CN113897589A - 一种空间交错混合材料薄膜的制备方法及其在消色差超透镜中的应用 - Google Patents

一种空间交错混合材料薄膜的制备方法及其在消色差超透镜中的应用 Download PDF

Info

Publication number
CN113897589A
CN113897589A CN202111174707.0A CN202111174707A CN113897589A CN 113897589 A CN113897589 A CN 113897589A CN 202111174707 A CN202111174707 A CN 202111174707A CN 113897589 A CN113897589 A CN 113897589A
Authority
CN
China
Prior art keywords
deposition
superlens
material film
achromatic
staggered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111174707.0A
Other languages
English (en)
Inventor
刘淑静
李阳
赵世虎
罗明艳
巨丹丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Medical University
Original Assignee
Tianjin Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Medical University filed Critical Tianjin Medical University
Priority to CN202111174707.0A priority Critical patent/CN113897589A/zh
Publication of CN113897589A publication Critical patent/CN113897589A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • C23C16/306AII BVI compounds, where A is Zn, Cd or Hg and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0064Optical details of the image generation multi-spectral or wavelength-selective arrangements, e.g. wavelength fan-out, chromatic profiling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0072Optical details of the image generation details concerning resolution or correction, including general design of CSOM objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种空间交错混合材料薄膜的制备方法及其在消色差超透镜中的应用,首先利用薄硅片加工出多扇区空间沉积掩模,利用该多扇区掩模进行分区遮盖,在超透镜基底上沉积第一种电介质材料薄膜;利用刻蚀技术去除掩模和多余材料后,再更换另一个多扇区掩模,在剩余扇区沉积出相同厚度的第二种电介质材料薄膜;最后通过电子束光刻等微纳技术加工出该超透镜的纳米结构。本发明为制备高效率双波长消色差超透镜并用于双光子显微成像及双光子STED超分辨微内窥成像提供一种新的思路,该超透镜实现红外波段激发光和可见波段荧光或损耗光高效率共焦,从而有望用于活体深层生物组织的超分辨微内窥成像中,进一步实现低侵入损伤和高分辨率的动态实时超分辨成像。

Description

一种空间交错混合材料薄膜的制备方法及其在消色差超透镜 中的应用
技术领域
本发明涉及电介质超表面领域中空间交错混合材料薄膜的制备方法及其在消色差超透镜的应用,特别涉及一种基于多步沉积空间交错混合材料薄膜的消色差超透镜的制备方法,以及该超透镜在双光子荧光显微成像与双光子受激发射损耗(Stimulatedemission depletion,STED)超分辨微内窥成像中的应用,属于超表面加工技术领域。
背景技术
超透镜作为一种微型的平面光学元件,能够在纳米尺度灵活操控光的相位、偏振和振幅。由于其具有高自由度和高集成度等优点,超透镜作为微型物镜已经应用于荧光显微成像中。在荧光显微成像中,为了获取更深的成像深度,需要利用近红外光实现双光子激发。而适用于双光子荧光成像及双光子STED显微成像的超透镜,需要满足近红外波段激发光和可见波段荧光或损耗光的消色差聚焦。但单一材料加工的消色差超透镜难以同时满足如此大的波长差距。因此可以利用空间复用技术在空间上实现两种半导体材料交错构成的超透镜,一种材料用于近红外光的调制,另一种材料实现可见光波段的调制,同时满足超宽带(可见波段到红外波段)的高折射率和高透过率的消色差聚焦。
现阶段制备用于超透镜加工的半导体材料薄膜通常使用物理溅射、蒸发或化学沉积等方法。而这些加工方法的特点在于对基底的整体均匀覆盖,因此只能制备出单一半导体材料薄膜,对于多种材料复合结构也只能是多层堆积或局部嵌套,难以实现指定区域、指定材料的针对性沉积。而空间复用的双材料超透镜需要在不同扇区沉积不同的半导体材料,现有的加工技术面临着无指向性沉积的问题,在交叉扇区沉积不同材料需要沉积过程的精确定位。因此,仅利用现阶段无指向性的加工方法同时完成两种材料的定域沉积在技术上是难以实现的。加工制备用于空间复用分区结构超透镜的交叉扇区混合材料薄膜是当前亟待解决的技术难题。
发明内容
本发明目的是解决现有超表面器件加工方法难以同时实现两种半导体材料交错定域沉积的技术难题,提供一种空间交错混合半导体材料薄膜的制备方法及其在消色差超透镜中的应用。
本发明制备的空间交错多步沉积混合材料薄膜,能够在空间上满足两种材料交错分布。并且在预期的空间位置实现两种材料的独立沉积以及在沉积时序上的分离。进而可以实现基于双材料薄膜的双波长消色差超透镜。改善了传统单一材料超透镜难以同时满足近红外波段和可见光波段高效率消色差聚焦的缺点,成为实现高度集成化的双光子荧光成像及双光子STED微内窥成像系统的关键。
本发明的技术方案
一种基于多步沉积空间交错混合材料薄膜的制备方法及其在消色差超透镜中的应用。利用薄硅片加工出多扇区沉积掩模,从而实现多步沉积过程中的空间分区遮盖,分别在基底上沉积出两种材料混合交错分布的双材料薄膜。最后利用电子束光刻等高精度微纳加工工艺在混合材料薄膜上加工出超透镜的纳米阵列结构。
一种空间交错混合材料薄膜的制备方法,利用多扇区薄硅片作为空间掩模在沉积过程中进行分区遮盖,分别在基底上先后沉积出具有两种材料的混合材料薄膜,具体制备步骤如下:
(1)制备具有多扇区结构的空间沉积掩模:空间沉积掩模选用厚度大于待沉积薄膜层厚度的薄硅片;在显微加工平台下,利用聚焦离子束刻蚀或飞秒激光直写技术在薄硅片上加工出多扇区结构,其直径和预期超透镜的直径相当;此空间沉积掩模用于在后续混合材料沉积过程进行分区域交替遮盖;
(2)表面清洁预处理:首先将基底和步骤(1)制备的多扇区空间沉积掩模进行表面清洗,去除表面污染物;
(3)在显微加工平台中将清洗后的空间沉积掩模放置在基底上,再利用等离子体气相化学沉积的方法在间隔扇区中沉积出预期厚度的第一种材料;
(4)利用飞秒激光直写刻蚀或多光子聚合打印的方法刻蚀空间沉积掩模与沉积材料层的边缘粘连处,并去除空间沉积掩模和多余的第一种沉积材料,该方法具有的纳米级加工精度能够满足刻蚀需求并且不破坏基底和保留区域材料表面的平整度;最后利用超声进行清洗并用氮气枪吹干;
(5)随后变换沉积区域并沉积第二种材料;将上述沉积完成的样品再进行一次清洗过程;清洗完毕后再将另一个空间沉积掩模置于样品的上表面,保护第一种沉积材料不被第二种材料污染,也确保了两种材料的沉积厚度一致;利用原子层沉积方法在剩余扇区内沉积出具有和第一种沉积材料层相同厚度的第二种材料;
(6)最后利用步骤(4)相同方法去除空间沉积掩模和多余的第二种沉积材料,从而通过多步沉积过程获得预期的空间交错混合材料薄膜。
所述空间交错混合材料薄膜适用于两种材料构成均匀扇区交错的空间结构;第一种材料选自沉积非晶硅,用于调制近红外光;第二种材料选自沉积氮化硅、二氧化钛、氮化镓或硫化锌中的一种,用于调制可见光。该薄膜厚度为450nm~850nm,沉积区域直径为40μm~100μm。该空间交错混合材料薄膜中单一扇区的角度为30°、45°或60°。
本发明同时提供了一种上述空间交错混合材料薄膜在消色差超透镜中的应用,该空间交错混合材料薄膜应用于双波长消色差超透镜的加工,通过电子束光刻的微纳加工技术在空间交错混合材料薄膜上加工出纳米阵列结构,实现双波长消色差超透镜。
基于空间交错混合材料薄膜的双波长消色差超透镜能够应用于双光子荧光显微成像,实现激发光和荧光消色差,提高荧光的收集效率。同时该方法制备的超透镜能够实现激发光和损耗光的消色差聚焦,满足受激发射损耗超分辨成像的需求。
本发明的优点和有益效果:
利用空间交错多步沉积混合材料薄膜制备的双波长消色差超透镜,实现可见光波段损耗光和近红外波段激发光的高透过率和高效聚焦,提高光斑质量和消色差性能。这属于一种新型消色差超透镜的加工方法,尤其适用于双光子荧光成像及双光子STED微内窥成像,构成轻便且高度集成化的微内窥成像系统,为深层在体生物组织的实时高分辨率成像提供了便利。
附图说明
图1是实施例1和实施例2中基于多步沉积空间交错混合材料薄膜的双波长消色差超透镜的俯视图。
图2是实施例1和实施例2中构成如图1所示双波长消色差超透镜的阵列单元结构及其六方晶格排列示意图。
图3是实施例1和实施例2制备过程中用于分区沉积的多扇区薄硅片掩模示意图。
图4是实施例1和实施例2制备过程中空间交错混合材料薄膜的多步沉积的流程图。
图5是实施例1和2中不同直径纳米柱所对应的透过率和调控相位拟合曲线。
图6是实施例1和2中用于设计超透镜掩模版图形分布的目标相位
Figure BDA0003294561920000042
分布图。
图7是实施例1中超透镜的双波长消色差聚焦仿真结果图。
具体实施方式
本发明提供的基于多步沉积空间交错混合材料薄膜的消色差超透镜制备方法,主要包括以下步骤:
(1)制备具有多扇区结构的空间沉积掩模:沉积掩模选用厚度大于待沉积薄膜层厚度(大于450nm)的薄硅片。在显微加工平台下,利用聚焦离子束刻蚀或飞秒激光直写技术在薄硅片上加工出多扇区结构,其直径和预期超透镜的直径相当(40μm~100μm之间)。此空间沉积掩模用于在后续混合材料沉积过程进行分区域交替遮盖。
(2)制备多步沉积空间交错混合材料薄膜:首先清洗基底,将基底和多扇区薄硅片放入丙酮溶液中浸泡并进行超声清洗,去除基底和薄硅片表面的污染物。取出后的基底和薄硅片再次放入到异丙醇溶液中清洗,最后用去离子水冲洗并用氮气枪吹干。
然后在显微加工平台中将薄硅片放置在基底上,再利用等离子体气相化学沉积的方法在间隔扇区中沉积出预期厚度的第一种材料(450nm~850nm之间)。再利用飞秒激光直写刻蚀或多光子聚合打印等技术刻蚀薄硅片掩模与沉积材料层的边缘粘连处并去除薄硅片掩模和多余的非晶硅材料。随后进行一次清洗并用氮气枪吹干。
随后变换沉积区域并沉积第二种材料。将上述沉积完成的样品再进行一次清洗过程。清洗完毕后再将另一个薄硅片掩模置于样品的上表面,保护第一种沉积材料不被第二种材料污染,也确保了两种材料的沉积厚度一致。利用原子层沉积方法在剩余扇区内沉积出具有和第一种材料层相同厚度的第二种材料。最后利用相同方法去除薄硅片和多余的第二种材料,从而通过多步沉积过程获得预期的空间交错混合材料薄膜。
(3)设计超透镜掩模版的图形分布:以基底中心为原点,距离原点不同位置(x,y)上的纳米结构对应的目标相位
Figure BDA0003294561920000043
满足下列公式:
Figure BDA0003294561920000041
式中λ为设计波长,f为设计焦距。设计波长根据选用的荧光染料的激发波长和损耗波长而定,荧光染料可选用绿色、红色、黄色、蓝色和青色荧光蛋白以及罗丹明染料等。通过时域有限差分(FDTD)分析方法获取不同直径的纳米结构所对应的调控相位和透过率(参见说明书附图5),根据目标相位
Figure BDA0003294561920000051
中所需的相位分布(参见说明书附图6),匹配出目标相位对应的纳米单元结构参数(纳米柱直径),利用得到的纳米柱直径的空间分布来制作出所需的掩模版。
(4)加工超透镜的纳米单元结构:首先利用匀胶机在上述步骤制备好的混合材料薄膜表面上旋涂光刻胶,光刻胶厚度约为300~500nm。然后将涂好光刻胶的混合材料薄膜放到加热板上以130℃-180℃的温度加热2~3分钟,进行后烘,挥发出光刻胶中的溶剂。然后利用电子束光刻机和加工好的上述掩膜版,在样品的光刻胶上曝光出所设计的图案。随后将曝光后的样品放置在四甲基氢氧化铵溶液或者二甲苯溶液中进行显影,去除经过曝光部分的光刻胶,显影时间为60~70秒。随后放入异丙醇溶液中定影,定影时间为30秒,最后用氮气枪吹干样品。再利用电感耦合等离子体刻蚀技术蚀刻样品,得到所设计的超透镜纳米单元图案。最后将刻蚀后的样片放入丙酮溶液中浸泡10小时,将剩余光刻胶溶解到丙酮溶液中,从而去除残胶,获得预期的纳米结构图案。最后用去离子水冲洗并用氮气枪吹干,得到设计的超透镜。
实施例1:
以制备920nm和510nm双波长消色差超透镜并应用于双光子荧光显微成像为例。
预期设计的双波长消色差超透镜的平面结构图参见图1,该超透镜由若干纳米柱以正六边形晶格结构排列构成,纳米单元结构图参见图2。以绿色荧光蛋白作为双光子荧光显微成像的荧光探针,其双光子激发波长为920nm,荧光波长为510nm。利用上述加工方法,首先加工出多扇区薄硅片(参见说明书附图3);然后在基底上沉积出空间分区结构的双材料薄膜,其中第一种材料为非晶硅,用于调制920nm激发光,第二种材料氮化硅用于调制510nm荧光,该混合材料薄膜的加工流程参见图4;随后通过数值计算纳米单元结构的调制相位和透过率(参见说明书附图5),根据设定的参数(λ1=920nm,λ2=510nm,焦距f=10μm)确定超透镜的理想相位分布
Figure BDA0003294561920000052
(
Figure BDA0003294561920000053
的0~2π相位分布参见说明书附图6)并计算出纳米结构的空间排布参数,进而加工出掩膜版,通过纳米单元结构的有效空间排布实现超透镜的相位调制功能;最后利用高精度微纳加工工艺在混合材料薄膜上加工出构成超透镜的纳米圆柱结构(如图2所示)。
该双波长消色差超透镜可以实现920nm和510nm的消色差聚焦,焦距均为10μm,与设计焦距一致,双波长的消色差聚焦仿真结果参见图7。在双光子荧光成像中,920nm激发光经超透镜聚焦,可以在组织中得到一个接近衍射极限的紧聚焦斑。而荧光经过超透镜中510nm调制区被收集,同时该超透镜的消色差性能和偏振不敏感特性大大提高了荧光收集效率。
实施例2:
以制备910nm和650nm双波长消色差超透镜并应用于双光子STED微内窥成像为例。
预期设计的双波长消色差超透镜的平面结构图参见图1,该超透镜由若干纳米柱以正六边形晶格结构排列构成,纳米单元结构图参见图2。双光子激发波长为910nm,损耗光波长为650nm,荧光波长与损耗波长相近。利用上述加工方法,首先加工出多扇区薄硅片(参见说明书附图3);然后在基底上沉积出空间分区结构的双材料混合薄膜,其中第一种材料为非晶硅,用于调制910nm激发光,第二种材料为二氧化钛,用于调制650nm损耗光,该混合材料薄膜的加工流程参见图4;随后通过数值计算纳米单元结构的相位响应和振幅响应(参见说明书附图5),根据设定的参数(λ1=910nm,λ2=650nm,焦距f=15μm)确定超透镜的理想相位分布
Figure BDA0003294561920000061
(
Figure BDA0003294561920000062
的0~2π相位分布参见说明书附图6)并计算出纳米结构的空间排布参数,进而加工出掩膜版,通过纳米单元结构的有效空间排布实现超透镜的相位调制功能;最后利用高精度微纳加工工艺在混合材料薄膜上加工出构成超透镜的纳米圆柱结构。
该双波长消色差超透镜可以实现激发光和损耗光同时聚焦在组织中的相同焦点处,从而满足了激发焦斑和损耗焦斑的有效叠加,大大提高了损耗效率。由于荧光波长与损耗波长接近,损耗光调制区域可以同时收集荧光。最终可以获得半高宽低于50nm的有效荧光光斑,实现超越衍射极限的纳米级成像分辨率。因此由该超透镜构成的微内窥探头可以同时满足双光束聚焦和荧光收集功能,并且可插入生物组织深处进行高分辨率动态实时成像。

Claims (7)

1.一种空间交错混合材料薄膜的制备方法,其特征在于利用多扇区薄硅片作为空间掩模在沉积过程中进行分区遮盖,分别在基底上先后沉积出具有两种材料的混合材料薄膜,具体制备步骤如下:
(1)制备具有多扇区结构的空间沉积掩模:空间沉积掩模选用厚度大于待沉积薄膜层厚度的薄硅片;在显微加工平台下,利用聚焦离子束刻蚀或飞秒激光直写技术在薄硅片上加工出多扇区结构,其直径和预期超透镜的直径相当;此空间沉积掩模用于在后续混合材料沉积过程进行分区域交替遮盖;
(2)表面清洁预处理:首先将基底和步骤(1)制备的多扇区空间沉积掩模进行表面清洗,去除表面污染物;
(3)在显微加工平台中将清洗后的空间沉积掩模放置在基底上,再利用等离子体气相化学沉积的方法在间隔扇区中沉积出预期厚度的第一种材料;
(4)利用一步式飞秒激光直写刻蚀或多光子聚合打印的方法刻蚀空间沉积掩模与沉积材料层的边缘粘连处,并去除空间沉积掩模和多余的第一种沉积材料;利用超声进行清洗以及用氮气枪吹干;
(5)随后变换沉积区域并沉积第二种材料;将上述沉积完成的样品再进行一次清洗过程;清洗完毕后再将另一个空间沉积掩模置于样品的上表面,保护第一种沉积材料不被第二种材料污染,也确保了两种材料的沉积厚度一致;利用原子层沉积方法在剩余扇区内沉积出具有和第一种沉积材料层相同厚度的第二种材料;
(6)最后利用步骤(4)相同方法去除空间沉积掩模和多余的第二种沉积材料,从而通过多步沉积过程获得预期的空间交错混合材料薄膜。
2.根据权利要求1所述的一种空间交错混合材料薄膜的制备方法,其特征在于:该空间交错混合材料薄膜适用于两种材料构成均匀扇区交错的空间结构;第一种材料选自沉积非晶硅,用于调制近红外光;第二种材料选自沉积氮化硅、二氧化钛、氮化镓或硫化锌中的一种,用于调制可见光。
3.根据权利要求2所述的一种空间交错混合材料薄膜的制备方法,其特征在于:该薄膜厚度为450nm~850nm,沉积区域直径为40μm~100μm。
4.根据权利要求2所述的一种空间交错混合材料薄膜的制备方法,其特征在于:该空间交错混合材料薄膜中单一扇区的角度为30°、45°或60°。
5.权利要求1至4任一项所述方法制备的空间交错混合材料薄膜在消色差超透镜中的应用,其特征在于:该空间交错混合材料薄膜应用于双波长消色差超透镜的加工,通过电子束光刻的微纳加工技术在空间交错混合材料薄膜上加工出纳米阵列结构,实现双波长消色差超透镜。
6.根据权利要求5所述的空间交错混合材料薄膜在消色差超透镜中的应用,其特征在于:该双波长消色差超透镜能够应用于双光子显微成像,实现激发光和荧光共焦,提高收集效率。
7.根据权利要求5所述的空间交错混合材料薄膜在消色差超透镜中的应用,其特征在于:基于空间交错混合材料薄膜的双波长消色差超透镜能够应用于双光子受激发射损耗超分辨成像,能够实现激发光和损耗光的消色差聚焦。
CN202111174707.0A 2021-10-09 2021-10-09 一种空间交错混合材料薄膜的制备方法及其在消色差超透镜中的应用 Pending CN113897589A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111174707.0A CN113897589A (zh) 2021-10-09 2021-10-09 一种空间交错混合材料薄膜的制备方法及其在消色差超透镜中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111174707.0A CN113897589A (zh) 2021-10-09 2021-10-09 一种空间交错混合材料薄膜的制备方法及其在消色差超透镜中的应用

Publications (1)

Publication Number Publication Date
CN113897589A true CN113897589A (zh) 2022-01-07

Family

ID=79190537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111174707.0A Pending CN113897589A (zh) 2021-10-09 2021-10-09 一种空间交错混合材料薄膜的制备方法及其在消色差超透镜中的应用

Country Status (1)

Country Link
CN (1) CN113897589A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721071A (zh) * 2022-03-15 2022-07-08 天津山河光电科技有限公司 一种超表面光学器件及其制作工艺
CN117148571A (zh) * 2023-10-31 2023-12-01 武汉二元科技有限公司 一种红外短波波段消色差超透镜的设计方法及超透镜

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315206A (zh) * 2017-06-23 2017-11-03 南京大学 基于全介质超表面结构的高效红外光学透镜及其制备方法
CN111175861A (zh) * 2020-01-17 2020-05-19 中国科学院长春光学精密机械与物理研究所 多焦距曲面复眼透镜的设计与制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315206A (zh) * 2017-06-23 2017-11-03 南京大学 基于全介质超表面结构的高效红外光学透镜及其制备方法
CN111175861A (zh) * 2020-01-17 2020-05-19 中国科学院长春光学精密机械与物理研究所 多焦距曲面复眼透镜的设计与制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DONGQING SUN: "Excitation and emission dual-wavelength confocal metalens designed directly in the biological tissue environment for two-photon micro-endoscopy", BIOMEDICAL OPTICS EXPRESS, vol. 11, no. 8, pages 4408 - 4418 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721071A (zh) * 2022-03-15 2022-07-08 天津山河光电科技有限公司 一种超表面光学器件及其制作工艺
CN117148571A (zh) * 2023-10-31 2023-12-01 武汉二元科技有限公司 一种红外短波波段消色差超透镜的设计方法及超透镜

Similar Documents

Publication Publication Date Title
CN113897589A (zh) 一种空间交错混合材料薄膜的制备方法及其在消色差超透镜中的应用
WO2020019575A1 (zh) 基于介质超表面结构的窄带滤光片及其制作方法
JP5784028B2 (ja) フレネルゾーンプレートを製造するための方法および装置
CN105866873B (zh) 基于金属纳米光栅的微偏振片阵列的制备方法
KR101472682B1 (ko) 메타물질 제조 방법, 이에 의해 제조된 메타물질 구조 필름 및 이를 이용한 광학 이미징 시스템
US20120234792A1 (en) Lithography method using tilted evaporation
US9939626B2 (en) Microscopic apparatus for creating super-resolution images of an organism or biological matter and method for creating super-resolution images of an organism or biological matter using the same
CN111185678B (zh) 一种在透明材料表面和内部制备镂空结构的方法
CN102109685B (zh) 一种多层组合的电磁调制结构的制备方法
EP2750160B1 (en) Phase plate and method of fabricating same
JP6758480B2 (ja) 高分解能フルマテリアルフレネルゾーンプレートアレイおよびその製造方法
CN107209286A (zh) 抗反射膜、光学组件、光学设备和制造抗反射膜的方法
WO2014003843A1 (en) Method of forming individual metallic microstructures
US11635367B2 (en) Contrast-amplifying carriers using a two-dimensional material
CN111025463B (zh) 一种三维集成超表面器件、其制备方法及应用
EP3612813A1 (en) Nanoplasmonic instrumentation, materials, methods and system integration
Williams et al. Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy
Yuan et al. Large‐Scale Laser Nanopatterning of Multiband Tunable Mid‐Infrared Metasurface Absorber
CN102621601B (zh) 一种平面像场超分辨成像透镜的制备方法
WO2010129060A1 (en) Methods and apparatus for scanning microscopy using one or more fresnel zone plates
CN207051200U (zh) 一种拉曼光谱成像分辨率板
Poletaev Laser ablation of thin films of molybdenum for the fabrication of contact masks elements of diffractive optics with high resolution
CN111188011B (zh) 一种具有高度差的三维手性圆锥金属纳米壳及制备方法
CN110672883B (zh) 一种基于周期纳米孔阵列和透镜介质微球阵列的近场超分辨光学成像方法
Elkarkri et al. Laser photonic nanojets triggered thermoplasmonic micro/nanofabrication of polymer materials for enhanced resolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination