CN113890050A - 一种电动汽车有序并网无功补偿控制方法 - Google Patents

一种电动汽车有序并网无功补偿控制方法 Download PDF

Info

Publication number
CN113890050A
CN113890050A CN202111032964.0A CN202111032964A CN113890050A CN 113890050 A CN113890050 A CN 113890050A CN 202111032964 A CN202111032964 A CN 202111032964A CN 113890050 A CN113890050 A CN 113890050A
Authority
CN
China
Prior art keywords
power
charging
load
charging station
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111032964.0A
Other languages
English (en)
Inventor
何正欢
赵影
卓申申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Herui Power Technology Co ltd
Original Assignee
Nanjing Herui Power Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Herui Power Technology Co ltd filed Critical Nanjing Herui Power Technology Co ltd
Priority to CN202111032964.0A priority Critical patent/CN113890050A/zh
Publication of CN113890050A publication Critical patent/CN113890050A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公布了一种电动汽车有序并网无功补偿控制方法,属于无功补偿控制技术领域。包括分析电动汽车集群效应,对电动汽车集群建模,获取电动汽车充电负荷曲线;制定基于最优功率分配的有序充电策略,获取电动汽车有序充电负荷曲线;计算充电站负载率以及区域电网的负荷波动率;建立含电动汽车充电站的无功补偿控制模型;以配电网有功损耗最小为目标,建立无功优化模型。

Description

一种电动汽车有序并网无功补偿控制方法
技术领域
本发明公布了一种电动汽车有序并网无功补偿控制方法,属于无功补偿控制技术领域。
背景技术
近年来,我国政府出台相关政策大力支持电动汽车的发展,使得越来越多电动汽车大规模接入电网。然而电动汽车作为负荷,具有时间以及空间上的不确定性,大规模电动汽车不确定性的充电行为会对配电网的经济安全运行产生很大影响。
根据分析电动汽车作为随机负荷的运行特性,研究电动汽车充电负荷的影响因素。针对大规模电动汽车无序入网引发的电网负荷“峰上加峰”的问题,制定基于最优功率分配的有序充电策略。
传统无功优化问题是通过对电力系统中的发电机机端电压、变压器分接头以及无功补偿器投切这些变量的控制,达到降低网损的目的。考虑到电动汽车集群在有序充电策略的调节下负荷曲线的平抑变化以及对电动汽车充电站的无功控制,本文含电动汽车充电的无功优化在传统无功优化问题的基础上加上对电动汽车充电站功率因数的控制进行无功补偿。首先对电动汽车集群建模,执行有序充电策略得到负荷曲线,接入配电网计算潮流得到每个节点的有功无功,以及网络损耗等。在状态变量以及控制变量的约束下,以网络损耗最小,建立无功优化模型。
发明内容
本发明公布了一种电动汽车有序并网无功补偿控制方法,属于无功补偿控制技术领域。针对目前电动汽车并网接入引起的电网负荷“峰上加峰”现象和电网电能质量下降问题,提出了基于最优功率分配的有序充电策略和考虑电动汽车有序充电的配电网无功补偿控制方法。
为达到上述目标,本发明以如下技术方案实现:
1.提供一种电动汽车有序并网无功补偿控制方法,其特征在于,属于无功补偿控制技术领域。包括分析电动汽车集群效应,对电动汽车集群建模,获取电动汽车充电负荷曲线;制定基于最优功率分配的有序充电策略,获取电动汽车有序充电负荷曲线;计算充电站负载率以及区域电网的负荷波动率;建立含电动汽车充电站的无功补偿控制模型;以配电网有功损耗最小为目标,建立无功优化模型。
2.根据权利要求1所述的方法,其特征在于,分析电动汽车的运行特性以及出行规律,对主要影响因素分析其对电动汽车负荷大小的影响程度,采用蒙特卡洛模拟与概率统计分析相结合的方法进行电动汽车集群负荷建模,从而获取电动汽车充电负荷曲线。例如充电开始时间是影响电动汽车充电负荷的主要因素之一,根据现有的统计数据可知充电开始时间近似服从正态分布,其概率密度函数公式为:
Figure RE-GDA0003367876460000021
计算电动汽车充电负荷曲线的具体步骤如图1所示。
3.根据权利要求1所述基于最优功率分配的有序充电策略,其特征在于,鉴于电动汽车充电站会对电网运行的安全性与稳定性产生影响,根据配电网内部分布式电源的供电能力与用户负载率的实时变化,要求配电网控制中心对电动汽车充电站的瞬时总功率进行限制。假设一个瞬时总功率上限为
Figure RE-GDA0003367876460000022
的电动汽车充电站,其中容纳有N辆电动汽车,如上图所示,将第i辆电动汽车的瞬时充电功率记为Pi(t),瞬时充电功率上限记为Pi max(t)。
Figure RE-GDA0003367876460000023
时,瞬时充电功率供应充足,因此,在最优情况下每辆电动汽车均可获得自身的充电功率上限,即Pi(t)=Pi max(t)。
Figure RE-GDA0003367876460000024
时,瞬时充电功率供应不足,因此,在最优情况下充电站内全部电动汽车的充电功率之和需要满足
Figure RE-GDA0003367876460000025
这意味着部分电动汽车无法达到自身的充电功率上限。这时对当前接入电网的电动汽车根据它们的荷电状态、剩余充电时间以及充电功率执行最优功率分配策略,保证电量不多但剩余充电时间短的电动汽车能够优先充电,避免了在其他功率分配策略下有电动汽车一直充不到电的情况。
4.根据权利要求1所述的电动汽车有序并网无功补偿控制方法,其特征在于结合电动汽车充电站的有功负荷值,计算充电站负载率α,具体为:
α=Pc_Σ/Pc_max
其中,Pc_Σ为待优化时段充电站总的有功负荷;Pc_max为充电站额定有功功率。
结合充电站所在区域电网负荷值,计算区域电网负荷率β:
β=Pload_Σ/Pload_max
其中,Pload_∑为待优化时段区域电网的有功负荷值;Pload_max为区域电网一年内的最大有功负荷。
5.根据权利要求1所述的电动汽车有序并网无功补偿控制方法,其特征在于,结合电动汽车充电站负载率α以及充电站所在区域电网负荷率β,建立充电站主动参与电网无功补偿模型,得到充电站并网点功率因数控制目标
Figure RE-GDA0003367876460000031
范围:
Figure RE-GDA0003367876460000032
其中,αmax、αmin分别为电动汽车充电站高峰和低谷时段的负载率阈值;βmax、βmin分别为负荷高峰和低谷时段区域电网的负荷率阈值;a、b为相应的权重系数,且a+b=0.1。
6.根据权利要求5所述的建立电动汽车充电站主动参与电网无功补偿模型,其特征在于,基于充电站并网点功率因数控制目标
Figure RE-GDA0003367876460000033
计算充电站无功补偿量Qc
补偿前:
有功功率:
Figure RE-GDA0003367876460000034
无功功率:
Figure RE-GDA0003367876460000035
补偿后:有功功率不变,功率因数提升至
Figure RE-GDA0003367876460000036
视在功率:
Figure RE-GDA0003367876460000037
无功功率:
Figure RE-GDA0003367876460000038
则需求的补偿容量为:
Figure RE-GDA0003367876460000041
7.根据权利要求1所述的电动汽车综合无功补偿控制方法,其特征在于,在建立电动汽车充电站主动参与电网无功补偿模型后,以配电网有功损耗最小为目标,建立无功优化模型,目标函数为:
Figure RE-GDA0003367876460000042
根据电网实际运行情况设置约束条件,分为等式约束和不等式约束。
功率平衡方程:
Figure RE-GDA0003367876460000043
不等式约束包括状态变量的不等式约束,发电机无功出力上下限:
Figure RE-GDA0003367876460000045
节点电压上下限:Uimin≤Ui≤Uimax;控制变量的不等式约束,无功补偿容量的上下限:QCimin≤QCi≤QCimax;发电机机端电压的上下限:UGimin≤UGi≤UGimax;变压器变比的上下限:Ttimin≤Tti≤Ttimax;电动汽车充电站功率因数控制目标上下限:
Figure RE-GDA0003367876460000044
附图说明
以下将结合附图对本发明的实施方案进行描述,其中:
图1为根据本发明实施方案示出的电动汽车集群负荷曲线计算流程图
图2为根据本发明实施方案示出的有序充电策略示意图
图3为根据本发明实施方案示出的电动汽车并网系统电路图。

Claims (7)

1.提供一种电动汽车有序并网无功补偿控制方法,其特征在于,属于无功补偿控制技术领域。包括分析电动汽车集群效应,对电动汽车集群建模,获取电动汽车充电负荷曲线;制定基于最优功率分配的有序充电策略,获取电动汽车有序充电负荷曲线;计算充电站负载率以及区域电网的负荷波动率;建立含电动汽车充电站的无功补偿控制模型;以配电网有功损耗最小为目标,建立无功优化模型。
2.根据权利要求1所述的方法,其特征在于,分析电动汽车的运行特性以及出行规律,对主要影响因素分析其对电动汽车负荷大小的影响程度,采用蒙特卡洛模拟与概率统计分析相结合的方法进行电动汽车集群负荷建模,从而获取电动汽车充电负荷曲线。例如充电开始时间是影响电动汽车充电负荷的主要因素之一,根据现有的统计数据可知充电开始时间近似服从正态分布,其概率密度函数公式为:
Figure RE-FDA0003367876450000011
计算电动汽车充电负荷曲线的具体步骤如图1所示。
3.根据权利要求1所述基于最优功率分配的有序充电策略,其特征在于,鉴于电动汽车充电站会对电网运行的安全性与稳定性产生影响,根据配电网内部分布式电源的供电能力与用户负载率的实时变化,要求配电网控制中心对电动汽车充电站的瞬时总功率进行限制。假设一个瞬时总功率上限为
Figure RE-FDA0003367876450000012
的电动汽车充电站,其中容纳有N辆电动汽车,如上图所示,将第i辆电动汽车的瞬时充电功率记为Pi(t),瞬时充电功率上限记为Pi max(t)。
Figure RE-FDA0003367876450000013
时,瞬时充电功率供应充足,因此,在最优情况下每辆电动汽车均可获得自身的充电功率上限,即Pi(t)=Pi max(t)。
Figure RE-FDA0003367876450000014
时,瞬时充电功率供应不足,因此,在最优情况下充电站内全部电动汽车的充电功率之和需要满足
Figure RE-FDA0003367876450000021
这意味着部分电动汽车无法达到自身的充电功率上限。这时对当前接入电网的电动汽车根据它们的荷电状态、剩余充电时间以及充电功率执行最优功率分配策略,保证电量不多但剩余充电时间短的电动汽车能够优先充电,避免了在其他功率分配策略下有电动汽车一直充不到电的情况。
4.根据权利要求1所述的电动汽车有序并网无功补偿控制方法,其特征在于结合电动汽车充电站的有功负荷值,计算充电站负载率α,具体为:
α=Pc_∑/Pc_max
其中,Pc_Σ为待优化时段充电站总的有功负荷;Pc_max为充电站额定有功功率。
结合充电站所在区域电网负荷值,计算区域电网负荷率β:
β=Pload_Σ/Pload_max
其中,Pload_Σ为待优化时段区域电网的有功负荷值;Pload_max为区域电网一年内的最大有功负荷。
5.根据权利要求1所述的电动汽车有序并网无功补偿控制方法,其特征在于,结合电动汽车充电站负载率α以及充电站所在区域电网负荷率β,建立充电站主动参与电网无功补偿模型,得到充电站并网点功率因数控制目标
Figure RE-FDA0003367876450000022
范围:
Figure RE-FDA0003367876450000023
其中,αmax、αmin分别为电动汽车充电站高峰和低谷时段的负载率阈值;βmax、βmin分别为负荷高峰和低谷时段区域电网的负荷率阈值;a、b为相应的权重系数,且a+b=0.1。
6.根据权利要求5所述的建立电动汽车充电站主动参与电网无功补偿模型,其特征在于,基于充电站并网点功率因数控制目标
Figure RE-FDA0003367876450000024
计算充电站无功补偿量Qc
补偿前:
有功功率:
Figure RE-FDA0003367876450000025
无功功率:
Figure RE-FDA0003367876450000026
补偿后:有功功率不变,功率因数提升至
Figure RE-FDA0003367876450000027
视在功率:
Figure RE-FDA0003367876450000031
无功功率:
Figure RE-FDA0003367876450000032
则需求的补偿容量为:
Figure RE-FDA0003367876450000033
7.根据权利要求1所述的电动汽车综合无功补偿控制方法,其特征在于,在建立电动汽车充电站主动参与电网无功补偿模型后,以配电网有功损耗最小为目标,建立无功优化模型,目标函数为:
Figure RE-FDA0003367876450000034
根据电网实际运行情况设置约束条件,分为等式约束和不等式约束。
功率平衡方程:
Figure RE-FDA0003367876450000035
不等式约束包括状态变量的不等式约束,发电机无功出力上下限:
QGimin≤QGi≤QGimax;节点电压上下限:Uimin≤Ui≤Uimax;控制变量的不等式约束,无功补偿容量的上下限:QCimin≤QCi≤QCimax;发电机机端电压的上下限:
UGimin≤UGi≤UGimax;变压器变比的上下限:Ttimin≤Tti≤Ttimax;电动汽车充电站功率因数控制目标上下限:
Figure RE-FDA0003367876450000036
CN202111032964.0A 2021-09-03 2021-09-03 一种电动汽车有序并网无功补偿控制方法 Pending CN113890050A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111032964.0A CN113890050A (zh) 2021-09-03 2021-09-03 一种电动汽车有序并网无功补偿控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111032964.0A CN113890050A (zh) 2021-09-03 2021-09-03 一种电动汽车有序并网无功补偿控制方法

