CN113908275A - 生物稳态启发的光激发多级纳米载体及其制备方法与应用 - Google Patents

生物稳态启发的光激发多级纳米载体及其制备方法与应用 Download PDF

Info

Publication number
CN113908275A
CN113908275A CN202111217890.8A CN202111217890A CN113908275A CN 113908275 A CN113908275 A CN 113908275A CN 202111217890 A CN202111217890 A CN 202111217890A CN 113908275 A CN113908275 A CN 113908275A
Authority
CN
China
Prior art keywords
tspba
icg
tumor
light
excited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111217890.8A
Other languages
English (en)
Inventor
罗欢欢
崔文国
陈刚
黄成龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Second Hospital Iaxing
Original Assignee
Second Hospital Iaxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Second Hospital Iaxing filed Critical Second Hospital Iaxing
Priority to CN202111217890.8A priority Critical patent/CN113908275A/zh
Publication of CN113908275A publication Critical patent/CN113908275A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明通过PEG‑PCL‑TSPBA与吲哚菁绿和1‑甲基‑2‑吡啶酮的静电吸附,成功构建了一种具有抗血管化和供氧能力的光激发多级纳米载体。该纳米载体表现出极佳的光稳定性和ROS反应能力。暴露在785纳米的照射下后,肿瘤中的纳米载体可经历多阶段的反应,产生热效应和三种ROS。高热会诱导1‑甲基‑2‑吡啶酮释放氧气,有助于缓解肿瘤的缺氧,促进ROS的产生。此外,在诱导光动力治疗时,ROS也能促进纳米载体的反应性破裂,迅速增加肿瘤局部的药物浓度。本发明提供的自组装纳米粒在MNNS/HOS骨肉瘤小鼠上展现出极好的治疗效果,在乏氧性肿瘤的治疗上可能也是一种很好的治疗策略。

Description

生物稳态启发的光激发多级纳米载体及其制备方法与应用
技术领域
本发明属于医药纳米载体技术领域,具体涉及一种生物稳态启发的光激发多级纳米载体及其制备方法与应用。
背景技术
光疗法作为一种有选择性和非侵入性的肿瘤治疗手段受到了研究者的广泛关注,其主要包括光热治疗和光动力治疗。光热治疗主要是在肿瘤局部将光能转化成热能,达到热消融的目的;而光动力治疗是利用光敏剂将肿瘤附近的氧气转变成包括单线态氧、羟基自由基、超氧阴离子在内的活性氧,诱导肿瘤细胞发生凋亡。光热和光动力的协同治疗非常普遍。
已有研究表明,光热治疗会抑制肿瘤附近血管的生长,具有抗血管生成作用。换言之,它能切断肿瘤的营养供应,达到饥饿治疗的效果。但与此同时,它也阻断了氧气的输送,加剧了肿瘤乏氧,一定程度上降低了光动力治疗的作用。因此,迫切需要探索一种新的纳米粒,克服光热治疗的弊端,既能切断营养物质的输送,实现饥饿疗法,又能保证肿瘤附近充足的氧气,克服乏氧现状,增强光动力疗效。
目前,针对肿瘤乏氧而导致的光动力效果下降的问题,研究者们采取了许多不同的策略。例如有研究者利用人造红细胞、全氟化碳等载体材料向乏氧区域不断的输送氧气来缓解乏氧,但是肿瘤附近血管的破坏也直接导致氧气输送链的断裂。也有研究者利用负载过氧化氢酶的纳米粒直接原位分解过氧化氢产氧,但是光热效应容易使得酶失活。另外,据报道二苯恩内环氧化物受热后能释放氧气,但是它的条件极为严苛,在高达60℃的高温下仍没有明显的氧气释放。因此,探索新的自携氧材料显得迫在眉睫。
此外,光动力治疗的治疗时间一般较短,对于深层次的肿瘤治疗需要载体对其进行高效的转运。据报道,小尺寸的粒子更容易渗透到肿瘤深部,但是小尺寸的粒子肿瘤靶向性相对较差。而响应性的载体材料有助于增强药物的渗透作用。利用肿瘤微环境的特点设计不同响应性的载体材料,促进药物在肿瘤部位的快速释放,进而渗透到深部肿瘤发挥作用。因此,为了缓解深部肿瘤的乏氧情况、促进高效的光治疗,采用响应性的载体材料是一个不错的选择。
在生物体稳态环境中,各元素通过相互制约、相互协助,最终形成一个相对平衡的状态。因此,如果能够设计一种纳米粒,使其内部元素之间能通过多级反应实现协同作用、取长补短,最终形成一种能诱导肿瘤细胞走向凋亡的稳态路线,将对肿瘤治疗具有重要意义。
发明内容
本发明的目的就是为了解决上述技术问题,从而提供一种生物稳态启发的光激发多级纳米载体及其制备方法与应用。本发明提供了一种光激发纳米载体,通过靶向到肿瘤部位的纳米粒在近红外光照射下,能同时产生光热效应和不同类型的活性氧。光热效应一方面能抑制肿瘤附近血管生长,切断肿瘤细胞营养供应,诱导细胞坏死;另一方面能够不断释放氧气,解决肿瘤乏氧,为光动力治疗提供氧来源。活性氧在促进细胞凋亡的同时,也能诱导纳米粒发生响应性快速裂解,缓解深层次肿瘤乏氧问题,发挥光治疗效果,最终实现肿瘤双重凋亡。
本发明的目的之一是提供一种生物稳态启发的光激发多级纳米载体的制备方法,其包括以下步骤:
(1)以(4-(溴甲基)苯基)硼酸和N1,N1,N3,N3-四甲基丙烷-1,3-二胺为原料在升温下发生反应,所得产物再与聚乙二醇-聚己内酯共聚物(PEG-PCL)发生取代反应,得到ROS响应性聚合物PEG-PCL-TSPBA;
(2)将聚合物PEG-PCL-TSPBA与吲哚菁绿和1-甲基-2-吡啶酮之间发生静电吸附,自组装得到所述光激发多级纳米载体。
受生物平衡的启发,本发明通过PEG-PCL-TSPBA与吲哚菁绿和1-甲基-2-吡啶酮的静电吸附,成功构建了一种具有抗血管化和供氧能力的光激发多级纳米载体,通过纳米载体中各组成元素之间的一系列级联反应,形成肿瘤细胞凋亡的平衡。该纳米载体表现出极佳的光稳定性和ROS反应能力。暴露在785纳米的照射下后,肿瘤中的纳米载体可以经历多阶段的反应,这将产生热效应和三种ROS。高热会诱导1-甲基-2-吡啶酮释放氧气,这有助于缓解肿瘤的缺氧,促进ROS的产生。此外,在诱导光动力治疗时,ROS也能促进纳米载体的反应性破裂,迅速增加肿瘤局部的药物浓度。最终,通过上述一系列的反应,实现了双重凋亡的强化光疗效果。
进一步的是,步骤(1)中在升温下发生反应的条件为:在溶剂DMF下于60℃反应24小时。
进一步的是,步骤(1)中所述(4-(溴甲基)苯基)硼酸与N1,N1,N3,N3-四甲基丙烷-1,3-二胺的摩尔比为2:1。
进一步的是,步骤(1)中所述产物与聚乙二醇-聚己内酯共聚物发生取代反应的摩尔比为1:4。
需要说明的是,本发明中对聚乙二醇-聚己内酯共聚物中的分子量并不限定,多种分子量组合的共聚物均可,实施例中仅以聚乙二醇(PEG)的结构重复单元数为44个,聚己内酯(PCL)的结构重复单元数为80个为例。
本发明的目的之二是提供由上述方法制备得到的生物稳态启发的光激发多级纳米载体。该纳米载体具有抗血管化和供氧能力。
本发明的目的之三是提供上述生物稳态启发的光激发多级纳米载体在制备治疗肿瘤的药物中的应用。
具体的,是将所述光激发多级纳米载体在制备光热和光动力联合治疗肿瘤的药物中的应用。
进一步的,所述肿瘤包括骨肉瘤、乳腺癌、肺癌等。
本发明的有益效果如下:
(1)本发明受生物稳态平衡、元素相互制约的启发,提供了一种具有抗血管作用和自携氧功能的光响应性纳米粒,用于骨肉瘤的精准光治疗。
(2)本发明提供的光响应性纳米粒,其中ICG在受到近红外光激发后能同时产生光热效应和活性氧。光热效应既能抑制肿瘤附近血管的生长,切断肿瘤的营养供应,促进细胞发生坏死;也能诱导1-甲基-2-吡啶酮释放氧气,缓解肿瘤乏氧现象,为光动力治疗提供氧来源。而活性氧在发挥光动力治疗、诱导细胞凋亡的同时,也能诱导纳米粒的快速解聚,促进药物的渗透,最大程度提高光疗效果,最终诱导细胞发生双重凋亡。
(3)本发明提供的纳米粒在MNNS/HOS骨肉瘤小鼠上展现出极好的治疗效果,在乏氧性肿瘤的治疗上可能是一种很好的治疗策略。
附图说明
图1为PEG-PCL-TSPBA的合成路径图。
图2为PEG-PCL-TSPBA的1HNMR图谱。
图3为ICG/PE-TSPBA的制备和表征结果;(A)PEG-PCL-TSPBA的裂解机制;(B)ICG/PE-TSPBA的TEM图像;(C)ICG/PE-TSPBA在785nm照射后的TEM图像;(D)ICG/PE-TSPBA在785nm照射后的尺寸分布;(E)在785nm照射下,自由ICG的吸收率;(F)ICG-TSPBA在785nm辐照下的吸收率;(G)ICG/PE-TSPBA在785nm照射下的吸收率;(H)ICG/PE-TSPBA在785nm照射下不同浓度值的光热图像;(I)不同浓度值的ICG/PE-TSPBA在785nm辐照下的温度升高情况。
图4为光热效应图;(A)在785nm的光照射下,不同浓度值的游离ICG的温度升高;(B)不同浓度的ICG-TSPBA在785nm照射下的温度升高。
图5为ICG/PE-TSPBA在光热和光动力治疗中的机制;(A)ICG/PE-TSPBA光热诱导释放氧气增强光疗的示意图;(B)ICG/PE-TSPBA在785nm照射下的光热转换功效;(C)在785nm照射下,H2O、ICG-TSPBA和ICG/PE-TSPBA中溶解的O2的生成;(D)ICG/PE-TSPBA在785nm辐照下使用BMPO作为超氧自由基(·O2-)的自旋捕获剂的ESR光谱;(E)ICG/PE-TSPBA在785nm照射下使用TEMP作为单线态氧(1O2)的自旋捕获剂的ESR光谱;(F)ICG/PE-TSPBA在785nm辐照下使用DMPO作为羟基自由基(·OH)的自旋捕获剂的ESR光谱。
图6为游离ICG(A)和ICG-TSPBA(B)在785nm照射下的光热转换效率。
图7为细胞内研究结果;(A)与MNNG/HOS细胞培养6小时和24小时后,细胞对游离ICG、ICG-TSPBA和ICG/PE-TSPBA的吸收;(B)经MNNG/HOS细胞处理的游离ICG、ICG-TSPBA和ICG/PE-TSPBA的细胞生存能力;(C)在785nm照射下,与MNNG/HOS细胞孵化后的游离ICG、ICG-TSPBA和ICG/PE-TSPBA的细胞存活率;(D)在785nm照射下,与PBS、ICG-TSPBA和ICG/PE-TSPBA培养6小时后,MNNG/HOS细胞被二氢乙锭(DHE)染色;(E)DHE染色的Image J分析;(F)MNNG/HOS细胞在785nm照射下与ICG/PE-TSPBA培养2小时后,用Hoechst33342(细胞核)和Lysotracker Green DND 26(溶酶体)染色。
图8为细胞凋亡和血管抑制的分析;(A)MNNG/HOS细胞在PBS、ICG-TSPBA和ICG/PE-TSPBA在785nm照射下培养24小时后,被Annexin V FITC/PI染色的细胞凋亡水平;(B)用PBS、癌细胞培养基、ICG/PE-TSPBA在785nm照射下处理或不处理后,用钙素-AM染色的HUVEC细胞的血管抑制分析;(C)连接处的Image J分析;(D)网状结构的Image J分析;(E)总长度的Image J分析。
图9为肿瘤靶向和红外热成像研究;(A)肿瘤小鼠体内的近红外图像;(B)肿瘤中的游离ICG和ICG/PE-TSPBA的荧光强度;(C)心脏、肝脏、脾脏、肺脏和肾脏的体内近红外图像;(D)不同组织中的游离ICG和ICG/PE-TSPBA的荧光强度;(E)在785nm照射下,静脉注射剂量为5.0mg/kg、7.5mg/kg和10.0mg/kg的ICG/PE-TSPBA的肿瘤小鼠红外热成像图像;(F)在785nm照射下,静脉注射5.0mg/kg、7.5mg/kg和10.0mg/kg剂量的自由ICG的肿瘤小鼠红外热成像图像。
图10为体内的红外热成像分析;(A)ICG/PE-TSPBA在785nm照射下的温度升高;(B)在785nm的照射下游离ICG的温度升高。
图11为肿瘤生长抑制和免疫荧光分析;(A)肿瘤生长概况;(B)从用不同样品处理的小鼠身上提取的肿瘤图像;(C)在785nm照射下,从静脉注射不同样品的小鼠中提取的肿瘤切片中CD31和HIF-1α的免疫荧光图像;(D)CD31的表达的Image J分析;(E)HIF-1α的表达的Image J分析。
图12为病理分析结果;(A)在785nm照射下,从静脉注射不同样品的小鼠中提取的肿瘤切片的H&E染色和Ki67和Tunel染色的免疫荧光图像;(B)Ki67的表达的Image J分析;(C)Tunel染色的Image J分析。
图13为用不同样品处理的小鼠收获的各种正常组织的H&E染色情况。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行具体描述,有必要指出的是,以下实施例仅仅用于对本发明进行解释和说明,并不用于限定本发明。本领域技术人员根据上述发明内容所做出的一些非本质的改进和调整,仍属于本发明的保护范围。
实施例1
一种生物稳态启发的光激发多级纳米载体的制备方法,包括以下步骤:
(1)根据图1的合成路线合成ROS响应性聚合物PEG-PCL-TSPBA,具体为:以(4-(溴甲基)苯基)硼酸和N1,N1,N3,N3-四甲基丙烷-1,3-二胺为原料(摩尔比为:2:1),在溶剂DMF中于60℃反应24小时,所得产物再与聚乙二醇-聚己内酯共聚物(PEG-PCL)发生取代反应(取代反应的原料摩尔比为:1:4),得到聚合物PEG-PCL-TSPBA;并利用1HNMR对其化学结构进行了表征(如图2所示)。PEG-PCL-TSPBA的裂解机制如图3中A所示。
(2)通过PEG-PCL-TSPBA与吲哚菁绿(ICG)和1-甲基-2-吡啶酮(PE)的静电吸附,成功构建得到光激发的多级纳米载体(记为ICG/PE-TSPBA)。
实验例1
对实施例1制备所得光激发多级纳米载体ICG/PE-TSPBA进行表征,结果如下:
透射电子显微镜(TEM)显示,ICG/PE-TSPBA呈现出球形结构,大小为19.4±3.6nm(图3中B),当暴露在785nm的照射下后,没有观察到球形结构(图3中C),表明纳米载体的分解。动态光散射(DLS)显示,ICG/PE-TSPBA的流体动力学直径从99.3nm变为106.4nm,并且多分散指数(PDI)在辐照后也有所增加(图3中D),这意味着结构的改变。此外,与游离的ICG或ICG-TSPBA相比,ICG/PE-TSPBA的光稳定性得到了极大的改善(图3中E,F和G),这表明纳米结构是稳定的。
实验例2
为了研究光热效应、氧气生成和ROS产生之间的多阶段反应,首先评估了ICG/PE-TSPBA在785nm光照后的光热转换能力,用热成像仪在5分钟的照射(785nm,1.0W/cm2)过程中,每30秒测定一次不同浓度样品的温度。结果显示ICG/PE-TSPBA表现出浓度依赖性的光热效应(图3中H和I),与游离的ICG和ICG-TSPBA(图4中A和B)相比,表现出类似的能力。
为了评估光热转换效率,进一步测量了样品的温度,这些样品经历了光照温度上升阶段以及去除光照后温度下降阶段(图5中B)。ICG/PE-TSPBA表现出23.3%的光热转换效率,远远高于游离ICG(17.5%,图6中A)或ICG-TSPBA(18.5%,图6中B),这可能归功于优良的纳米结构。
如图5中A所示,ICG/PE-TSPBA能够在热疗后释放氧气,并产生丰富的ROS。为了评估ICG/PE-TSPBA在高热后释放氧气的能力,采用一个便携式溶解氧仪来监测5分钟照射期间的氧气生成情况(图5中C)。ICG/PE-TSPBA的溶解氧远远高于ICG-TSPBA或水的溶解氧,表明ICG/PE-TSPBA在光照后会释放氧气。接下来,为了区分ROS的类型,采用电子自旋共振(ESR)技术,用5-叔丁氧羰基-5-甲基-1-吡咯啉N-氧化物(BMPO)来确定ICG/PE-TSPBA在光照或不光照下的信号。2,2,6,6-四甲基哌啶(TEMP)和5,5-二甲基-1-吡咯啉-N-氧化物(DMPO)分别作为超氧自由基(·O2-)、单线态氧(1O2)和羟基自由基(·OH)的自旋捕获剂(图5中D,E和F)。结果在照射后都表现出显著的信号,表明ICG/PE-TSPBA具有产生三种ROS用于PDT治疗的超强能力。
为了确认体外ROS的产生,采用二氢乙锭(DHE)作为探针来监测。将ICG/PE-TSPBA和ICG-TSPBA加入MNNG/HOS细胞中培养6小时,然后进行照射或不照射。然后,用DHE来检测ROS的出现(图7中D和E)。结果显示,光照后ICG/PE-TSPBA的红色荧光更强,这可能是由于ICG/PE-TSPBA产生了氧气。
然后,进一步研究了纳米载体的细胞内分布,分别使用Lysotracker Green DND26(绿色)和Hoechst 33342(蓝色)作为溶酶体和细胞核的探针。如图7中F所示,溶酶体的荧光呈现出不完整的结构,表明溶酶体的破裂。更重要的是,ICG/PE-TSPBA与溶酶体的共定位从90.4%下降到74.8%,表明细胞质的有效运输。这些都是由于ICG/PE-TSPBA在辐照后产生了ROS,从而诱发了溶酶体的破裂。
实验例3
为了确认ICG/PE-TSPBA诱导细胞双重凋亡的能力,用流式细胞仪进行Annexin/PI染色(图8中A)。ICG/PE-TSPBA的早期凋亡和晚期凋亡率均高于ICG-TSPBA,表明PE的贡献增强。
接下来,为了验证ICG/PE-TSPBA抵抗血管生长的能力,选择HUVEC作为模型细胞进行细胞成管实验研究(图8中B)。用DMEM培养基、与MNNG/HOS细胞孵化后收集的癌细胞培养基和ICG/PE-TSPBA处理HUVEC。根据Image J软件的分析(图8中C,D和E),除了照射后用ICG/PE-TSPBA培养的细胞,所有组的HUVEC都能形成管子,这有效地证明了纳米载体诱导肿瘤细胞饿死的能力。
实验例4
探讨了ICG/PE-TSPBA的肿瘤靶向能力。将携带MNNG/HOS细胞的小鼠静脉注射游离的ICG和ICG/PE-TSPBA,并在随后的96小时内用IVIS Lumina II系统测定ICG的荧光强度(图9中A)。药物首先在小鼠体内分布,然后用ICG/PE-TSPBA处理的小鼠在注射后24小时内明显表现出更高的肿瘤荧光强度(图9中B),显示出强大的肿瘤靶向能力。为了进一步证实这种能力,我们解剖了小鼠,取出心脏、肝脏、脾脏、肺脏、肾脏和肿瘤进行荧光成像(图9中C)。而结果也验证了该纳米载体的肿瘤靶向能力(图9中D)。
此外,还进一步证明了ICG/PE-TSPBA在肿瘤小鼠身上的光热转换能力。静脉注射不同剂量的游离ICG或ICG/PE-TSPBA后,肿瘤小鼠在注射后24小时暴露于785纳米的照射下。在整个照射过程中,用热成像仪监测肿瘤区域的温度(图9中E和F)。两者在肿瘤区域都表现出剂量依赖性的温度升高(图10中A和B),而且ICG/PE-TSPBA的光热效应比游离ICG好得多,表明纳米结构的关键作用。
实验例5
为了评估纳米载体的抗肿瘤效率,将携带MNNG/HOS细胞的小鼠分为七组,并在一个月内测量小鼠的肿瘤体积(图11中A和B)。以PBS为对照,无论辐照与否,肿瘤体积都增加了约25倍,表明辐照并不影响肿瘤的生长。
游离的ICG/PE和ICG/PE-TSPBA在没有辐照的情况下,肿瘤体积都增加了约20倍,与对照组相比没有明显差异。
在辐照下用游离ICG/PE处理的小鼠体积增加了约4.5倍,两只小鼠进行了肿瘤消融,然后其中一只小鼠复发了。游离ICG/PE在光照下的抗肿瘤效率差,可能是由于肿瘤靶向性差和细胞摄取量低。ICG-TSPBA/辐照最终导致肿瘤体积增加约2倍。而且有三只小鼠经历了肿瘤消融,其中一只还复发了。
然而,在辐照下注射ICG/PE-TSPBA的小鼠达到了最大的抗癌效果,这表明光激发的多级纳米载体对肿瘤的抑制作用增强。
实验例6
为了进一步明确纳米载体的稳态机制,进行了免疫组化实验。首先,为了探索ICG/PE-TSPBA抑制肿瘤血管生长的能力,进行了CD31的免疫荧光实验(图11中C)。经ICG/PE-TSPBA处理的小鼠肿瘤中CD31的表达量低于对照组,成功证明了纳米载体的抗血管生长作用(图11中D)。然后,探讨了缺氧诱导因子-1α(HIF-1α)的免疫荧光,以证明ICG/PE-TSPBA缓解缺氧的能力(图11中C和E)。有趣的是,注射了ICG-TSPBA的小鼠在照射后肿瘤处变得更加缺氧。然而,用ICG/PE-TSPBA治疗的小鼠的肿瘤缺氧情况大大改善,甚至优于PBS组,这进一步证明了ICG/PE-TSPBA的携氧能力。
随后,通过多种方法进一步研究了肿瘤的损伤情况,包括苏木精和伊红(H&E)染色、隧道染色和Ki67的免疫荧光(图12中A),结果都表明在辐照下,从ICG/PE-TSPBA处理的小鼠中提取的肿瘤损伤更为严重(图12中B和C)。最后,使用苏木精和伊红(H&E)染色(图13)对包括心脏、肝脏、脾脏、肺脏、肾脏在内的组织进行了生物安全检测,结果显示这些组织没有损伤。这些都证明了纳米载体通过稳定状态的纳米颗粒ICG/PE-TSPBA的组成元素之间的多阶段反应,实现了诱导肿瘤细胞凋亡的平衡的卓越能力。

Claims (8)

1.一种生物稳态启发的光激发多级纳米载体的制备方法,其特征在于,包括以下步骤:
(1)以(4-(溴甲基)苯基)硼酸和N1,N1,N3,N3-四甲基丙烷-1,3-二胺为原料在升温下发生反应,将所得产物与聚乙二醇-聚己内酯共聚物发生取代反应,得到ROS响应性聚合物PEG-PCL-TSPBA;
(2)将聚合物PEG-PCL-TSPBA与吲哚菁绿和1-甲基-2-吡啶酮通过发生静电吸附,自组装得到所述光激发多级纳米载体。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述升温下发生反应的条件为:在溶剂N,N-二甲基甲酰胺中于60℃反应24小时。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述(4-(溴甲基)苯基)硼酸与N1,N1,N3,N3-四甲基丙烷-1,3-二胺的摩尔比为2:1。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述产物与聚乙二醇-聚己内酯共聚物发生取代反应的摩尔比为1:4。
5.由权利要求1-4任一项所述方法制备得到的生物稳态启发的光激发多级纳米载体。
6.如权利要求5所述的生物稳态启发的光激发多级纳米载体在制备治疗肿瘤的药物中的应用。
7.根据权利要求6所述的应用,其特征在于,是将所述光激发多级纳米载体在制备光热和光动力联合治疗肿瘤的药物中的应用。
8.根据权利要求6或7所述的应用,其特征在于,所述肿瘤包括骨肉瘤、乳腺癌或肺癌。
CN202111217890.8A 2021-10-19 2021-10-19 生物稳态启发的光激发多级纳米载体及其制备方法与应用 Pending CN113908275A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111217890.8A CN113908275A (zh) 2021-10-19 2021-10-19 生物稳态启发的光激发多级纳米载体及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111217890.8A CN113908275A (zh) 2021-10-19 2021-10-19 生物稳态启发的光激发多级纳米载体及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN113908275A true CN113908275A (zh) 2022-01-11

Family

ID=79241536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111217890.8A Pending CN113908275A (zh) 2021-10-19 2021-10-19 生物稳态启发的光激发多级纳米载体及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113908275A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115282288A (zh) * 2022-08-30 2022-11-04 嘉兴市第二医院 Ros响应性软骨靶向水凝胶微球及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109498808A (zh) * 2019-01-22 2019-03-22 福州大学 一种通过静电组装可控合成CuS@EPO纳米材料的方法
US20210077620A1 (en) * 2017-12-13 2021-03-18 North Carolina State University Compositions comprising chemotherapeutic agents and checkpoint inhibitors and methods of use
US20210145984A1 (en) * 2018-04-13 2021-05-20 North Carolina State University Ros-responsive microneedle patch for acne vulgaris treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210077620A1 (en) * 2017-12-13 2021-03-18 North Carolina State University Compositions comprising chemotherapeutic agents and checkpoint inhibitors and methods of use
US20210145984A1 (en) * 2018-04-13 2021-05-20 North Carolina State University Ros-responsive microneedle patch for acne vulgaris treatment
CN109498808A (zh) * 2019-01-22 2019-03-22 福州大学 一种通过静电组装可控合成CuS@EPO纳米材料的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAO WANG等: "In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy", 《SCI. TRANSL. MED》 *
SHUANGSHUANG REN等: "Hypotoxic and Rapidly Metabolic PEG-PCL-C3-ICG Nanoparticles for Fluorescence-Guided Photothermal/Photodynamic Therapy against OSCC", 《ACS APPL. MATER. INTERFACES》 *
YIFEI JING等: "Pyridone-containing phenalenone-based photosensitizer working both under light and in the dark for photodynamic therapy", 《BIOORGANIC & MEDICINAL CHEMISTRY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115282288A (zh) * 2022-08-30 2022-11-04 嘉兴市第二医院 Ros响应性软骨靶向水凝胶微球及其制备方法和应用
CN115282288B (zh) * 2022-08-30 2024-06-18 嘉兴市第二医院 Ros响应性软骨靶向水凝胶微球及其制备方法和应用

Similar Documents

Publication Publication Date Title
Chen et al. NIR‐light‐activated combination therapy with a precise ratio of photosensitizer and prodrug using a host–guest strategy
Li et al. In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS‐mediated anticancer therapy
Zhang et al. Magnetic nanoparticles coated with polyphenols for spatio-temporally controlled cancer photothermal/immunotherapy
CN108159422B (zh) 一种自组装载药系统及其复合制剂的制备方法
Chu et al. Pluronic-encapsulated natural chlorophyll nanocomposites for in vivo cancer imaging and photothermal/photodynamic therapies
Zheng et al. Biodegradable hypocrellin derivative nanovesicle as a near-infrared light-driven theranostic for dually photoactive cancer imaging and therapy
Li et al. Light-enhanced hypoxia-responsive nanoparticles for deep tumor penetration and combined chemo-photodynamic therapy
Jia et al. Self‐assembled carbon dot nanosphere: a robust, near‐infrared light‐responsive, and vein injectable photosensitizer
Ji et al. Activatable photodynamic therapy for prostate cancer by NIR dye/photosensitizer loaded albumin nanoparticles
CN108452303A (zh) 一种载双药纳米制剂及其制备方法
CN108671231B (zh) 一种用于肿瘤光热增效治疗和超声成像的多功能纳米载体及制备方法
Chen et al. Injectable hydrogel for NIR-II photo-thermal tumor therapy and dihydroartemisinin-mediated chemodynamic therapy
CN105797157A (zh) 一种多孔核壳双金属有机框架纳米载药体的制备方法和应用
Wen et al. Nitrogen-doped carbon dots/curcumin nanocomposite for combined Photodynamic/photothermal dual-mode antibacterial therapy
CN107007835A (zh) 载普鲁士蓝靶向纳米复合物及其制备方法
Xu et al. Sialic acid-modified mesoporous polydopamine induces tumor vessel normalization to enhance photodynamic therapy by inhibiting VE-cadherin internalization
Chen et al. Traceable Self‐Assembly of Laser‐Triggered Cyanine‐Based Micelle for Synergistic Therapeutic Effect
Li et al. A self-assembled nanoplatform based on Ag2S quantum dots and tellurium nanorods for combined chemo-photothermal therapy guided by H2O2-activated near-infrared-II fluorescence imaging
Zou et al. Novel NIR-II semiconducting molecule incorporating sorafenib for imaging guided synergetic cancer phototherapy and anti-angiogenic therapy
CN113908275A (zh) 生物稳态启发的光激发多级纳米载体及其制备方法与应用
Zhou et al. A perylene diimide probe for NIR-II fluorescence imaging guided photothermal and type I/type II photodynamic synergistic therapy
CN107126561A (zh) 一种可实现化疗和ptt/pdt联合治疗的抗肿瘤协同组合物及其应用
CN112516308B (zh) 一种近红外ii区激光控释药物纳米脂质体及其制备方法与应用
Guan et al. A DiR loaded tumor targeting theranostic cisplatin-icodextrin prodrug nanoparticle for imaging guided chemo-photothermal cancer therapy
CN107115320B (zh) 一种负载替莫唑胺的靶向纳米粒及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220111