CN113927000B - Thin strip continuous casting structure and method for removing cold steel on surface of molten pool thereof - Google Patents

Thin strip continuous casting structure and method for removing cold steel on surface of molten pool thereof Download PDF

Info

Publication number
CN113927000B
CN113927000B CN202010602928.2A CN202010602928A CN113927000B CN 113927000 B CN113927000 B CN 113927000B CN 202010602928 A CN202010602928 A CN 202010602928A CN 113927000 B CN113927000 B CN 113927000B
Authority
CN
China
Prior art keywords
molten pool
flow distributor
thin strip
distributor
cold steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010602928.2A
Other languages
Chinese (zh)
Other versions
CN113927000A (en
Inventor
任三兵
樊俊飞
方园
支卫军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN202010602928.2A priority Critical patent/CN113927000B/en
Publication of CN113927000A publication Critical patent/CN113927000A/en
Application granted granted Critical
Publication of CN113927000B publication Critical patent/CN113927000B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

The invention discloses a thin strip continuous casting structure and a method for removing cold steel on the surface of a molten pool thereof, wherein the method comprises a tundish, the bottom of the tundish is provided with a water gap, a flow distributor is arranged below the water gap, a pair of crystallization rollers are arranged below the flow distributor, the crystallization rollers and side sealing plates surround a molten pool, and the distance between a discharge hole on the flow distributor and the surface of the molten pool is set to be H1; the cloth stream device is provided with a bracket mechanism, the bracket mechanism drives the cloth stream device to move vertically, and a vertical movement curve equation Y of the cloth stream device is as follows: y = ASin (ω X + Φ) or Y = ACos (ω X + Φ), where a is the amplitude, ω is the frequency, and X is the time. The invention utilizes the micromotion of the flow distributor to improve the flow distribution on the surface of the molten pool, and simultaneously blocks the generation and growth of cold steel on the surface of the flow distributor, thereby avoiding the formation of larger cold steel blocks on the surface of the molten pool.

