CN113929877A - 一种共轭微孔聚合物及其制备方法与应用 - Google Patents

一种共轭微孔聚合物及其制备方法与应用 Download PDF

Info

Publication number
CN113929877A
CN113929877A CN202111261171.6A CN202111261171A CN113929877A CN 113929877 A CN113929877 A CN 113929877A CN 202111261171 A CN202111261171 A CN 202111261171A CN 113929877 A CN113929877 A CN 113929877A
Authority
CN
China
Prior art keywords
microporous polymer
conjugated microporous
cmp
tribromophenol
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111261171.6A
Other languages
English (en)
Other versions
CN113929877B (zh
Inventor
赵汝松
刘璐
涂海辰
王晓邢
林金明
贾永飞
季小妹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Analysis and Test Center
Original Assignee
Shandong Analysis and Test Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Analysis and Test Center filed Critical Shandong Analysis and Test Center
Priority to CN202111261171.6A priority Critical patent/CN113929877B/zh
Publication of CN113929877A publication Critical patent/CN113929877A/zh
Application granted granted Critical
Publication of CN113929877B publication Critical patent/CN113929877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3328Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkyne-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/35Macromonomers, i.e. comprising more than 10 repeat units
    • C08G2261/352Macromonomers, i.e. comprising more than 10 repeat units containing only carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/413Heck reactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明涉及化学分析技术领域,具体涉及一种共轭微孔聚合物及其制备方法与应用。所述共轭微孔聚合物的重复单元如下所示:
Figure DDA0003323772070000011
由1,3,5‑三(4‑乙炔苯基)苯和三溴苯酚两种单体聚合而成;OH‑CMP材料为球状结构,平均直径为30‑50nm,具有较高的疏水性,比表面积可达534m2·g‑1,且具有高的热稳定性和化学稳定性;OH‑CMP具有较高的比表面积、优异的吸附能力和令人满意的重复性,基于此材料建立的固相萃取‑液相色谱‑串联质谱分析环境和食物样品中的三嗪类除草剂污染物的新方法,线性范围宽和检出限低,结果可满足检测要求,在环境和食品中三嗪类除草剂污染物的快速分析中具有良好的应用潜力。

Description

一种共轭微孔聚合物及其制备方法与应用
技术领域
本发明涉及化学分析技术领域,具体涉及一种共轭微孔聚合物及其制备方法与应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
三嗪类除草剂作为早在20世纪50年代就推出的传统除草剂之一。它通过抑制杂草出苗前和出苗后的光合作用,而被广泛用于提高农作物的产量,从而在世界各地的农业生产中得到广泛的应用。然而,它们的持续滥用和持久的残留给环境和整个食物链上带来了极大的危害,许多国家和组织对各种基质中三嗪类除草剂的最大残留限量进行了明确的规定:欧盟已将饮用水中单一三嗪类除草剂的最大残留限量设为0.1ng·mL-1,将多种三嗪类除草剂的总量设为0.5ng·mL-1;中国饮用水健康标准(2006版)设定三嗪类除草剂的最大残留量为0.2ng·mL-1;美国环境保护署和欧盟规定多数食品中三嗪类除草剂的最大残留限量为0.25mg·kg-1。因此,为确保环境和食品的安全,建立一种高灵敏监测各种基质中残留的三嗪类除草剂的方法是至关重要的。共轭微孔聚合物因其具有较高的比表面积、热稳定性和化学稳定性使其近年来正成为科研工作者高度关注的一类新兴材料,发明人发现现有技术中还没有能够用于三嗪类除草剂痕量萃取和分析的共轭微孔聚合物。
发明内容
针对现有技术中存在的问题,本发明的目的是提供一种共轭微孔聚合物及其制备方法与应用,本发明基于Sonogashira反应,通过选择1,3,5-三(4-乙炔苯基)苯和三溴苯酚两种单体,设计合成了一种新型功能化的共轭微孔聚合物(OH-CMP),并将其作为固相萃取吸附剂,并且建立了一种高灵敏分析环境和食品样品中痕量三嗪类除草剂的新方法。
为了实现上述目的,本发明的技术方案如下所述:
在本发明的第一方面,提供一种共轭微孔聚合物(OH-CMP),所述共轭微孔聚合物的重复单元如下所示:
Figure BDA0003323772050000021
所述共轭微孔聚合物由1,3,5-三(4-乙炔苯基)苯和三溴苯酚两种单体聚合而成;
Figure BDA0003323772050000022
在一种或多种实施方式中,所述,3,5-三(4-乙炔苯基)苯和三溴苯酚的摩尔比为1:0.1~10。
在本发明的第二方面,提供一种第一方面所述共轭微孔聚合物(OH-CMP)的合成方法,所述合成方法为:以1,3,5-三(4-乙炔苯基)苯和三溴苯酚作为单体,N,N-二甲基甲酰胺作为溶剂,经过真空-N2循环后,向其中加入催化剂四(三苯基膦)钯,助催化剂CuI和三乙胺;然后再进行真空-N2循环,加热进行反应,得到深棕色固体沉淀。
在本发明的第三方面,提供一种第一方面所述共轭微孔聚合物作为固相萃取吸附剂的应用。
在本发明的第四方面,提供一种环境和食品样品中痕量三嗪类除草剂的分析方法,所述分析方法采用第一方面所述的共轭微孔聚合物并作为固相萃取吸附剂对环境和食品样品中的三嗪类除草剂进行萃取富集。
本发明的具体实施方式具有以下有益效果:
本发明中的共轭微孔聚合物OH-CMP材料为球状结构,平均直径为30-50nm,具有较高的疏水性,比表面积可达534m2·g-1,且具有高的热稳定性和化学稳定性;
OH-CMP具有较高的比表面积和化学稳定性、优异的吸附能力和令人满意的重复性,基于此材料建立的固相萃取-液相色谱-串联质谱分析环境和食物样品中的三嗪类除草剂污染物的新方法,线性范围宽和检出限低,结果可满足检测要求,在环境和食品中三嗪类除草剂污染物的快速分析中具有良好的应用潜力。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1中的1,3,5-三(4-乙炔苯基)苯(2,4,6-TBP),三溴苯酚(TEB)和OH-CMP的FT-IR光谱;
图2为本发明实施例1中的OH-CMP的SEM图;
图3为本发明实施例1中的OH-CMP的接触角;
图4为本发明实施例1中的OH-CMP的N2吸附-脱附图;
图5为本发明实施例1中的OH-CMP的TGA;
图6为本发明实施例1中的OH-CMP的经过有机溶剂、酸、碱处理后的FT-IR光谱;
图7为本发明实施例3中当样品pH在2~10时吸附三嗪除草剂的回收率;
图8为本发明实施例3中当样品离子强度在0~0.4M时吸附三嗪除草剂的回收率;
图9为本发明实施例3中当样品流速为1~3mL/min时吸附三嗪除草剂的回收率;
图10为本发明实施例3中当采用四种不同极性的解析溶剂类型时吸附三嗪除草剂的回收率;
图11为本发明实施例3中当采用不同解析溶剂体积时吸附三嗪除草剂的回收率;
图12为本发明实施例3中当采用不同批次柱子时吸附三嗪除草剂的回收率;
图13为本发明实施例4实际地下水样品的典型色谱图,图中,a空白;b加标12.5ng·L-1;c加标125ng·L-1
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本发明的一种实施方式中,提供了一种共轭微孔聚合物(OH-CMP),所述共轭微孔聚合物的重复单元如下所示:
Figure BDA0003323772050000041
所述共轭微孔聚合物由1,3,5-三(4-乙炔苯基)苯和三溴苯酚两种单体聚合而成;