Publications (1)

Publication Number Publication Date
CN113890050A true CN113890050A (zh) 2022-01-04

Family

ID=79012338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111032964.0A Pending CN113890050A (zh) 2021-09-03 2021-09-03 一种电动汽车有序并网无功补偿控制方法

Country Status (1)

Country Link
CN (1) CN113890050A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241891A (zh) * 2022-07-07 2022-10-25 扬州浩辰电力设计有限公司 110kV变电站多组投切无功补偿装置的投切控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241891A (zh) * 2022-07-07 2022-10-25 扬州浩辰电力设计有限公司 110kV变电站多组投切无功补偿装置的投切控制方法
CN115241891B (zh) * 2022-07-07 2023-10-24 扬州浩辰电力设计有限公司 110kV变电站多组投切无功补偿装置的投切控制方法

Similar Documents

Publication Publication Date Title
CN105846461B (zh) 一种大规模储能电站自适应动态规划的控制方法和系统
WO2018196433A1 (zh) 多类型储能多级控制方法
CN109787282B (zh) 一种规模化储能参与新能源场站无功协调控制方法和系统
CN115117931B (zh) 考虑电动汽车灵活性和光伏接入的配电网规划方法及系统
CN111422094B (zh) 分布式充电桩的充放电协调优化控制方法
CN109657993B (zh) 一种基于非合作博弈的能源局域网储能系统自动需求响应方法
CN112803446B (zh) 基于客户侧需求响应的多能优化控制方法及控制系统
CN110021930B (zh) 一种规模化储能参与电网分区控制方法和系统
CN113258581B (zh) 一种基于多智能体的源荷协调电压控制方法及装置
CN108471139B (zh) 一种含新能源和温控负荷的区域电网动态需求响应方法
CN111697597A (zh) 一种基于粒子群算法的火储联合agc调频控制方法
CN112072672A (zh) 含智能负荷的主动配电网优化调度方法
CN111047119B (zh) 一种用于调控电能质量的电动汽车充电站动态定价方法
CN113629736B (zh) 一种基于配电网氢储能系统日内滚动优化方法
CN113890050A (zh) 一种电动汽车有序并网无功补偿控制方法
CN116645089A (zh) 一种考虑退役电池容量退化的储能系统双层优化配置方法
CN114050570B (zh) 一种源网荷储系统协同调控方法及装置
CN114498773A (zh) 一种可调节负荷参与主站apc调频的控制方法及装置
CN110829474B (zh) 用大数据智能储能支撑电网动态安全的方法与系统
CN112838598A (zh) 一种基于自适应连续禁忌搜索算法的优化控制策略
CN113364017A (zh) Vmd火电机组与电池储能系统的协调消纳风电调节策略
CN112531735A (zh) 基于机器学习的自动发电控制系统的功率分配方法及装置
CN110086186B (zh) 一种计及路灯充电桩的城市配电网电压控制方法
CN115065075B (zh) 风储集群中储能站优化调度方法、系统及存储介质
CN108718093B (zh) 一种高载能负荷参与风电消纳的有功-无功协调控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220104