Description

Thin strip continuous casting structure and method for removing cold steel on surface of molten pool thereof
Technical Field
The invention relates to a twin-roll thin strip continuous casting technology, in particular to a thin strip continuous casting structure and a method for removing cold steel on the surface of a molten pool thereof.
Background
The twin-roll thin strip continuous casting adopts two casting rolls rotating in opposite directions as crystallizers, and liquid metal is directly produced into thin strip steel with the thickness of less than 10 mm. Compared with the traditional thin strip production process, the technology has the advantages of shortening the process flow, saving energy, reducing the production cost, improving the mechanical property of a strip blank and the like, so the technology is considered to be one of the most promising near-net shape continuous casting technologies in the 21 st century.
The strip casting process is a casting and rolling process which is not only related to but also distinguished from the traditional continuous casting. Referring to fig. 1, a conventional thin strip continuous casting structure is mainly manufactured by injecting molten steel 1 into a tundish 2, distributing the molten steel 1 into a distributor 4 through a nozzle 3, injecting the molten steel into a molten pool surrounded by two water-cooled crystallization rolls 5 and side sealing plates through the distributor 4, gradually solidifying the molten steel 1 on the surfaces of the two water-cooled crystallization rolls 5 to form a shell, and after the molten steel is completely solidified near a connecting line of the two water-cooled crystallization rolls 5, performing a rolling action through reverse rotation of the two water-cooled crystallization rolls 5 to form a dense metal strip 6 with a certain thickness and width.
The main problems of the prior art are as follows:
the control method of the casting process is complex, the solidification speed of the molten steel has close relation with factors such as the rotation speed of a crystallizing roller, the liquid level of a molten pool, the roll gap of the crystallizing roller, the quality of the molten steel and the like in the casting process, and the problem of complexity is solved if the optimal matching of various process parameters is sought;
in addition, the strip continuous casting molten pool is much smaller than the traditional production process, and in order to improve the surface quality of the cast strip, the uniform distribution of molten steel in the molten pool must be ensured, a flow distributor is additionally arranged in the molten pool, and side sealing plates are additionally arranged at the edges. After the molten steel is cast into a molten pool, the molten steel is further influenced by the cooling effect of the flow distributor and the side sealing plates and the heat dissipation of the molten steel into air besides the cooling effect of the crystallizing roller, so that the supercooling of the molten steel in the molten pool and the heat dissipation of the molten steel into air are easily caused, the supercooling of the molten steel in the molten pool is easily caused, cold steel is formed on the flow distributor and the side sealing plates, meanwhile, the cold steel is also formed in the molten pool due to unstable fluctuation of the liquid level of the molten pool in the casting process, the cold steel falls into the bottom of the molten pool when the cold steel grows to a certain degree, the casting force is suddenly changed when the cold steel reaches the position of a roll gap, cold-insulated cracks and other defects are easily formed on the surface of a casting strip, the surface quality of the casting strip is seriously influenced, the strip breakage can be formed in serious cases, and the production process is interrupted. Such abrupt changes in rolling force also cause impacts on the crystallization rolls, reducing the service life of the crystallization rolls.
In order to reduce the adverse effect of cold steel on the continuous casting production of thin strips, domestic and foreign scholars adopt various methods to heat and preserve heat of local supercooling areas so as to prevent cold steel caused by supercooling of the local supercooling areas.
One of the important methods is to use an electromagnetic induction heating method, and in WO2000037199, JP2155543 and the like, an induction generator is additionally arranged behind a side sealing plate of a thin strip continuous casting bath to heat molten steel near the side sealing plate, so as to prevent cold steel from being formed on the side sealing plate.
Chinese patent CN98229485.9 proposes an electric heat-sealing device for a double-roll thin-strip casting machine, which is characterized in that a set of resistance heaters is additionally arranged behind a side sealing plate of a molten pool for heating, so that the side sealing plate can keep a high-temperature state in the casting process, and cold steel is prevented from being formed.
JP7290202 discloses a side heat-insulating cover for a molten pool, namely, a parabolic heat-insulating cover is arranged above a thin-strip continuous casting side molten pool, and a meniscus on a side sealing plate is just positioned above the focus of the parabolic heat-insulating cover, so that the radiation heat reflection of molten steel in the molten pool is converged on the focus, the temperature near the meniscus is kept high, the steel is prevented from being cooled, and the casting process can be carried out for a long time.
In addition, chinese patent CN 101564761A proposes a method and a device for heating meniscus in a twin-roll thin-strip continuous casting molten pool, the main content of which is to arrange a reflector and a corresponding quartz glass panel above the thin-strip continuous casting molten pool, install a heating lamp tube at the focus position in the reflector, the inner wall of the reflector is oval, the focus of the ellipsoid formed by the inner wall of the reflector is located at the meniscus position of a flow distributor or a side closure plate in the molten pool, so as to realize online heating and heat preservation of the meniscus on the side closure plate and the flow distributor at the position where cold steel is easily solidified in the thin-strip continuous casting molten pool.
The above patent solves the problem of the cold steel at the local position of the molten pool to a certain extent, but the uniformity of the overall temperature of the molten pool is difficult to improve, and the implementation angle has great uncertainty.
Disclosure of Invention
In view of the above-mentioned defects in the prior art, the present invention aims to provide a thin strip continuous casting structure and a method for removing cold steel from the surface of a molten pool thereof, which utilize the micromotion of a flow distributor to improve the flow distribution on the surface of the molten pool, and simultaneously block the generation and growth of cold steel on the surface of the flow distributor, so as to avoid the formation of large cold steel blocks on the surface of the molten pool.
In order to achieve the purpose, the invention adopts the following technical scheme:
on one hand, the thin strip continuous casting structure comprises a tundish, wherein a water gap is formed in the bottom of the tundish, a flow distributor is arranged below the water gap, a pair of crystallization rollers are arranged below the flow distributor, the crystallization rollers and side sealing plates surround to form a molten pool,
the distance between a spitting hole on the flow distributor and the surface of the molten pool is set to be H1;
the cloth stream device is provided with a bracket mechanism, the bracket mechanism drives the cloth stream device to move vertically, and a vertical movement curve equation Y of the cloth stream device is as follows:
Y=ASin(ωX+φ)
or Y = ACos (ω X + φ)
In the formula, A is amplitude, omega is frequency, X is time, and phi is starting position.
Preferably, the distance H1 between the discharge hole on the flow distributor and the surface of the molten pool is set to be between 5mm and 15 mm.
Preferably, the amplitude a is in a range of 0.33 to 0.5h1.
Preferably, the frequency ω ranges from 1 to 2.
Preferably, the bracket mechanism has a pair of bracket mechanisms, which are respectively and symmetrically arranged on two sides of the upper end part of the flow distributor.
Preferably, the bracket mechanism comprises a sliding groove arranged on the side part of the current distributor, and a bracket body hinged in the sliding groove through a shaft, the front end of the bracket body is contacted with the upper end part of the current distributor, and the rear end of the bracket body is connected with a motor.
In another aspect, a method for removing cold steel from the surface of a molten pool based on the thin strip continuous casting structure comprises the following steps:
1) Setting the distance H1 between a spitting hole on the flow distributor and the surface of the molten pool;
2) Selecting the amplitude A of the vertical movement of the current distributor;
3) Selecting the vertical moving frequency omega of the current distributor;
4) Selecting a curve equation Y of the flow distributor moving vertically, and substituting the amplitude A of the step 2) and the frequency omega of the step 3) into the curve equation Y;
5) And in the casting process, putting the curve equation Y of the step 4) into a control program for vertically moving the flow distributor.
Preferably, the surface distance H1 is selected to be between 8mm and 12 mm.
Preferably, the amplitude a is selected to be between 0.33 and 0.5h1.
Preferably, the frequency ω is selected to be between 1 and 2.
The thin strip continuous casting structure and the method for removing cold steel on the surface of the molten pool thereof provided by the invention also have the following beneficial effects:
1) The up-down micro motion is realized through the flow distributor, so that the temperature distribution on the surface of a molten pool can be improved, and the temperature on the surface of the molten pool is increased;
2) The up-down micro motion is realized through the flow distributor, so that the cold solidifying point can be prevented from being formed on the surface of the flow distributor;
3) The up-down jogging is realized through the flow distributor, so that the cold steel blocks which start to solidify and grow up can be blocked;
4) The temperature distribution in the molten pool can be improved and the whole activity of the molten pool is increased by the up-and-down micro motion of the flow distributor.
Drawings
FIG. 1 is a schematic view of a prior art thin strip casting structure;
FIG. 2 is a schematic view of a thin strip casting structure of the present invention;
FIG. 3 is a schematic flow diagram of the method for removing cold steel from the surface of the molten pool according to the present invention.
Detailed Description
The technical scheme of the invention is further explained by combining the drawings and the embodiment.
Referring to fig. 2, the strip casting structure according to the present invention includes a tundish 8 for containing molten steel 7, a nozzle 9 is disposed at the bottom of the tundish 8, a distributor 10 is disposed below the nozzle 9, a pair of crystallization rollers 11 is disposed below the distributor 10, and the crystallization rollers 11 and side sealing plates enclose a molten pool 12.
The distance between the discharge hole 13 on the flow distributor 10 and the surface of the molten pool 12 is set to be H1, the H1 is set between 8mm and 12mm, and the value of H1 is 10mm as the best.
The bracket mechanism is arranged on the flow distributor 10, the bracket mechanism drives the up-and-down micro motion of the flow distributor 10, and a curve equation Y of the up-and-down micro motion of the flow distributor 10 is as follows:
Y=ASin(ωX+φ)
or Y = ACos (ω X + φ)
In the formula, A is amplitude, and the value range is between 0.33 and 0.5H1;
omega is frequency, and the value range is between 1 and 2;
x is time;
phi is the starting position.
The bracket mechanism is provided with a pair of brackets which are respectively and symmetrically arranged at two sides of the upper end part of the flow distributor.
The bracket mechanism comprises sliding grooves 14 arranged at two side parts of the flow distributor 10, and a bracket body 16 hinged in the sliding grooves 14 through a shaft 15, wherein the front end of the bracket body 16 is contacted with the upper end part of the flow distributor 10, and the rear end of the bracket body 16 is connected with a motor 17.
In the casting process, molten steel 7 passes through an inlet water port 9 of a tundish 8 and then is distributed into a distributor 10 through the inlet water port 9, the distributor 10 is fixed through a bracket body 16, the bracket body 16 is fixed in a chute 14 through a shaft 15 capable of moving up and down, a motor 17 drives the shaft 15 to move in the chute 14 to realize the up and down micro movement of the bracket body 16 and the distributor 10, and a discharge hole 13 on the distributor 10 is immersed into the lower part of a molten pool 12 for a certain distance.
The invention also provides a method for removing cold steel from the surface of the molten pool based on the thin strip continuous casting structure, which comprises the following steps:
1) Setting the surface distance H1 between a discharge hole 13 on the flow distributor 10 and the molten pool 12; since the spout hole 13 is buried below the liquid level of the molten pool 12, the molten steel flowing out of the spout hole 13 functions to activate the surface of the molten pool 12, so the distance H1 cannot be too large, and if the spout hole 13 is buried too deeply, the molten steel level on the surface of the molten pool 12 is too calm, which may cause cold steel to appear; if the discharge hole 13 is buried too shallow, the liquid surface of the molten pool 12 becomes too active to form a micro-crack.
2) Selecting the amplitude A of the vertical movement of the current distributor 10; the amplitude a affects the distance H1 between the spout hole 13 of the distributor 10 and the liquid surface of the upper molten pool 12 thereof, and the range thereof does not exceed the set distance H1 between the spout hole 13 and the liquid surface of the upper molten pool 12 thereof by being controlled to be between 0.33 and 0.5H 1.
3) Selecting the frequency omega of the vertical movement of the current distributor 10; the frequency omega can be used for micro-motion to obtain better probability for preventing cold steel from appearing.
4) Selecting a curve equation Y for the vertical movement of the current distributor 10, and substituting the amplitude A in the step 2) and the frequency omega in the step 3) into the curve equation Y; the curve equation is selected as the curve equation of the movement of the flow distributor 10, on one hand, the curve equation can be easily set and realized in a rotating mechanism, and in addition, the amplitude A and the repeatability with time are better.
5) During the casting process, putting the curve equation Y of the step 4) into a control program for vertically moving the flow distributor 10.
Example 1
A molten pool surface cold steel removing method based on a thin strip continuous casting structure comprises the following steps:
1) In the casting process, the distance H1 between a spitting hole 13 on a flow distributor 10 and the surface of a molten pool 12 is set to be 8mm;
2) Selecting the amplitude A =4mm of the vertical movement of the flow distributor 10;
3) Selecting the frequency omega =1 of the vertical movement of the current distributor 10;
4) The curve equation Y = ASin (ω X + Φ) for the vertical movement of the flow distributor 10 is selected, and the curve equation Y = ASin (ω X + Φ) is obtained by substituting the amplitude a =4mm of step 2) and the frequency ω =1 of step 3): y =4Sin (X + Φ);
5) During casting, the curve equation Y =4Sin (X + phi) of the step 4) is put into a control program of the vertical movement of the flow distributor 10.
Example 2
A molten pool surface cold steel removing method based on a thin strip continuous casting structure comprises the following steps:
1) In the casting process, setting the distance H1 between the discharge hole 13 on the flow distributor 10 and the surface of the molten pool 12 to be 10mm;
2) Selecting the amplitude A =5mm of the vertical movement of the flow distributor 10;
3) Selecting the frequency omega =2 of the vertical movement of the current distributor 10;
4) The curve equation Y = ASin (ω X + Φ) for the vertical movement of the flow distributor 10 is selected, and the curve equation Y = ASin (ω X + Φ) is obtained by substituting the amplitude a =5mm of step 2) and the frequency ω =2 of step 3): y =5Sin (2X + Φ);
5) During casting, the curve equation Y =5Sin (2X + phi) of the step 4) is put into a control program of the vertical movement of the flow distributor 10.
Example 3
A molten pool surface cold steel removing method based on a thin strip continuous casting structure comprises the following steps:
1) In the casting process, setting the distance H1 between a spitting hole 13 on a flow distributor 10 and the surface of a molten pool 12 to be 12mm;
2) Selecting the amplitude A =3mm of the vertical movement of the flow distributor 10;
3) Selecting the frequency omega =1.5 of the vertical movement of the current distributor 10;
4) The curve equation Y = ASin (ω X + Φ) for the vertical movement of the flow distributor 10 is selected, and the curve equation Y = ASin (ω X + Φ) is obtained by substituting the amplitude a =3mm of step 2) and the frequency ω =1.5 of step 3): y =3Sin (1.5X + Φ);
5) During the casting process, the curve equation Y =3Sin (1.5X + Φ) of step 4) is put into the control program for the vertical movement of the current distributor 10.
It should be understood by those skilled in the art that the above embodiments are only for illustrating the present invention and are not to be used as a limitation of the present invention, and that changes and modifications to the above described embodiments are within the scope of the claims of the present invention as long as they are within the spirit and scope of the present invention.

Claims (10)

1. The utility model provides a thin strip continuous casting structure, includes the pouring basket, the bottom of pouring basket has the mouth of a river, the below at mouth of a river is equipped with the flow distributor, the below of flow distributor is equipped with a pair of crystallization roller, the crystallization roller encloses into the molten bath with the side seal board, its characterized in that:
the distance between a spitting hole on the flow distributor and the surface of the molten pool is set to be H1;
the cloth stream device is provided with a bracket mechanism, the bracket mechanism drives the cloth stream device to move vertically, and a vertical movement curve equation Y of the cloth stream device is as follows:
Y=ASin(ωX+φ)
or Y = ACos (ω X + φ)
In the formula, A is amplitude, omega is frequency, X is time, and phi is starting position.
2. The thin strip casting structure as claimed in claim 1, wherein: the distance H1 between the spitting hole on the flow distributor and the surface of the molten pool is set to be 8-12 mm.
3. The thin strip cast structure as claimed in claim 2 wherein: the amplitude A ranges from 0.33 to 0.5H1.
4. The thin strip casting structure as claimed in claim 1, wherein: the frequency omega ranges from 1 to 2.
5. The thin strip casting structure as claimed in claim 1, wherein: the bracket mechanism is provided with a pair of brackets which are respectively symmetrically arranged at two sides of the upper end part of the flow distributor.
6. The thin strip casting structure as claimed in claim 5, wherein: the bracket mechanism comprises a sliding groove arranged on the side part of the current distributor, and a bracket body hinged in the sliding groove through a shaft, wherein the front end of the bracket body is contacted with the upper end part of the current distributor, and the rear end of the bracket body is connected with a motor.
7. A method for removing cold steel from the surface of a molten bath based on the thin strip casting structure according to any one of claims 1 to 6, comprising the steps of:
1) Setting the distance H1 between a spitting hole on the flow distributor and the surface of the molten pool;
2) Selecting the amplitude A of the vertical movement of the current distributor;
3) Selecting the vertical moving frequency omega of the current distributor;
4) Selecting a curve equation Y of the flow distributor moving vertically, and substituting the amplitude A of the step 2) and the frequency omega of the step 3) into the curve equation Y;
5) And in the casting process, putting the curve equation Y in the step 4) into a control program for the vertical movement of the flow distributor.
8. The method for removing cold steel from the surface of a molten pool according to claim 7, wherein: the surface distance H1 is selected to be between 8mm and 12 mm.
9. The method for removing cold steel from the surface of a molten pool according to claim 7, wherein: the amplitude A is selected to be between 0.33 and 0.5H1.
10. The method for removing cold steel from the surface of a molten pool according to claim 7, wherein: the frequency ω is chosen between 1 and 2.
CN202010602928.2A 2020-06-29 2020-06-29 Thin strip continuous casting structure and method for removing cold steel on surface of molten pool thereof Active CN113927000B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010602928.2A CN113927000B (en) 2020-06-29 2020-06-29 Thin strip continuous casting structure and method for removing cold steel on surface of molten pool thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010602928.2A CN113927000B (en) 2020-06-29 2020-06-29 Thin strip continuous casting structure and method for removing cold steel on surface of molten pool thereof

Publications (2)

Publication Number Publication Date
CN113927000A CN113927000A (en) 2022-01-14
CN113927000B true CN113927000B (en) 2022-12-16

Family

ID=79272687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010602928.2A Active CN113927000B (en) 2020-06-29 2020-06-29 Thin strip continuous casting structure and method for removing cold steel on surface of molten pool thereof

Country Status (1)

Country Link
CN (1) CN113927000B (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760409A (en) * 1993-08-24 1995-03-07 Mitsubishi Heavy Ind Ltd Twin drum type continuous casting apparatus for al or al alloy
JP2002263724A (en) * 2001-03-13 2002-09-17 Nippon Steel Corp Apparatus and method for cooling steel plate
CN2734373Y (en) * 2004-10-29 2005-10-19 宝山钢铁股份有限公司 Slip sheet continuous casting roll surface cleaning device
CN101346201A (en) * 2005-12-27 2009-01-14 Posco株式会社 Casting roll moving apparatus of twin roll type continuous strip casting process
CN101349923A (en) * 2007-07-18 2009-01-21 宝山钢铁股份有限公司 Method for controlling thin belt continuous casting molten pool fluid level
CN101564761A (en) * 2008-04-25 2009-10-28 宝山钢铁股份有限公司 Method and device for heating meniscus of twin roll thin strip casting pool
CN201543795U (en) * 2009-10-27 2010-08-11 宝山钢铁股份有限公司 Lifting rod type flow-distributing device of thin strip continuous casting
CN201603847U (en) * 2010-03-19 2010-10-13 宝山钢铁股份有限公司 Strip continuous-casting metal delivery device
CN101927324A (en) * 2009-06-25 2010-12-29 宝山钢铁股份有限公司 Method and device for improving surface quality of casting belt
CN102049482A (en) * 2009-10-27 2011-05-11 宝山钢铁股份有限公司 Method for hoisting, roasting and casting strip continuous casting flow distribution device
CN103817300A (en) * 2014-02-25 2014-05-28 宝山钢铁股份有限公司 Thin-strip continuous casting flow distribution scum removing method
CN104972081A (en) * 2015-07-14 2015-10-14 燕山大学 Method and device for preheating whole of strip casting flow distribution device and side sealing plate
JP2020015078A (en) * 2018-07-27 2020-01-30 日本製鉄株式会社 Apparatus and method for producing thin-walled carbon steel cast slab, and thin-walled carbon steel cast slab
CN110756752A (en) * 2018-07-27 2020-02-07 宝山钢铁股份有限公司 Strip continuous casting flow distribution deslagging method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760409A (en) * 1993-08-24 1995-03-07 Mitsubishi Heavy Ind Ltd Twin drum type continuous casting apparatus for al or al alloy
JP2002263724A (en) * 2001-03-13 2002-09-17 Nippon Steel Corp Apparatus and method for cooling steel plate
CN2734373Y (en) * 2004-10-29 2005-10-19 宝山钢铁股份有限公司 Slip sheet continuous casting roll surface cleaning device
CN101346201A (en) * 2005-12-27 2009-01-14 Posco株式会社 Casting roll moving apparatus of twin roll type continuous strip casting process
CN101349923A (en) * 2007-07-18 2009-01-21 宝山钢铁股份有限公司 Method for controlling thin belt continuous casting molten pool fluid level
CN101564761A (en) * 2008-04-25 2009-10-28 宝山钢铁股份有限公司 Method and device for heating meniscus of twin roll thin strip casting pool
CN101927324A (en) * 2009-06-25 2010-12-29 宝山钢铁股份有限公司 Method and device for improving surface quality of casting belt
CN201543795U (en) * 2009-10-27 2010-08-11 宝山钢铁股份有限公司 Lifting rod type flow-distributing device of thin strip continuous casting
CN102049482A (en) * 2009-10-27 2011-05-11 宝山钢铁股份有限公司 Method for hoisting, roasting and casting strip continuous casting flow distribution device
CN201603847U (en) * 2010-03-19 2010-10-13 宝山钢铁股份有限公司 Strip continuous-casting metal delivery device
CN103817300A (en) * 2014-02-25 2014-05-28 宝山钢铁股份有限公司 Thin-strip continuous casting flow distribution scum removing method
CN104972081A (en) * 2015-07-14 2015-10-14 燕山大学 Method and device for preheating whole of strip casting flow distribution device and side sealing plate
JP2020015078A (en) * 2018-07-27 2020-01-30 日本製鉄株式会社 Apparatus and method for producing thin-walled carbon steel cast slab, and thin-walled carbon steel cast slab
CN110756752A (en) * 2018-07-27 2020-02-07 宝山钢铁股份有限公司 Strip continuous casting flow distribution deslagging method

Also Published As

Publication number Publication date
CN113927000A (en) 2022-01-14

Similar Documents

Publication Publication Date Title
CN110280746B (en) Method for single-source high-intensity ultrasonic-assisted casting of large-specification 2XXX series aluminum alloy round ingot
CN105364042A (en) Method for controlling crystalline structure uniformity of large-section heavy rail steel cast blank
CN100368120C (en) Double roller continuous casting magnesium alloy thin strip casting device
CN113927000B (en) Thin strip continuous casting structure and method for removing cold steel on surface of molten pool thereof
CN101433948B (en) Round billet continuous casting machine with especially big sectional plane
CN102294451B (en) Method for enhancing strip casting quality
CN2865934Y (en) Magnetic field reinforcing aluminium alloy low-frequency electromagnetic casting crystallizer
CN109692942A (en) Improve the device and method of vacuum downhill casting molding ingot quality using ultrasonic wave
CN201353635Y (en) Round billet conticaster with extra large section
CN1288786A (en) Horizontal casting equipment for aluminium alloy flat ingot
CN202180180U (en) Thin strip continuous casting stream distribution device
CN216828556U (en) Metal thin strip continuous casting equipment
WO2023109125A1 (en) Thin metal strip continuous casting method using momentum flow distribution
CN108149028B (en) Compound purifier of car aluminium wheel hub fuse-element
CN213614012U (en) Nickel-titanium alloy continuous casting crystallization device
CN206550309U (en) A kind of efficient preparation facilities of vertical type amorphous ribbon
CN109351925A (en) A kind of method and continuous casting process improving crystallizer copper pipe steel -passing amount
CN106929699A (en) A kind of large volume high-alloying aluminium alloy melt treatment device and method
CN113333707B (en) Method for casting rectangular blank in non-clamping section of R10-meter arc continuous casting machine
CN110756752B (en) Strip continuous casting flow distribution deslagging method
CN205996153U (en) A kind of light metal alloy high speed casting solidification forming device
KR100333064B1 (en) Method and apparatus for preventing skull from forming on side dams of twin roll type strip caster
CN213162980U (en) Ultrathin strip preparation device
CN214417601U (en) Suspension smelting multi-component alloy bar pouring device
CN210125719U (en) Crystallization system for casting wide copper ingot

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant