲劳性能以及较低的热膨胀系数,且能够被加工成各种形状。因此,该材料在追求轻质高效的航天领域内应用广泛,如再入式飞行器最前部的端头帽、固体火箭发动机喷管及喉衬等。C-C复合材料在真空或惰性氛围内具有良好的耐高温性,但在空气中超过500℃时即会发生氧化,且随温度升高氧化程度加剧。同时,高温下热量向内扩散,极大的温度分布及热应力使得各类缺陷(气孔、裂纹)出现应力集中,产生片状剥离。除此之外,在高速气流压力和剪切力作用下,密度不同的基体碳、纤维碳和浸渍碳烧蚀速度不同,还会引起颗粒状剥蚀。由此可见,为了扩大C-C复合材料在航天领域内的应用范围,必须提高其耐烧蚀能力。
采用涂层技术是实现C-C复合材料耐烧蚀的思路之一,旨在基体上制备一层均匀致密、有一定的氧气阻挡能力且与基体结合良好的涂层。陶瓷材料因具有高熔点、高温化学稳定性以及与基体的高化学相容性,成为耐烧蚀涂层的首选材料。且制备陶瓷涂层的方法较多,包括包埋法、化学气相沉积法、热喷涂法等。但单相陶瓷材料具有脆性大、易开裂等问题,为此,研究者们相继开发出多相陶瓷涂层、梯度陶瓷涂层等体系。近年来,超高温陶瓷(UHTCs)材料凭借更为优越的性能,成为C-C复合材料耐烧蚀涂层体系的研究重点。UHTCs指过渡金属的硼化物、碳化物或氮化物,其中,ZrB2-SiC体系得到了充分的研究和广泛的应用。
ZrB2-SiC涂层借助了两种材料不同的氧化模式,通过协同作用、分段氧化来保护基体。在800~1000℃,ZrB2氧化生成的B2O3玻璃层能够阻挡氧气扩散。随着温度升高至1200~1300℃,B2O3挥发消失,SiC氧化生成的SiO2液膜流动覆盖基体并填充裂纹和孔洞。同时SiO2与ZrO2反应形成的硅酸盐ZrSiO4具有更高的熔点,能够增大SiO2黏度,增强稳定性和抗氧化性。然而,当温度继续上升至1800~2000℃,SiO2会严重软化蒸发,液膜厚度降低;同时产生极大的蒸汽压,导致涂层剥落。因此,该体系无法承受更高温度的氧化作用,研究能够在2000℃以上保持稳定的耐烧蚀涂层十分重要。
发明内容
为了提高现有ZrB2-SiC涂层的不足,本发明的目的在于提出了一种C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层及其制备方法,该方法通过制备SiC过渡层及引入稀土氧化物La2O3制备出具有良好耐烧蚀性能的ZrB2-SiC-La2O3-SiC复合涂层,即通过包埋法制备SiC包覆C-C复合材料后,由喷雾造粒法制备ZrB2-SiC-La2O3团聚粉末,利用大气等离子喷涂技术制备ZrB2-SiC-La2O3复合涂层,通过引入的稀土氧化物La2O3与氧化膜反应生成多种不混溶相,提高氧化膜在烧蚀过程中的稳定性。
C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层,沿着C-C复合材料表面向外界的方向,依次包括SiC过渡层和ZrB2-SiC-La2O3复合涂层;所述SiC过渡层的原材料由Si、C、Al2O3粉末,按质量百分比67.5%、22.5%、10%混合而成;所述Si、C、Al2O3粉末的平均粒径小于5μm,纯度不低于99.5%;所述ZrB2-SiC-La2O3复合涂层的原材料由ZrB2、SiC和La2O3粉末混合制成,且ZrB2与SiC的质量比为3:1,La2O3占ZrB2、SiC混合粉末的质量分数为5、~15%;所述ZrB2和La2O3的粒径为1~3μm,SiC的粒径为0.5~1μm;所述ZrB2、SiC、La2O3的纯度不低于99.5%。
上述C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层的制备方法,包括以下步骤:
步骤1,基体预处理
将形状尺寸为φ29.5mm×10mm的C-C复合材料基体进行打磨、抛光,对边缘部位倒角处理,使用无水乙醇超声清洗并烘干备用;
步骤2,制备SiC过渡层及ZrB2-SiC-La2O3复合涂层的原材料
步骤3,制备SiC过渡层
将步骤2得到的SiC过渡层的原材料平铺于氧化铝舟形坩埚中压实,将步骤1预处理后的C-C复合材料作为基体排列在SiC过渡层的原材料的粉末上,继续用SiC过渡层的原材料填充坩埚并盖上坩埚盖,放置基体时需保证间隔不小于1cm,且填充坩埚时需保证粉末将基体完全包埋,最后将坩埚置于高温管式炉加热温区的中心处,加热至1600~1800℃、保温2h、随炉冷却,全程通入氩气,制得SiC过渡层,得到有SiC过渡层的C-C复合材料基体;
步骤4,制备ZrB2-SiC-La2O3复合涂层
将步骤3得到的有SiC过渡层的C-C复合材料基体取出,使用无水乙醇超声清洗5min并烘干,将步骤2得到的ZrB2-SiC-La2O3复合涂层原材料通过大气等离子喷涂在有SiC过渡层的C-C复合材料基体上,最终制得ZrB2-SiC-La2O3-SiC涂层。
作为改进的是,步骤2中SiC过渡层及ZrB2-SiC-La2O3复合涂层原材料的制备过程如下:
步骤a,制备SiC过渡层原材料
将Si、C、Al2O3粉末按质量百分比67.5%、22.5%、10%称取后转入行星式球磨机中,设定球磨机转速为200r/min,采用正反自动循环交替模式,正转1h,暂停10min,反转1h,球磨2h后得到SiC过渡层的原材料;
步骤b,制备ZrB2-SiC-La2O3复合涂层原材料
1)将ZrB2、SiC、La2O3粉末,按ZrB2与SiC的质量比为3:1,且La2O3占ZrB2、SiC混合粉末的质量分数为5~15%称取后转入行星式球磨机中,设定球磨机转速为200r/min,采用正反自动循环交替模式,正转1h,暂停10min,反转1h,球磨2h后得到混合粉末;
2)将混合粉末与质量分数为3%的PVA溶液按照1:1体积比混合得到料浆,将料浆进行喷雾干燥,制得ZrB2-SiC-La2O3复合涂层的原材料。
作为改进的是,步骤3中高温管式炉加热温度在1400℃以下时,加热速率为10℃/min,1400℃以上加热速率为5℃/min,且炉内气压保持0.1MPa。
作为改进的是,步骤4中大气等离子喷涂的功率为45~50kW,送粉速率为10~15g/min,喷距为100~110mm,喷枪移动速度为1000mm/s,走枪次数为20次。
有益效果
与现有技术相比,本发明C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层及其制备方法,具有如下优势:
1)本发明采用包埋渗技术和大气等离子喷涂法在C-C复合材料上制备了SiC过渡层和耐烧蚀ZrB2-SiC-La2O3-SiC涂层,其中,包埋渗技术制备的SiC过渡层缓解了ZrB2-SiC-La2O3复合涂层与C-C复合材料基体之间的热应力失配,减少复合涂层的开裂和剥落;大气等离子喷涂法制备的ZrB2-SiC-La2O3复合涂层能够承受高速高压气流的冲刷作用,生成的烧蚀产物有效阻碍氧气的侵蚀和扩散;
2)本发明通过喷雾造粒技术制备ZrB2-SiC-La2O3复合涂层的原材料粉末,球形度高,流动性好,热稳定性佳,能够较好地满足后续喷涂技术的需求;
3)本发明在ZrB2-SiC超高温陶瓷涂层基础上引入La2O3,增大高温下熔融相的粘度和稳定性,抑制ZrB2的氧化产物ZrO2在冷却过程中的相变,降低涂层开裂倾向,且La2O3与ZrO2和SiO2形成更高熔点的镧锆酸盐和硅酸盐,提高复合涂层的耐烧蚀性。
附图说明
图1为实施例1、2、3中制备的ZrB2-SiC-La2O3-SiC涂层烧蚀后的宏观形貌;(a)实施例1;(b)实施例2;(c)实施例3;
图2为实施例1制备的ZrB2-SiC-La2O3-SiC涂层20s烧蚀后的表面形貌;(a)烧蚀中心区;(b)烧蚀过渡区;(c)烧蚀边缘区;
图3为实施例2制备的ZrB2-SiC-La2O3-SiC涂层20s烧蚀后的表面形貌;(a)烧蚀中心区;(b)烧蚀过渡区;(c)烧蚀边缘区;
图4为实施例3制备的ZrB2-SiC-La2O3-SiC涂层20s烧蚀后的表面形貌;(a)烧蚀中心区;(b)烧蚀过渡区;(c)烧蚀边缘区。
具体实施方式
下面结合附图和实例对本发明做进一步的详细说明。
实施例1
C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层的制备方法,包括以下步骤:
步骤1,基体预处理
将形状尺寸为φ29.5mm×10mm的C-C复合材料基体进行打磨、抛光,对边缘部位倒角处理,使用无水乙醇超声清洗并烘干备用;
步骤2,制备SiC过渡层的原材料
将Si、C、Al2O3粉末按质量百分比67.5%、22.5%、10%称取后转入行星式球磨机中,设定球磨机转速为200r/min,采用正反自动循环交替模式,正转1h,暂停10min,反转1h,球磨2h后得到SiC过渡层的原材料;
步骤3,制备ZrB2-SiC-La2O3复合涂层的原材料,具体过程为:
1)将ZrB2、SiC、La2O3粉末,按ZrB2与SiC的质量比为3:1,且La2O3占ZrB2、SiC混合粉末的质量分数为5%称取后转入行星式球磨机中,设定球磨机转速为200r/min,采用正反自动循环交替模式,正转1h,暂停10min,反转1h,球磨2h后得到混合粉末;
2)将混合粉末与质量分数为3%的PVA溶液按照1:1体积比混合得到料浆,将料浆进行喷雾干燥,制得ZrB2-SiC-La2O3复合涂层的原材料;
步骤4,制备SiC过渡层
将步骤2得到的SiC过渡层的原材料平铺于氧化铝舟形坩埚中压实,将步骤1预处理后的C-C复合材料作为基体排列在粉末上,继续用SiC过渡层的原材料填充坩埚并盖上坩埚盖,放置基体时需保证间隔不小于1cm,且填充坩埚时需保证粉末将基体完全包埋,最后将坩埚置于高温管式炉加热温区的中心处,加热至1600℃、保温2h、随炉冷却,全程通入氩气,制得SiC过渡层,得到有SiC过渡层的C-C复合材料基体,其中,高温管式炉加热温度在1400℃以下时,加热速率为10℃/min,1400℃以上加热速率为5℃/min,且炉内气压保持0.1MPa;
步骤5,制备ZrB2-SiC-La2O3复合涂层
将步骤4得到的有SiC过渡层的C-C复合材料基体取出,使用无水乙醇超声清洗5min并烘干,将步骤3得到的ZrB2-SiC-La2O3复合涂层的原材料通过大气等离子喷涂在有SiC过渡层的C-C复合材料基体上,最终制得ZrB2-SiC-La2O3-SiC涂层,其中,大气等离子喷涂的功率为45~50kW,送粉速率为10~15g/min,喷距为100~110mm,喷枪移动速度为1000mm/s,走枪次数为20次。
采用氧-乙炔烧蚀试验仪(NLFRM-110),根据GJB323B-2018烧蚀材料烧蚀试验方法,经20s烧蚀后,通过扫描电子显微镜观察烧蚀后的试样表面,记录试样的线性烧蚀率和质量烧蚀率,实施例1所制备的ZrB2-SiC-La2O3-SiC涂层的线性烧蚀率为0.0110mm/s,质量烧蚀率为0.000255g/s。
实施例2
C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层的制备方法,包括以下步骤:
步骤1,基体预处理
将形状尺寸为φ29.5mm×10mm的C-C复合材料基体进行打磨、抛光,对边缘部位倒角处理,使用无水乙醇超声清洗并烘干备用;
步骤2,制备SiC过渡层原材料
将Si、C、Al2O3粉末按质量百分比67.5%、22.5%、10%称取后转入行星式球磨机中,设定球磨机转速为200r/min,采用正反自动循环交替模式,正转1h,暂停10min,反转1h,球磨2h后得到SiC过渡层原材料;
步骤3,制备ZrB2-SiC-La2O3复合涂层原材料,具体过程为:
1)将ZrB2、SiC、La2O3粉末,按ZrB2与SiC的质量比为3:1,且La2O3占ZrB2、SiC混合粉末的质量分数为10%称取后转入行星式球磨机中,设定球磨机转速为200r/min,采用正反自动循环交替模式,正转1h,暂停10min,反转1h,球磨2h后得到混合粉末;
2)将混合粉末与质量分数为3%的PVA溶液按照1:1体积比混合得到料浆,将料浆进行喷雾干燥,制得ZrB2-SiC-La2O3复合涂层的原材料;
步骤4,制备SiC过渡层
将步骤2得到的SiC过渡层的原材料平铺于氧化铝舟形坩埚中压实,将步骤1预处理后的C-C复合材料作为基体排列在粉末上,继续用SiC过渡层的原材料填充坩埚并盖上坩埚盖,放置基体时需保证间隔不小于1cm,且填充坩埚时需保证粉末将基体完全包埋,最后将坩埚置于高温管式炉加热温区的中心处,加热至1600℃、保温2h、随炉冷却,全程通入氩气,制得SiC过渡层,得到有SiC过渡层的C-C复合材料基体,其中,高温管式炉加热温度在1400℃以下时,加热速率为10℃/min,1400℃以上加热速率为5℃/min,且炉内气压保持0.1MPa;
步骤5,制备ZrB2-SiC-La2O3复合涂层
将步骤4得到的有SiC过渡层的C-C复合材料基体取出,使用无水乙醇超声清洗5min并烘干,将步骤3得到的ZrB2-SiC-La2O3复合涂层原材料通过大气等离子喷涂在有SiC过渡层的C-C复合材料基体上,最终制得ZrB2-SiC-La2O3-SiC涂层,其中,大气等离子喷涂的功率为45~50kW,送粉速率为10~15g/min,喷距为100~110mm,喷枪移动速度为1000mm/s,走枪次数为20次。
采用氧-乙炔烧蚀试验仪(NLFRM-110),根据GJB323B-2018烧蚀材料烧蚀试验方法,经20s烧蚀后,通过扫描电子显微镜观察烧蚀后的试样表面。记录试样的线性烧蚀率和质量烧蚀率,实施例2所制备的ZrB2-SiC-La2O3-SiC涂层的线性烧蚀率为-0.0015mm/s,质量烧蚀率为-0.00428g/s。
实施例3
C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层的制备方法,包括以下步骤:
步骤1,基体预处理
将形状尺寸为φ29.5mm×10mm的C-C复合材料基体进行打磨、抛光,对边缘部位倒角处理,使用无水乙醇超声清洗并烘干备用;
步骤2,制备SiC过渡层的原材料
将Si、C、Al2O3粉末按质量百分比67.5%、22.5%、10%称取后转入行星式球磨机中,设定球磨机转速为200r/min,采用正反自动循环交替模式,正转1h,暂停10min,反转1h,球磨2h后得到SiC过渡层原材料;
步骤3,制备ZrB2-SiC-La2O3复合涂层的原材料,具体过程为:
1)将ZrB2、SiC、La2O3粉末,按ZrB2与SiC的质量比为3:1,且La2O3占ZrB2、SiC混合粉末的质量分数为15%称取后转入行星式球磨机中,设定球磨机转速为200r/min,采用正反自动循环交替模式,正转1h,暂停10min,反转1h,球磨2h后得到混合粉末;
2)将混合粉末与质量分数为3%的PVA溶液按照1:1体积比混合得到料浆,将料浆进行喷雾干燥,制得ZrB2-SiC-La2O3复合涂层的原材料;
步骤4,制备SiC过渡层
将步骤2得到的SiC过渡层的原材料平铺于氧化铝舟形坩埚中压实,将步骤1预处理后的C-C复合材料作为基体排列在粉末上,继续用SiC过渡层的原材料填充坩埚并盖上坩埚盖,放置基体时需保证间隔不小于1cm,且填充坩埚时需保证粉末将基体完全包埋,最后将坩埚置于高温管式炉加热温区的中心处,加热至1600℃、保温2h、随炉冷却,全程通入氩气,制得SiC过渡层,得到有SiC过渡层的C-C复合材料基体,其中,高温管式炉加热温度在1400℃以下时,加热速率为10℃/min,1400℃以上加热速率为5℃/min,且炉内气压保持0.1MPa;
步骤5,制备ZrB2-SiC-La2O3复合涂层
将步骤4得到的有SiC过渡层的C-C复合材料基体取出,使用无水乙醇超声清洗5min并烘干,将步骤3得到的ZrB2-SiC-La2O3复合涂层原材料通过大气等离子喷涂在有SiC过渡层的C-C复合材料基体上,最终制得ZrB2-SiC-La2O3-SiC涂层,其中,大气等离子喷涂的功率为45~50kW,送粉速率为10~15g/min,喷距为100~110mm,喷枪移动速度为1000mm/s,走枪次数为20次。
采用氧-乙炔烧蚀试验仪(NLFRM-110),根据GJB323B-2018烧蚀材料烧蚀试验方法,经20s烧蚀后,通过扫描电子显微镜观察烧蚀后的试样表面,记录试样的线性烧蚀率和质量烧蚀率,实施例3所制备的ZrB2-SiC-La2O3-SiC涂层的线性烧蚀率为-0.0005mm/s,质量烧蚀率为-0.00122g/s。
性能测试
为了更好地说明本发明的优势,结合各图表给予详细说明。
表1为实施例1、2、3中不同工艺制备的ZrB2-SiC-La2O3-SiC涂层烧蚀后的线性烧蚀率和质量烧蚀率,具体如下所示:
表1 实施例1、2、3中制备的ZrB2-SiC-La2O3-SiC涂层的线性烧蚀率和质量烧蚀率
Figure DEST_PATH_IMAGE001
实施例2和3中的ZrB2-SiC-La2O3-SiC涂层的烧蚀率为负值,说明涂层在烧蚀后无厚度和质量损失,产生的烧蚀产物不仅能够有效保护基体,且未被完全消耗。实施例2中的ZrB2-SiC-La2O3-SiC涂层具有最佳的耐烧蚀性,表明该工艺参数的成果性能最佳。
图1为实施例1、2、3中不同工艺制备的ZrB2-SiC-La2O3-SiC涂层烧蚀后的宏观形貌。可以看出,实施例1制备的ZrB2-SiC-La2O3-SiC涂层表面出现一定面积的剥蚀坑,与表1中的烧蚀率结果相对应。实施例2和3制备的ZrB2-SiC-La2O3-SiC涂层表面均有白色疏松的烧蚀产物,这些高熔点物质作为屏障保护涂层,提供有效的耐烧蚀能力。
图2为实施例1制备的ZrB2-SiC-La2O3-SiC涂层在烧蚀20s后的表面形貌,可分为烧蚀中心区、过渡区和边缘区。烧蚀中心可见断裂的C纤维束和孔洞,且过渡区有较明显的开裂,此外,烧蚀边缘区的氧化程度也较高。表明该工艺制备的涂层无法为基体提供充分的保护,使C纤维在火焰冲刷下出现点状剥蚀。
图3为实施例2制备的ZrB2-SiC-La2O3-SiC涂层在烧蚀20s后的表面形貌,可分为烧蚀中心区、过渡区和边缘区。烧蚀中心和过渡区有较厚的产物堆积,为熔融相挥发后留下的高熔点镧锆酸盐。边缘区涂层的氧化程度较低,仅出现较分散独立的片状氧化物。说明该工艺制备的涂层具有较强的抗氧化和耐烧蚀性。
图4为实施例3制备的ZrB2-SiC-La2O3-SiC涂层在烧蚀20s后的表面形貌,可分为烧蚀中心区、过渡区和边缘区。该涂层表面也留有较多的烧蚀产物,但堆积地更为疏松,且颗粒更小,有一定裂纹出现。烧蚀边缘区氧化程度同样较低,表明该工艺制备的涂层也具有良好的抗氧化和耐烧蚀性。
综上所述,本发明通过增加SiC过渡层,以及在ZrB2-SiC涂层中加入La2O3获得了使涂层的耐烧蚀性得到显著提升,拓宽了该工艺的应用。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。

Claims (5)

1.C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层,其特征在于,沿着C-C复合材料表面向外界的方向,依次包括SiC过渡层和ZrB2-SiC-La2O3复合涂层;所述SiC过渡层的原材料由Si、C、Al2O3粉末,按质量百分比67.5%、22.5%、10%混合而成;所述Si、C、Al2O3粉末的平均粒径小于5μm,纯度不低于99.5%;所述ZrB2-SiC-La2O3复合涂层的原材料由ZrB2、SiC和La2O3粉末混合制成,且ZrB2与SiC的质量比为3:1,La2O3占ZrB2、SiC混合粉末的质量分数为5~15%;所述ZrB2和La2O3的粒径为1~3μm,SiC的粒径为0.5~1μm;所述ZrB2、SiC、La2O3的纯度不低于99.5%。
2.基于权利要求1所述的C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层的制备方法,其特征在于,包括以下步骤:
步骤1,基体预处理
将形状尺寸为φ29.5mm×10mm的C-C复合材料基体进行打磨、抛光,对边缘部位倒角处理,使用无水乙醇超声清洗并烘干备用;
步骤2,制备SiC过渡层及ZrB2-SiC-La2O3复合涂层的原材料
步骤3,制备SiC过渡层
将步骤2得到的SiC过渡层的原材料平铺于氧化铝舟形坩埚中压实,将步骤1预处理后的C-C复合材料作为基体排列在SiC过渡层的原材料的粉末上,继续用SiC过渡层的原材料填充坩埚并盖上坩埚盖,放置基体时需保证间隔不小于1cm,且填充坩埚时需保证粉末将基体完全包埋,最后将坩埚置于高温管式炉加热温区的中心处,加热至1600~1800℃、保温2h、随炉冷却,全程通入氩气,制得SiC过渡层,得到有SiC过渡层的C-C复合材料基体;
步骤4,制备ZrB2-SiC-La2O3复合涂层
将步骤3得到的有SiC过渡层的C-C复合材料基体取出,使用无水乙醇超声清洗5min并烘干,将步骤2得到的ZrB2-SiC-La2O3复合涂层原材料通过大气等离子喷涂在有SiC过渡层的C-C复合材料基体上,最终制得ZrB2-SiC-La2O3-SiC涂层。
3.根据权利要求2所述的C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层的制备方法,其特征在于,步骤2中SiC过渡层及ZrB2-SiC-La2O3复合涂层原材料的制备过程如下:
步骤a,制备SiC过渡层的原材料
将Si、C、Al2O3粉末按质量百分比67.5%、22.5%、10%称取后转入行星式球磨机中,设定球磨机转速为200r/min,采用正反自动循环交替模式,正转1h,暂停10min,反转1h,球磨2h后得到SiC过渡层的原材料;
步骤b,制备ZrB2-SiC-La2O3复合涂层的原材料
1)将ZrB2、SiC、La2O3粉末,按ZrB2与SiC的质量比为3:1,且La2O3占ZrB2、SiC混合粉末的质量分数为5~15%称取后转入行星式球磨机中,设定球磨机转速为200r/min,采用正反自动循环交替模式,正转1h,暂停10min,反转1h,球磨2h后得到混合粉末;
2)将混合粉末与质量分数为3%的PVA溶液按照1:1体积比混合得到料浆,将料浆进行喷雾干燥,制得ZrB2-SiC-La2O3复合涂层的原材料。
4.根据权利要求2所述的C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层的制备方法,其特征在于,步骤3中高温管式炉加热温度在1400℃以下时,加热速率为10℃/min,1400℃以上加热速率为5℃/min,且炉内气压保持0.1MPa。
5.根据权利要求2所述的C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层的制备方法,其特征在于,步骤4中大气等离子喷涂的功率为45~50kW,送粉速率为10~15g/min,喷距为100~110mm,喷枪移动速度为1000mm/s,走枪次数为20次。
CN202111182737.6A 2021-10-11 2021-10-11 C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层及其制备方法 Pending CN113956050A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111182737.6A CN113956050A (zh) 2021-10-11 2021-10-11 C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111182737.6A CN113956050A (zh) 2021-10-11 2021-10-11 C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN113956050A true CN113956050A (zh) 2022-01-21

Family

ID=79463770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111182737.6A Pending CN113956050A (zh) 2021-10-11 2021-10-11 C-C复合材料表面耐烧蚀ZrB2-SiC-La2O3-SiC涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN113956050A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150175487A1 (en) * 2011-08-31 2015-06-25 Herakles Ultra-Refractory Material that is Stable in a Wet Environment, and Process for Manufacturing Same
CN110396002A (zh) * 2019-08-15 2019-11-01 北京理工大学 一种高温抗氧化耐烧蚀非氧化物基致密涂层的制备方法
CN111892424A (zh) * 2020-07-07 2020-11-06 航天特种材料及工艺技术研究所 一种在基体材料上形成的宽温域抗烧蚀涂层及其制备方法
CN112592207A (zh) * 2020-12-30 2021-04-02 南京航空航天大学 一种自愈合ZrB2-SiC-Y2O3涂层及其在SiC包埋碳碳复合材料上的应用
CN113045339A (zh) * 2020-10-30 2021-06-29 南京航空航天大学 C-C复合材料表面抗氧化ZrB2-SiC-Y2O3-SiC涂层及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150175487A1 (en) * 2011-08-31 2015-06-25 Herakles Ultra-Refractory Material that is Stable in a Wet Environment, and Process for Manufacturing Same
CN110396002A (zh) * 2019-08-15 2019-11-01 北京理工大学 一种高温抗氧化耐烧蚀非氧化物基致密涂层的制备方法
CN111892424A (zh) * 2020-07-07 2020-11-06 航天特种材料及工艺技术研究所 一种在基体材料上形成的宽温域抗烧蚀涂层及其制备方法
CN113045339A (zh) * 2020-10-30 2021-06-29 南京航空航天大学 C-C复合材料表面抗氧化ZrB2-SiC-Y2O3-SiC涂层及其制备方法
CN112592207A (zh) * 2020-12-30 2021-04-02 南京航空航天大学 一种自愈合ZrB2-SiC-Y2O3涂层及其在SiC包埋碳碳复合材料上的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
姚西媛等: "La2O3改性ZrB2-SiC涂层C/C复合材料全温域抗氧化行为研究", 《稀有金属材料与工程》, vol. 49, no. 1, 15 January 2020 (2020-01-15), pages 241 - 246 *

Similar Documents

Publication Publication Date Title
Feng et al. Investigation on the ablation performance and mechanism of HfC coating modified with TaC
Zhuang et al. SiCnw/PyC core-shell networks to improve the bonding strength and oxyacetylene ablation resistance of ZrB2–ZrC coating for C/C–ZrB2–ZrC–SiC composites
Hu et al. In-situ fabrication of ZrB2–SiC/SiC gradient coating on C/C composites
CN109336647B (zh) 一种用于陶瓷基复合材料的热/环境障涂层及其制备方法
Jiang et al. Oxidation and ablation protection of multiphase Hf0. 5Ta0. 5B2-SiC-Si coating for graphite prepared by dipping-pyrolysis and reactive infiltration of gaseous silicon
CN113683430B (zh) 缺陷萤石结构的氧化物高熵陶瓷及其抗烧蚀涂层的制备方法
CN107032796B (zh) 自愈合SiC/ZrSi2-MoSi2涂层材料及制备方法
CN108530110A (zh) 一种c/c复合材料的超高温陶瓷涂层及其制备方法
Li et al. Ablation properties of HfB2 coatings prepared by supersonic atmospheric plasma spraying for SiC-coated carbon/carbon composites
Zhang et al. Ultra-high temperature ceramic coating for carbon/carbon composites against ablation above 2000 K
Sun et al. Ablation mechanism and properties of SiO2 modified ZrB2-SiC coatings fabricated on C/C composites via plasma spraying technology
Wang et al. Oxidation and ablation resistant properties of pack-siliconized Si-C protective coating for carbon/carbon composites
CN112592207A (zh) 一种自愈合ZrB2-SiC-Y2O3涂层及其在SiC包埋碳碳复合材料上的应用
Ma et al. High temperature oxidation resistance of Y2O3 modified ZrB2-SiC coating for carbon/carbon composites
CN112409025A (zh) 一种具有SiC-HfB2-Si单层复合涂层的碳/碳复合材料的制备方法
Zhu et al. Ablation properties and mechanisms of BN-coated Cf-reinforced SiBCNZr ceramic composites under an oxyacetylene combustion torch
Shuai et al. MoSi2-HfC/TaC-HfC multi-phase coatings synthesized by supersonic atmospheric plasma spraying for C/C composites against ablation
CN115028472A (zh) 一种c/c复合材料表面抗氧化烧蚀涂层的制备方法
Lin et al. Effect of the Y2O3 amount on the oxidation behavior of ZrB2-SiC-based coatings for carbon/carbon composites
He et al. Self-healing performance of niobium suboxide-based solid solution for UHTC coating during oxyacetylene test
CN114988895A (zh) 一种抗冲击热循环与耐cmas腐蚀的复相共析环境障涂层及其制备方法
Jiang et al. Multiphase composite Hf0. 8Ti0· 2B2–SiC–Si coating providing oxidation and ablation protection for graphite under different high temperature oxygen-containing environments
Wang et al. Study on the mechanism of ultra-high temperature ablation of ZrB2–SiC–TaSi2 coatings by low-pressure plasma spraying on the C/C composites
CN116239400B (zh) 一种含纳米复相超高温陶瓷内涂层的C/C-UHTCs复合材料及其制备方法
Jia et al. Microstructure and properties of C/C–ZrC composites with matrix modification by slurry infiltration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220121