Figure BDA0003323772050000042
在一种或多种实施方式中,所述,3,5-三(4-乙炔苯基)苯和三溴苯酚的摩尔比为1:0.1~10;
本发明中的共轭微孔聚合物OH-CMP材料为球状结构,平均直径为30-50nm,具有较高的疏水性,比表面积可达534m2·g-1,且具有高的热稳定性和化学稳定性;且具有较高的比表面积、优异的吸附能力和令人满意的重复性。
在本发明的一种实施方式中,提供了一种上述共轭微孔聚合物(OH-CMP)的合成方法,所述合成方法为:以1,3,5-三(4-乙炔苯基)苯和三溴苯酚作为单体,N,N-二甲基甲酰胺作为溶剂,经过真空-N2循环后,向其中加入催化剂四(三苯基膦)钯,助催化剂CuI和三乙胺;然后,再进行真空-N2循环,加热进行反应,得到深棕色固体沉淀。
在一种或多种实施方式中,所述四(三苯基膦)钯催化剂和CuI的摩尔比为1:2.5~3.5;
在一种或多种实施方式中,所述加热进行反应的条件为:温度升至35~45℃,保持0.5-1.5h;将温度调至90~110℃,反应60~80h;
在一种或多种实施方式中,两处真空-N2循环的次数都至少为三次;
在一种或多种实施方式中,深棕色固体沉淀经过抽滤、洗涤和烘干后得到深棕色粉末;
优选地,所述洗涤为水、甲醇、乙腈各洗三遍;
优选地,所述烘干的条件为55~65℃干燥20~24h。
在本发明的一种实施方式中,提供了一种上述共轭微孔聚合物作为固相萃取吸附剂的应用。
在本发明的一种实施方式中,提供了一种环境和食品样品中痕量三嗪类除草剂的分析方法,所述分析方法采用第一方面所述的共轭微孔聚合物并作为固相萃取吸附剂对环境和食品样品中的三嗪类除草剂进行萃取富集。该分析方法灵敏度高,线性范围宽和检出限低,结果可满足检测要求,在环境和食品中三嗪类除草剂污染物的快速分析中具有良好的应用潜力,可以用于环境和食品样品中痕量三嗪类除草剂分析。
下面结合具体的实施例对本发明作进一步的解释和说明。
实施例1
OH-CMP的合成:
在100mL三口瓶中,依次加入1,3,5-三(4-乙炔苯基)苯(0.4mmol,152mg),三溴苯酚(0.4mmol,132mg),4.0mL N,N-二甲基甲酰胺和12.0mL三乙胺。经过三次真空-N2循环后,再向其中加入四(三苯基膦)钯催化剂(0.07mmol,80mg),CuI(0.21mmol,40mg),8.0mL N,N-二甲基甲酰胺。然后,再进行三次真空-N2循环,油浴锅温度升至40℃,保持1h后,将温度调至100℃,反应72h,底部得到深棕色固体沉淀。沉淀经过抽滤后,并通过水、甲醇、乙腈各洗三遍以便去除多余的杂质;最后,所得固体放入烘箱中60℃干燥24h,得到深棕色粉末。
OH-CMP的表征分析:
如图1所示,1,3,5-三(4-乙炔苯基)苯中-C≡CH(3280cm-1)伸缩振动信号和三溴苯酚中C-Br信号(549cm-1)基本消失,产物中新的信号峰-C≡C-(2202,2133cm-1)和-OH(3432cm-1)同时出现,表明这两种单体发生了Sonogashira聚合反应,新型的聚合物OH-CMP从而成功被合成。OH-CMP的形貌通过高倍扫描电镜图进行观察。如图2所示,可清晰观察到OH-CMP材料为球状结构,平均直径为30~50nm。图3接触角实验表明OH-CMP具有较高的疏水性;图4中OH-CMP的吸脱附曲线表明,比表面积可达534m2·g-1;OH-CMP的热重分析如图5,当温度到达380℃,OH-CMP仅有10%的质量损失,证明OH-CMP具有高的热稳定性。除此之外,通过红外测试OH-CMP的化学稳定性,即将其分散在不同的条件下(例如,1.0M HCl,1.0MNaOH,乙腈,乙酸乙酯),浸泡时间24h,测试该材料的特有的官能团。结果如图6所示,在苛刻的酸和碱溶液下,FT-IR光谱中的所有特征峰的位置与初始的OH-CMP保持一致,证明该材料具有高的化学稳定性。
实施例2
OH-CMP的合成:
在100mL三口瓶中,依次加入1,3,5-三(4-乙炔苯基)苯(0.4mmol,152mg),三溴苯酚(0.4mmol,132mg),4.0mL N,N-二甲基甲酰胺和12.0mL三乙胺。经过三次真空-N2循环后,再向其中加入四(三苯基膦)钯催化剂(0.07mmol,80mg),CuI(0.21mmol,40mg),8.0mL N,N-二甲基甲酰胺。然后,再进行三次真空-N2循环,油浴锅温度升至42℃,保持1.2h后,将温度调至105℃,反应75h,底部得到深棕色固体沉淀。沉淀经过抽滤后,并通过水、甲醇、乙腈各洗三遍以便去除多余的杂质;最后,所得固体放入烘箱中65℃干燥24h,得到深棕色粉末。
实施例3
固相萃取流程:
固相萃取柱的制作步骤如下:准确称量实施例1合成的吸附剂OH-CMP(30mg),填入到已装入筛板的固相萃取柱中,然后再盖入一层筛板,并轻轻按压。最后,在萃取样品中的目标物前,用50mL的乙腈和50mL的纯净水冲洗固相萃取柱,以便除去固相萃取柱中多余的杂质。
固相萃取过程:对于三嗪除草剂的固相萃取方法如下:首先,对自制的固相萃取柱分别用6mL乙腈和6mL pH=4的纯净水进行活化,活化流速为0.5mL/min;准确量取100mL的水样,将聚四氟乙烯吸管的一端连接到固相萃取柱的入口端,另一端插入到样品溶液中,并将整个固相萃取装置连接到真空泵上。过完水样后,用5mL的纯净水冲洗柱子,以便除去柱子中的杂质。然后,用最大负压对固相萃取柱中残留的水进行干燥5min。紧接着,用6mL乙腈对固相萃取柱上富集的三嗪类除草剂进行洗脱,洗脱流速为5s/滴。最后,用柔和的氮气对洗脱液进行浓缩,吹干后用0.5mL的乙腈超声溶解,并涡旋1min,然后通过液相色谱-三重四级杆质谱联用仪进行分析。
液相色谱-串联质谱条件如下:
所有的分析实验均在液相色谱-三重四级杆质谱联用仪上测定。液相条件如下,色谱柱:C18柱(2.6μm,100mm×2.1mm);流动相:A相为0.1%甲酸水,B相为乙腈,流动相梯度洗脱条件见表1。流速:0.3mL/min;柱温:25℃;进样量:2μL。
表1液相色谱洗脱参数
Figure BDA0003323772050000061
质谱条件如下,电离方式:电喷雾正离子扫描模式;干燥气温度:300℃;干燥器流量:5L/min;雾化器电压:35psi;毛细管电压:4000V;鞘气流速11L/min;鞘气温度:300℃。其他质谱参数如表2所示。
表2 MRM参数
Figure BDA0003323772050000071
a为定量离子
环境和食品样品的采集及预处理:
选取废水、地下水、葡萄汁和苹果汁作为实际环境样品进行分析。废水、地下水取自于山东济南章丘。葡萄汁和苹果汁采购于京东超市,分别用纯净水进行1:1稀释。环境水样和处理过的果汁分别经过0.45μm孔径的水系滤膜过滤后,调整pH=4,存储于干净的棕色玻璃瓶中,4℃保存,并用于随后的固相萃取实验。
固相萃取检测三嗪除草剂的方法优化及方法验证:
1、单因素法优化固相萃取和解析过程
为了评价OH-CMP作为固相萃取吸附剂材料富集水样中三嗪类除草剂的可行性,选择了6种三嗪类除草剂,即西草净、莠灭净、西玛津、扑草净、莠去津和扑灭津,作为目标分析物,开发检测三嗪类除草剂的固相萃取方法。为了获取最优的萃取及解析条件,对其中一些重要的参数,如样品pH值,样品的盐离子浓度,样品流速,解析液种类,解析液体积,进行了详细的优化。实验利用三嗪除草剂的回收率来评价固相萃取的效率。
如图7和8所示,当样品pH在2~10和离子强度在0~0.4M时,6种三嗪除草剂的回收率基本没有变化。因此,后续实验中选择在pH为4,样品溶液不添加盐条件下进行。
在固相萃取过程中,样品的流速,通过影响目标污染物分子与萃取柱上的吸附材料之间的接触时间,从而成为影响萃取效率的重要因素之一。在本发明中,考察了流速1~5mL/min时对回收率的影响。如图9所示,样品流速为1~3mL/min时,六种三嗪除草剂的回收率随着流速的增加而基本不变,当样品流速增加到5mL/min时,回收率缓慢降低。因此,为了节省上样的时间,我们选择3mL/min-1的样品流速用于随后的吸附实验。
在解析过程中,解析溶剂的极性对目标小分子在材料上的解析效率有重要的影响。实验中,系统选择四种不同极性的溶剂,结果如图10所示。实验结果表明,乙腈作为解析溶剂时,大多数三嗪除草剂的洗脱率接近100%。按照“相似相溶”原理,高极性溶剂乙腈适合于解析极性的三嗪除草剂。因此,选择乙腈作为实验的洗脱剂。
解吸溶剂的种类是固相萃取解析过程中的一个重要因素。在本发明中,考察解析液(乙腈)体积(2~10mL)对三嗪除草剂的解析效率的影响。如图11所示,随着洗脱液体积从2mL增加到6mL,解析效率逐渐增加,当为6mL时,解析效率基本100%;当体积在6mL~10mL范围时,解析效率基本不变。从节约成本和缩短氮吹时间的角度考虑,因此,以下的实验采用6mL乙腈作为解析液体积。
固相萃取柱的批次一致性是影响实验过程中重现性的重要潜在因素之一,因此,本发明中,选取6次不同批次的材料进行装柱处理,考察不同批次固相萃取柱的回收率是否一致。如图12所示,六批自制固相萃取柱中三嗪除草剂的回收率非常高且相近,表明它们具有良好的批间重复性。
2、方法学参数
通过考察方法的线性范围、检出限、定量限、精密度等相关参数,对所建立的分析方法进行评估。相应的量化结果如表3所示。在优化条件下,方法的线性范围为0.50~250ngL-1,相关系数R2>0.9949。以信噪比S/N=3计,6种三嗪类除草剂化合物的检出限为0.03~0.15ng L-1;定量限根据S/N=10计算,范围为0.10~0.49ng L-1。日内和日间的相对标准偏差分别为4.57~9.90%和4.01~11.57%。
表3新方法的分析参数
Figure BDA0003323772050000081
实施例4
实际样品分析:
在成功构建基于OH-CMP分析三嗪除草剂的新方法后,本发明将其用于测定环境样品(废水和地下水)和食品样品(葡萄汁和苹果汁)中的三嗪类除草剂,从而验证该方法的实用性。相应的地下水色谱图如图13所示。对原始的水样检测发现,废水中莠去津的污染最为严重,浓度为212.70ng/L,为了进一步验证方法的准确性,分别向其中样品进行加标回收实验(加标浓度为:12.5和125ng/L)。实验结果为:地下水、废水、苹果汁和葡萄汁的加标回收率分别为81.6~100.1%,72.8~100.4%,72.0~97.7%,72.0~88.4%。上述结果表明,该分析方法不受样品复杂基质效应的影响,从而也证明了该方法用于分析实际样品中痕量/超痕量三嗪除草剂的可靠性和准确性。
本发明成功制备了一种新型球状共轭微孔聚合物OH-CMP,基于此材料建立了固相萃取-液相色谱-串联质谱分析环境水样和果汁中6种三嗪类除草剂污染物的新方法;OH-CMP具有较高的比表面积和化学稳定性、优异的吸附能力和令人满意的重复性。该方法的线性范围宽和检出限低,结果可满足检测要求,在环境和食品中三嗪类除草剂污染物的快速分析中具有良好的应用潜力。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种共轭微孔聚合物,其特征在于,所所述共轭微孔聚合物的重复单元如下所示:
Figure FDA0003323772040000011
2.如权利要求1所述的共轭微孔聚合物,其特征在于,所述共轭微孔聚合物由1,3,5-三(4-乙炔苯基)苯和三溴苯酚两种单体聚合而成;
所述,3,5-三(4-乙炔苯基)苯和三溴苯酚的摩尔比为1:0.1~10。
3.一种权利要求1所述的共轭微孔聚合物的合成方法,其特征在于,所述合成方法为:以1,3,5-三(4-乙炔苯基)苯和三溴苯酚作为单体,N,N-二甲基甲酰胺作为溶剂,经过真空-N2循环后,向其中加入催化剂四(三苯基膦)钯催化剂,助催化剂CuI和三乙胺,然后再进行真空-N2循环,加热进行反应,得到深棕色固体沉淀。
4.如权利要求3所述的共轭微孔聚合物的合成方法,其特征在于,所述四(三苯基膦)钯催化剂和CuI的摩尔比为1:2.5~3.5。
5.如权利要求3所述的共轭微孔聚合物的合成方法,其特征在于,所述加热进行反应的条件为:温度升至35~45℃,保持0.5-1.5h;将温度调至90~110℃,反应60~80h。
6.如权利要求3所述的共轭微孔聚合物的合成方法,其特征在于,两处真空-N2循环的次数都至少为三次。
7.如权利要求3所述的共轭微孔聚合物的合成方法,其特征在于,深棕色固体沉淀经过抽滤、洗涤和烘干后得到深棕色粉末。
8.如权利要求7所述的共轭微孔聚合物的合成方法,其特征在于,所述洗涤为水、甲醇、乙腈各洗三遍;所述烘干的条件为55~65℃干燥20~24h。
9.一种权利要求1或2所述的共轭微孔聚合物作为固相萃取吸附剂的应用。
10.一种环境和食品样品中痕量三嗪类除草剂的分析方法,其特征在于,所述分析方法采用权利要求1或2所述的共轭微孔聚合物并作为固相萃取吸附剂对环境和食品样品中的三嗪类除草剂进行萃取富集。
CN202111261171.6A 2021-10-27 2021-10-27 一种共轭微孔聚合物及其制备方法与应用 Active CN113929877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111261171.6A CN113929877B (zh) 2021-10-27 2021-10-27 一种共轭微孔聚合物及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111261171.6A CN113929877B (zh) 2021-10-27 2021-10-27 一种共轭微孔聚合物及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN113929877A true CN113929877A (zh) 2022-01-14
CN113929877B CN113929877B (zh) 2023-09-01

Family

ID=79284640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111261171.6A Active CN113929877B (zh) 2021-10-27 2021-10-27 一种共轭微孔聚合物及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113929877B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466387A (zh) * 2022-08-31 2022-12-13 山东省分析测试中心 一种基于共轭微聚合物材料富集检测人工麝香的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108273481A (zh) * 2018-01-12 2018-07-13 山东省分析测试中心 聚亚苯基-共轭微孔聚合物固相微萃取涂层的制备及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108273481A (zh) * 2018-01-12 2018-07-13 山东省分析测试中心 聚亚苯基-共轭微孔聚合物固相微萃取涂层的制备及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUNFENG WU ET AL.: "Synthesis of functional conjugated microporous polymer/TiO2 nanocomposites and the mechanism of the photocatalytic degradation of organic pollutants", JOURNAL OF MATERIALS SCIENCE, vol. 56, pages 7936, XP037364704, DOI: 10.1007/s10853-021-05790-9 *
马巾晴: "新型有机多孔材料固相萃取分离分析水中痕量极性有机污染物", 中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑, no. 09, pages 014 - 986 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466387A (zh) * 2022-08-31 2022-12-13 山东省分析测试中心 一种基于共轭微聚合物材料富集检测人工麝香的方法

Also Published As

Publication number Publication date
CN113929877B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
Li et al. Application of deep eutectic solvents in hybrid molecularly imprinted polymers and mesoporous siliceous material for solid-phase extraction of levofloxacin from green bean extract
Liang et al. Synthesis of carbon quantum dots-doped dummy molecularly imprinted polymer monolithic column for selective enrichment and analysis of aflatoxin B1 in peanut
CN110240705B (zh) 一种富氮共价有机骨架材料的制备方法及其应用
CN111307968B (zh) 一种花球状共价有机框架材料及其制备与应用
Sun et al. Facile preparation of polysaccharide functionalized macroporous adsorption resin for highly selective enrichment of glycopeptides
Andrade et al. Development of on-line molecularly imprinted solid phase extraction-liquid chromatography-mass spectrometry for triazine analysis in corn samples
CN113929877B (zh) 一种共轭微孔聚合物及其制备方法与应用
CN106706829B (zh) 免疫亲和净化-液相色谱串联质谱测定贝类中腹泻性贝类毒素的方法
Wan et al. Efficient solid-phase microextraction of twelve halogens-containing environmental hormones from fruits and vegetables by triazine-based conjugated microporous polymer coating
CN105784858B (zh) 环境土壤中PPCPs的测定方法
Ren et al. Novel molecularly imprinted phenolic resin–dispersive filter extraction for rapid determination of perfluorooctanoic acid and perfluorooctane sulfonate in milk
Chi et al. Preparation of phenyl-boronic acid polymer monolith by initiator-free ring-opening polymerization for microextraction of sulfamethoxazole and trimethoprim from animal-originated foodstuffs
Turiel et al. Surface modified‐magnetic nanoparticles by molecular imprinting for the dispersive solid‐phase extraction of triazines from environmental waters
CN109158086B (zh) 一种超灵敏分析水中痕量多溴联苯醚的方法
CN114324658A (zh) 三聚氰胺的分散固相萃取-高效液相色谱联用检测方法
CN112755592B (zh) 一种共价有机骨架纳米微球功能化固相微萃取整体柱
Wu et al. Synthesis and evaluation of dummy molecularly imprinted microspheres for the specific solid‐phase extraction of six anthraquinones from slimming tea
CN113376305A (zh) 一种水体中咔唑及多卤咔唑的固相膜萃取气相色谱质谱检测方法
Su et al. Residue investigation of some phenylureas and tebuthiuron herbicides in vegetables by ultra‐performance liquid chromatography coupled with integrated selective accelerated solvent extraction–clean up in situ
Guo et al. Molecularly imprinted solid-phase extraction for the selective determination of valnemulin in feeds with high performance liquid chromatography
Hong et al. Evaluation of a porous imine-based covalent organic framework for solid-phase extraction of nitroimidazoles
Yang et al. Molecularly imprinted on-line solid-phase extraction combined with chemiluminescence for the determination of pazufloxacin mesilate
CN109680494A (zh) 新型螯合纤维及其制备方法和在皮蛋中Cu(II)的检测应用
CN114113394A (zh) 用于提取净化百草枯代谢物的磁性微球、制备方法、试剂盒及提取方法
Si et al. Non‐hydrolytic Sol‐gel Methodology to Prepare a Molecularly Imprinted, Organic‐silica Hybrid‐based Stir Bar for Recognition of Sulfonylurea Herbicides

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant