CN113890017A - 基于关键量测的配电网电压自适应控制方法 - Google Patents

基于关键量测的配电网电压自适应控制方法 Download PDF

Info

Publication number
CN113890017A
CN113890017A CN202111128899.1A CN202111128899A CN113890017A CN 113890017 A CN113890017 A CN 113890017A CN 202111128899 A CN202111128899 A CN 202111128899A CN 113890017 A CN113890017 A CN 113890017A
Authority
CN
China
Prior art keywords
node
voltage
distribution network
time
representing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111128899.1A
Other languages
English (en)
Other versions
CN113890017B (zh
Inventor
李鹏
霍彦达
冀浩然
习伟
于浩
姚浩
陈军健
陶伟
李肖博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Southern Power Grid Digital Grid Research Institute Co Ltd
Original Assignee
Tianjin University
Southern Power Grid Digital Grid Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University, Southern Power Grid Digital Grid Research Institute Co Ltd filed Critical Tianjin University
Priority to CN202111128899.1A priority Critical patent/CN113890017B/zh
Publication of CN113890017A publication Critical patent/CN113890017A/zh
Application granted granted Critical
Publication of CN113890017B publication Critical patent/CN113890017B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种基于关键量测的配电网电压自适应控制方法:根据选定的有源配电网,输入系统基本参数信息;计算每个区域内各节点间电压‑无功灵敏度;计算区域内各节点的灵敏度矩阵,并计算各节点的特征向量;将每个相似节点集中相似度指标最大的节点选为关键量测节点;以节点电压偏差最小为目标函数,以有载调压变压器档位上下限、有载调压变压器档位变化量上下限为约束条件,建立慢时间尺度下配电网自适应电压控制模型并求解;以分布式电源所在区域电压偏差最小为目标函数,以分布式电源逆变器无功容量为约束条件,建立快时间尺度下配电网自适应电压控制模型并求解,得到分布式电源无功出力策略;本发明实现了对多电压控制设备出力协调运行优化问题的求解。

Description

基于关键量测的配电网电压自适应控制方法
技术领域
本发明涉及一种配电网电压控制方法,特别是涉及一种基于关键量测的配电网电压自适应控制方法。
背景技术
配电网承担着安全、可靠、经济供电的重要任务,其电压水平直接影响到用户侧设备的安全性和可靠性,其重要性不言而喻。目前,随着分布式电源在配电网中的高渗透率接入,其出力的快速波动加剧了电压越限问题。通过各类电压电压控制装置,包括分布式电源的逆变器和载调压变压器等的调节,可以有效解决电压越限问题。传统配电网电压优化控制方法大多采用数学模型描述配电网状态。然而在实际运行中,由于受到配电网运行工况、线路环境等影响,准确的配电网络参数难以获取;此外,大量可再生能源高渗透率接入后,由于其运行特性受环境影响较大,出力具有明显的随机性和波动性。因此,很难用一个精确的数学模型描述配电网状态。这也使得依赖于数学模型配电网的电压优化方法面临诸多问题。
随着配网信息化水平的提高,配电网积累了大量运行数据,其中包含的重要信息,为解决配电网电压控制问题提供了新的思路。基于实时量测信息,使用数据驱动方法构建配电网电压控制模型,具有避开繁琐复杂的数学模型、简化求解过程等优势。然而考虑到配电网实际运行情况,配电网全局配置实时量测难以实现。因此需要一种基于关键量测的数据驱动电压控制方法以满足实际工程需求。
通过对配电网历史数据的分析得到关键量测位置,并通过相似度将节点聚类,最后筛选出最具代表性的量测节点,能够有效减少数据驱动电压控制问题中对量测装置数量的需求,同时能够减小数据驱动模型规模,加快求解速度。因此,研究掌握基于关键量测的配电网电压自适应控制方法,为配电网电压协调优化问题提供了新的思路,有助于提升配电网电压优化控制效果,进而提高配电网安全性和可靠性。
发明内容
本发明所要解决的技术问题是,为了克服出有技术的不足,提供一种能够确定合理的电压控制设备出力的基于关键量测的配电网电压自适应控制方法。
本发明所采用的技术方案是:一种基于关键量测的配电网电压自适应控制方法,其特征在于,包括如下步骤:
1)根据选定的有源配电网,输入系统基本参数信息,包括:有载调压变压器的接入位置、分布式电源接入位置以及容量,有源配电网分区信息,有源配电网典型场景集合,有源配电网典型场景下节点注入有功、无功变化量以及对应的节点电压幅值变化量,相似度阈值,节点电压参考值,风光负荷预测信息,控制器伪雅可比矩阵初始值,优化控制总时长为T,当前时刻t=0,快时间尺度下控制域时间间隔Δt,慢时间尺度下预测域时间间隔ΔT,控制时移步数k=1;
2)根据步骤1)有源配电网典型场景,有源配电网典型场景下节点注入有功、无功变化量以及对应的节点电压幅值变化量,计算每个区域内各节点间电压-无功灵敏度;
3)根据步骤2)给出的每个区域内各节点间电压-无功灵敏度,计算区域内各节点的灵敏度矩阵,并在相似度矩阵的基础上计算各节点的特征向量;
4)根据步骤3)给出的各节点特征向量,采用修正余弦相似度计算各节点之间的相似度,将相似度超过相似度阈值的节点聚为一类,得到若干相似节点集,计算每个相似节点集中各节点的相似度指标,并将每个相似节点集中相似度指标最大的节点选为关键量测节点;
5)依据步骤1)给出的有源配电网,以及在优化时段[t,t+ΔT]内的风光负荷预测信息,以节点电压偏差最小为目标函数,以有载调压变压器档位上下限、有载调压变压器档位变化量上下限为约束条件,建立慢时间尺度下配电网自适应电压控制模型;
6)获取t时刻各节点电压量测值,采用梯度下降法求解慢时间尺度下配电网自适应电压控制模型,得到有载调压变压器档位,并下发到有载调压变压器;
7)依据步骤1)给出的有源配电网,以分布式电源所在区域电压偏差最小为目标函数,以分布式电源逆变器无功容量为约束条件,建立快时间尺度下配电网自适应电压控制模型;
8)获取t时刻分布式电源所在区域节点电压量测值,采用梯度下降法求解快时间尺度下配电网自适应电压控制模型,得到分布式电源无功出力策略,并下发到各分布式电源;
9)更新控制时刻t=t+Δt,时移步数k=k+1,判断控制域时移步数k×Δt是否大于ΔT,是则进入步骤7),若则返回步骤4);
10)判断当前时刻t是否达到时间T,是则自适应电压控制过程结束,否则令k=1,返回步骤2)。
本发明的基于关键量测的配电网电压自适应控制方法,综合考虑了配电网线路参数不可知性、分布式电源出力情况不确定性,使用历史数据进行节点聚类,进而筛选关键量测节点,有效减少了数据驱动算法对量测数量需求;此外通过数据驱动的配电网电压自适应控制,可以实现无模型条件下配电网控制设备出力策略的求解,可以有效解决配电网电压控制问题。
附图说明
图1是本发明基于关键量测的配电网电压自适应控制方法的流程图;
图2是所选配电网拓扑结构图;
图3是10:00有源配电网电压变化曲线;
图4是10:00有源配电网18节点和33节点电压变化曲线;
图5是10:00分布式电源无功出力变化曲线;
图6是场景二24小时有载调压变压器档位变化图;
图7是节点18场景一、场景二电压24小时对比图;
图8是节点18光伏24小时无功出力图。
具体实施方式
下面结合实施例和附图对本发明的基于关键量测的配电网电压自适应控制方法做出详细说明。
如图1所示,本发明的基于关键量测的配电网电压自适应控制方法,包括如下步骤:
1)根据选定的有源配电网,输入系统基本参数信息,包括:有载调压变压器的接入位置、分布式电源接入位置以及容量,有源配电网分区信息,有源配电网典型场景集合,有源配电网典型场景下节点注入有功、无功变化量以及对应的节点电压幅值变化量,相似度阈值,节点电压参考值,风光负荷预测信息,控制器伪雅可比矩阵初始值,优化控制总时长为T,当前时刻t=0,快时间尺度下控制域时间间隔Δt,慢时间尺度下预测域时间间隔ΔT,控制时移步数k=1;
2)根据步骤1)有源配电网典型场景,有源配电网典型场景下节点注入有功、无功变化量以及对应的节点电压幅值变化量,计算每个区域内各节点间电压-无功灵敏度;其中,
所述的每个区域内各节点间电压-无功灵敏度计算方法为:
Figure BDA0003279787510000031
式中,Si,g(ζ)表示配电网典型场景ζ下节点i相对分布式电源接入节点g的电压-无功灵敏度,
Figure BDA0003279787510000032
表示配电网典型场景ζ下节点i电压变化量,
Figure BDA0003279787510000033
Figure BDA0003279787510000034
分别表示配电网典型场景ζ下节点g注入有功和无功功率变化量,
Figure BDA0003279787510000035
表示配电网区域m的节点集合,Λ表示配电网典型场景集合。
3)根据步骤2)给出的每个区域内各节点间电压-无功灵敏度,计算区域内各节点的灵敏度矩阵,并在相似度矩阵的基础上计算各节点的特征向量;其中,
所述的区域内各节点的灵敏度矩阵的计算方法为:
Figure BDA0003279787510000036
式中,Hi表示节点i的灵敏度矩阵,Si,g(ζ)表示配电网典型场景ζ下节点i相对分布式电源接入节点g的电压-无功灵敏度,
Figure BDA0003279787510000037
表示配电网区域m节点集合,Nm表示配电网区域m的节点数量,Λ表示配电网典型场景集合,Ns表示配电网典型场景个数;
所述的计算各节点的特征向量的计算方法为:
Figure BDA0003279787510000038
式中,Fi表示节点i的特征向量,Hi(1)、Hi(2)、Hi(Nm)分别表示节点i的灵敏度矩阵Hi的第1行、第2行和第Nm行。
4)根据步骤3)给出的各节点特征向量,采用修正余弦相似度计算各节点之间的相似度,将相似度超过相似度阈值的节点聚为一类,得到若干相似节点集,计算每个相似节点集中各节点的相似度指标,并将每个相似节点集中相似度指标最大的节点选为关键量测节点;其中:
所述的计算各节点之间的相似度cos(Fi,Fg)的计算方法为:
Figure BDA0003279787510000041
式中,Fi(k)、Fg(k)分别表示节点i和节点g的特征向量,
Figure BDA0003279787510000042
Figure BDA0003279787510000043
分别表示节点i和节点g的特征向量的平均值,σ表示节点特征向量的维度,σ=Nm×Ns
Figure BDA0003279787510000044
表示配电网区域m的节点集合,Nm表示区域m的节点数量,Ns表示配电网典型场景数量;
所述的计算每个相似节点集中各节点的相似度指标的计算方法为:
Figure BDA0003279787510000045
Figure BDA0003279787510000046
式中,bi表示节点i的相似度指标,Nc,i表示相似节点集ci中节点个数,ai表示节点i所在行编号,hi表示节点i所在列编号索引,Гc,i表示节点相似度矩阵,包含各节点之间相似度信息,cos(Fi,Fj)表示节点i和节点j的相似度,ci表示包含节点i的相似节点集。
5)依据步骤1)给出的有源配电网,以及在优化时段[t,t+ΔT]内的风光负荷预测信息,以节点电压偏差最小为目标函数,以有载调压变压器档位上下限、有载调压变压器档位变化量上下限为约束条件,建立慢时间尺度下配电网自适应电压控制模型;其中,
所述的慢时间尺度下配电网自适应电压控制模型的目标函数J(O[t])为:
Figure BDA0003279787510000047
式中,Uref表示电压参考值,
Figure BDA0003279787510000048
表示t+ΔT电压估计值,O[t]和O[t-Δt]分别表示t时刻和t-Δt时刻有载调压变压器的档位,λO表示权重系数;其中
Figure BDA0003279787510000049
的估计函数表示为:
Figure BDA00032797875100000410
式中,U[t]表示t时刻电压量测值,E[t+ΔT]为t时刻至t+ΔT时刻风光负荷预测信息,E′[t]表示t时刻风光负荷数据,ΦO[t]表示t时刻有载调压变压器的伪雅可比矩阵,用来反映有载调压变压器档位与关键量测节点电压的动态关系,ΦO[t]求解表达式为:
Figure BDA00032797875100000411
式中,ΦO[t-ΔT]表示t-ΔT时刻载调压变压器的伪雅可比矩阵,ΔU[t]=U[t]-U[t-ΔT]表示t时刻和t-ΔT时刻电压量测之差,ΔO[t-ΔT]=o[t-ΔT]-O[t-2ΔT]表示t-ΔT时刻和t-2ΔT时刻有载调压变压器档位变化,ΦE[t]表示t时刻风光负荷预测信息的伪雅可比矩阵,用来反映风光负荷预测信息与关键量测节点电压的动态关系,ΔE′[t-Δt]=E′[t-Δt]-E′[t-2Δt]表示t-Δt时刻和t-2Δt时刻风光负荷数据之差,ηO和μO为权重系数;
式(9)中,φE[t]的表达式为:
Figure BDA0003279787510000051
式中,ΦE[t-Δt]表示t-Δt时刻风光负荷预测信息的伪雅可比矩阵,ηE和μE为权重系数。
所述的慢时间尺度下配电网自适应电压控制模型的约束条件:
有载调压变压器档位上下限约束条件表示为:
Figure BDA0003279787510000052
式中,O[t]表示t时刻有载调压变压器的档位,Omax和Omin分别表示有载调压变压器档位的上下限;
所述的有载调压变压器档位变化量上下限约束条件表示为:
Figure BDA0003279787510000053
式中,O[t]和O[t-Δt]分别表示t时刻和t-Δt时刻有载调压变压器的档位。
6)获取t时刻各节点电压量测值,采用梯度下降法求解慢时间尺度下配电网自适应电压控制模型,得到有载调压变压器档位,并下发到有载调压变压器;得到的有载调压变压器档位为:
Figure BDA0003279787510000054
式中,Uref表示电压参考值,O[t]和O[t-Δt]分别表示t时刻和t-Δt时刻有载调压变压器的档位,ΦO[t]表示t时刻有载调压变压器的伪雅可比矩阵,ΦE[t]表示t时刻风光负荷预测信息的伪雅可比矩阵,用来反映风光负荷预测信息与关键量测节点电压的动态关系,U[t]表示t时刻电压量测值,ΔE′[t-Δt]=E′[t-Δt]-E′[t-2Δt]表示t时刻和t-Δt时刻风光负荷数据之差,ρO和λO为权重系数。
7)依据步骤1)给出的有源配电网,以分布式电源所在区域电压偏差最小为目标函数,以分布式电源逆变器无功容量为约束条件,建立快时间尺度下配电网自适应电压控制模型;其中,
所述的快时间尺度下配电网自适应电压控制模型的目标函数J(Xm,n[t])为:
Figure BDA0003279787510000055
式中,Uref表示电压参考值,
Figure BDA0003279787510000056
表示t+Δt时刻有源配电网区域m的关键量测节点电压的估计值,Xm,n[t]和Xm,n[t-Δt]分别表示t时刻和t-Δt时刻区域m内分布式电源n的无功出力值,λX,n表示权重系数;其中
Figure BDA0003279787510000057
的估计函数表示为:
Figure BDA0003279787510000058
式中,Um[t]表示t时刻配电网区域m的关键量测节点电压量测值,
Figure BDA0003279787510000059
表示区域m的分布式电源数量;Φm,n[t]表示t时刻区域m分布式电源n伪雅可比矩阵,用来反映区域m内分布式电源n的无功出力与关键量测节点电压的动态关系,表达式为:
Figure BDA0003279787510000061
式中,ΔUm[t]=Um[t]-Um[t-Δt],表示t时刻和t-Δt时刻电压量测之差,ΔXm,n[t-Δt]=Xm,n[t-Δt]-Xm,n[t-2Δt],表示t-Δt时刻和t-2Δt时刻区域m内分布式电源n的无功出力,ηX,n和μX,n表示权重系数。
所述的快时间尺度下配电网自适应电压控制模型的以分布式电源逆变器无功容量为约束条件为:
Figure BDA0003279787510000062
式中,Pm,n[t]表示t时刻区域m内分布式电源n的有功出力,Sm,n[t]表示t时刻区域m内分布式电源n的容量。
8)获取t时刻分布式电源所在区域节点电压量测值,采用梯度下降法求解快时间尺度下配电网自适应电压控制模型,得到分布式电源无功出力策略,并下发到各分布式电源;其中得到分布式电源无功出力策略表示为:
Figure BDA0003279787510000063
式中,Xm,n[t]和Xm,n[t-Δt]分别表示t时刻和t-Δt时刻区域m内分布式电源n的无功出力值,Xm,l[t]和Xm,l[t-Δt]分别表示t时刻和t-Δt时刻区域m内分布式电源l的无功出力值,Uref表示电压参考值,Um[t]表示t时刻配电网区域m的关键量测节点电压量测值,
Figure BDA0003279787510000064
区域m内分布式电源数量,Φm,n[t]和Φm,l[t]分别表示t时刻区域m内分布式电源n和l伪雅可比矩阵,λX,n和ρX,n为权重系数。
9)更新控制时刻t=t+Δt,时移步数k=k+t,判断控制域时移步数k×Δt是否大于ΔT,是则进入步骤7),若则返回步骤4);
10)判断当前时刻t是否达到时间T,是则自适应电压控制过程结束,否则令k=1,返回步骤2)。
具体实例:
对于本实施例,配电网包括33个节点,拓扑连接情况如图2所示;有载调压变压器接入节点1;分布式电源容量位置信息如表1所示控制步长Δt=0.5分钟,控制时段ΔT=4小时,优化时间T=24小时;电网的电压参考值设定为1.0p.u,权重系数取值均为1。采用数据驱动的多时间尺度协调自适应电压控制进行优化,经过上述步骤可以得到各个时刻有分布式电源和载调压变压器出力策略。为验证所述方法的有效性,设置4种场景验证所述控制策略。
场景一:不使用控制策略;
场景二:进行基于关键量测的分布式电源电压与有载调压变压器协调控制;
场景三:进行基于模型的集中式控制;
执行优化计算的计算机硬件环境为Intel(R)Xeon(R)CPU E5-16030,主频为2.8GHz,内存为16GB;软件环境为Windows 10操作系统。采用本方法所述的基于关键量测的配电网电压自适应控制方法,本实施例配电网拓扑结构如图2所示。以10:00为例,方案一、方案二电压控制后各节点电压值对比结果如图3所示,18节点和33节点电压变化曲线如图4所示,10:00分布式电源无功出力变化曲线如图5所示;24小时有载调压变压器档位变化如图6所示,节点18场景一、场景二24小时电压值对比图结果如图7所示,节点18光伏24小时无功出力图如图8所示,优化结果对比如表2所示。综合图3-图8和表2可以看出,本发明所述的基于关键量测的配电网电压自适应控制方法可以有效解决配电网电压控制问题,对于配电网优化运行具有重要意义。
表1分布式电源容量位置信息
接入节点 11 12 13 15 16 17 18 20 21
容量/kVA 100 100 500 500 500 100 100 100 100
接入节点 22 23 24 25 29 30 31 32 33
容量/kVA 100 100 100 100 100 100 100 100 100
表2电压偏差对比
场景一 场景二 场景三
平均电压偏差 0.0179 0.0087 0.0076
电压最大值 1.0658 1.0454 1.0254
电压最小值 0.9332 0.9615 0.9611

Claims (10)

1.一种基于关键量测的配电网电压自适应控制方法,其特征在于,包括如下步骤:
1)根据选定的有源配电网,输入系统基本参数信息,包括:有载调压变压器的接入位置、分布式电源接入位置以及容量,有源配电网分区信息,有源配电网典型场景集合,有源配电网典型场景下节点注入有功、无功变化量以及对应的节点电压幅值变化量,相似度阈值,节点电压参考值,风光负荷预测信息,控制器伪雅可比矩阵初始值,优化控制总时长为T,当前时刻t=0,快时间尺度下控制域时间间隔Δt,慢时间尺度下预测域时间间隔ΔT,控制时移步数k=1;
2)根据步骤1)有源配电网典型场景,有源配电网典型场景下节点注入有功、无功变化量以及对应的节点电压幅值变化量,计算每个区域内各节点间电压-无功灵敏度;
3)根据步骤2)给出的每个区域内各节点间电压-无功灵敏度,计算区域内各节点的灵敏度矩阵,并在相似度矩阵的基础上计算各节点的特征向量;
4)根据步骤3)给出的各节点特征向量,采用修正余弦相似度计算各节点之间的相似度,将相似度超过相似度阈值的节点聚为一类,得到若干相似节点集,计算每个相似节点集中各节点的相似度指标,并将每个相似节点集中相似度指标最大的节点选为关键量测节点;
5)依据步骤1)给出的有源配电网,以及在优化时段[t,t+ΔT]内的风光负荷预测信息,以节点电压偏差最小为目标函数,以有载调压变压器档位上下限、有载调压变压器档位变化量上下限为约束条件,建立慢时间尺度下配电网自适应电压控制模型;
6)获取t时刻各节点电压量测值,采用梯度下降法求解慢时间尺度下配电网自适应电压控制模型,得到有载调压变压器档位,并下发到有载调压变压器;
7)依据步骤1)给出的有源配电网,以分布式电源所在区域电压偏差最小为目标函数,以分布式电源逆变器无功容量为约束条件,建立快时间尺度下配电网自适应电压控制模型;
8)获取t时刻分布式电源所在区域节点电压量测值,采用梯度下降法求解快时间尺度下配电网自适应电压控制模型,得到分布式电源无功出力策略,并下发到各分布式电源;
9)更新控制时刻t=t+Δt,时移步数k=k+1,判断控制域时移步数k×Δt是否大于ΔT,是则进入步骤7),若则返回步骤4);
10)判断当前时刻t是否达到时间T,是则自适应电压控制过程结束,否则令k=1,返回步骤2)。
2.根据权利要求1所述的基于关键量测的配电网电压自适应控制方法,其特征在于,步骤2)中所述的每个区域内各节点间电压-无功灵敏度计算方法为:
Figure FDA0003279787500000011
式中,Si,g(ζ)表示配电网典型场景ζ下节点i相对分布式电源接入节点g的电压-无功灵敏度,
Figure FDA0003279787500000012
表示配电网典型场景ζ下节点i电压变化量,
Figure FDA0003279787500000013
Figure FDA0003279787500000014
分别表示配电网典型场景ζ下节点g注入有功和无功功率变化量,
Figure FDA0003279787500000015
表示配电网区域m的节点集合,Λ表示配电网典型场景集合。
3.根据权利要求1所述的基于关键量测的配电网电压自适应控制方法,其特征在于,步骤3)中所述的区域内各节点的灵敏度矩阵的计算方法为:
Figure FDA0003279787500000021
式中,Hi表示节点i的灵敏度矩阵,Si,g(ζ)表示配电网典型场景ζ下节点i相对分布式电源接入节点g的电压-无功灵敏度,
Figure FDA0003279787500000022
表示配电网区域m节点集合,Nm表示配电网区域m的节点数量,Λ表示配电网典型场景集合,Ns表示配电网典型场景个数;
所述的计算各节点的特征向量的计算方法为:
Figure FDA00032797875000000212
式中,Fi表示节点i的特征向量,Hi(1)、Hi(2)、Hi(Nm)分别表示节点i的灵敏度矩阵Hi的第1行、第2行和第Nm行。
4.根据权利要求1所述的基于关键量测的配电网电压自适应控制方法,其特征在于,步骤4)中:
所述的计算各节点之间的相似度cos(Fi,Fg)的计算方法为:
Figure FDA0003279787500000023
式中,Fi(k)、Fg(k)分别表示节点i和节点g的特征向量,
Figure FDA0003279787500000024
Figure FDA0003279787500000025
分别表示节点i和节点g的特征向量的平均值,σ表示节点特征向量的维度,σ=Nm×Ns
Figure FDA0003279787500000026
表示配电网区域m的节点集合,Nm表示区域m的节点数量,Ns表示配电网典型场景数量;
所述的计算每个相似节点集中各节点的相似度指标的计算方法为:
Figure FDA0003279787500000027
Figure FDA0003279787500000028
式中,bi表示节点i的相似度指标,Nc,i表示相似节点集ci中节点个数,ai表示节点i所在行编号,hi表示节点i所在列编号索引,Γc,i表示节点相似度矩阵,包含各节点之间相似度信息,cos(Fi,Fj)表示节点i和节点j的相似度,ci表示包含节点i的相似节点集。
5.根据权利要求1所述的基于关键量测的配电网电压自适应控制方法,其特征在于,步骤5)所述的慢时间尺度下配电网自适应电压控制模型的目标函数J(O[t])为:
Figure FDA0003279787500000029
式中,Uref表示电压参考值,
Figure FDA00032797875000000210
表示t+ΔT电压估计值,O[t]和O[t-Δt]分别表示t时刻和t-Δt时刻有载调压变压器的档位,λO表示权重系数;其中
Figure FDA00032797875000000211
的估计函数表示为:
Figure FDA0003279787500000031
式中,U[t]表示t时刻电压量测值,E[t+ΔT]为t时刻至t+ΔT时刻风光负荷预测信息,E′[t]表示t时刻风光负荷数据,ΦO[t]表示t时刻有载调压变压器的伪雅可比矩阵,用来反映有载调压变压器档位与关键量测节点电压的动态关系,ΦO[t]求解表达式为:
Figure FDA0003279787500000032
式中,ΦO[t-ΔT]表示t-ΔT时刻载调压变压器的伪雅可比矩阵,ΔU[t]=U[t]-U[t-ΔT]表示t时刻和t-ΔT时刻关键量测节点电压量测之差,ΔO[t-ΔT]=O[t-ΔT]-O[t-2ΔT]表示t-ΔT时刻和t-2ΔT时刻有载调压变压器档位变化,ΦE[t]表示t时刻风光负荷预测信息的伪雅可比矩阵,用来反映风光负荷预测信息与关键量测节点电压的动态关系,ΔE′[t-Δt]=E′[t-Δt]-E′[t-2Δt]表示t-Δt时刻和t-2Δt时刻风光负荷数据之差,ηO和μO为权重系数;
式(9)中,ΦE[t]的表达式为:
Figure FDA0003279787500000033
式中,ΦE[t-Δt]表示t-Δt时刻风光负荷预测信息的伪雅可比矩阵,ηE和μE为权重系数。
6.根据权利要求1所述的基于关键量测的配电网电压自适应控制方法,其特征在于,步骤5)中所述的慢时间尺度下配电网自适应电压控制模型的约束条件:
有载调压变压器档位上下限约束条件表示为:
Figure FDA0003279787500000034
式中,O[t]表示t时刻有载调压变压器的档位,Omax和Omin分别表示有载调压变压器档位的上下限;
所述的有载调压变压器档位变化量上下限约束条件表示为:
Figure FDA0003279787500000035
式中,O[t]和O[t-Δt]分别表示t时刻和t-Δt时刻有载调压变压器的档位。
7.根据权利要求1所述的基于关键量测的配电网电压自适应控制方法,其特征在于,步骤6)得到的有载调压变压器档位为:
Figure FDA0003279787500000036
式中,Uref表示电压参考值,O[t]和O[t-Δt]分别表示t时刻和t-Δt时刻有载调压变压器的档位,ΦO[t]表示t时刻有载调压变压器的伪雅可比矩阵,ΦE[t]表示t时刻风光负荷预测信息的伪雅可比矩阵,用来反映风光负荷预测信息与关键量测节点电压的动态关系,U[t]表示t时刻电压量测值,ΔE′[t-Δt]=E′[t-Δt]-E′[t-2Δt]表示t时刻和t-Δt时刻风光负荷数据之差,ρO和λO为权重系数。
8.根据权利要求1所述的基于关键量测的配电网电压自适应控制方法,其特征在于,步骤7)所述的快时间尺度下配电网自适应电压控制模型的目标函数J(Xm,n[t])为:
Figure FDA0003279787500000041
式中,Uref表示电压参考值,
Figure FDA0003279787500000042
表示t+Δt时刻有源配电网区域m的关键量测节点电压的估计值,Xm,n[t]和Xm,n[t-Δt]分别表示t时刻和t-Δt时刻区域m内分布式电源n的无功出力值,λX,n表示权重系数;其中
Figure FDA0003279787500000043
的估计函数表示为:
Figure FDA0003279787500000044
式中,Um[t]表示t时刻配电网区域m的关键量测节点电压量测值,
Figure FDA0003279787500000045
表示区域m的分布式电源数量;Φm,n[t]表示t时刻区域m分布式电源n伪雅可比矩阵,用来反映区域m内分布式电源n的无功出力与关键量测节点电压的动态关系,表达式为:
Figure FDA0003279787500000046
式中,ΔUm[t]=Um[t]-Um[t-Δt],表示t时刻和t-Δt时刻电压量测之差,ΔXm,n[t-Δt]=Xm,n[t-Δt]-Xm,n[t-2Δt],表示t-Δt时刻和t-2Δt时刻区域m内分布式电源n的无功出力,ηx,n和μx,n表示权重系数。
9.根据权利要求1所述的基于关键量测的配电网电压自适应控制方法,其特征在于,步骤7)所述的快时间尺度下配电网自适应电压控制模型的以分布式电源逆变器无功容量为约束条件为:
Figure FDA0003279787500000047
式中,Pm,n[t]表示t时刻区域m内分布式电源n的有功出力,Sm,n[t]表示t时刻区域m内分布式电源n的容量。
10.根据权利要求1所述的基于关键量测的配电网电压自适应控制方法,其特征在于,步骤8)中得到分布式电源无功出力策略表示为:
Figure FDA0003279787500000051
式中,Xm,n[t]和Xm,n[t-Δt]分别表示t时刻和t-Δt时刻区域m内分布式电源n的无功出力值,Xm,l[t]和Xm,l[t-Δt]分别表示t时刻和t-Δt时刻区域m内分布式电源l的无功出力值,Uref表示电压参考值,Um[t]表示t时刻配电网区域m的关键量测节点电压量测值,
Figure FDA0003279787500000052
区域m内分布式电源数量,Φm,n[t]和Φm,l[t]分别表示t时刻区域m内分布式电源n和l伪雅可比矩阵,λX,n和ρX,n为权重系数。
CN202111128899.1A 2021-09-26 2021-09-26 基于关键量测的配电网电压自适应控制方法 Active CN113890017B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111128899.1A CN113890017B (zh) 2021-09-26 2021-09-26 基于关键量测的配电网电压自适应控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111128899.1A CN113890017B (zh) 2021-09-26 2021-09-26 基于关键量测的配电网电压自适应控制方法

Publications (2)

Publication Number Publication Date
CN113890017A true CN113890017A (zh) 2022-01-04
CN113890017B CN113890017B (zh) 2023-03-24

Family

ID=79006718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111128899.1A Active CN113890017B (zh) 2021-09-26 2021-09-26 基于关键量测的配电网电压自适应控制方法

Country Status (1)

Country Link
CN (1) CN113890017B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116191445A (zh) * 2023-04-07 2023-05-30 费莱(浙江)科技有限公司 一种用于分布式电源的自适应电压控制方法及系统
CN117293807A (zh) * 2023-09-25 2023-12-26 上海能优网电力科技有限公司 一种配电网信息侧模型多时间尺度优化方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105138849A (zh) * 2015-09-07 2015-12-09 山东大学 一种基于ap聚类的无功电压控制分区方法
CN105186525A (zh) * 2015-10-29 2015-12-23 山东大学 风电接入下无功电压控制分区方法
CN110957731A (zh) * 2019-11-04 2020-04-03 天津大学 基于模型预测控制的分布式电源就地集群电压控制方法
CN111682594A (zh) * 2020-06-15 2020-09-18 天津大学 数据驱动的配电网柔性变电站无模型自适应电压控制方法
CN112467748A (zh) * 2020-12-10 2021-03-09 山东大学 三相不平衡主动配电网双时标分布式电压控制方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105138849A (zh) * 2015-09-07 2015-12-09 山东大学 一种基于ap聚类的无功电压控制分区方法
CN105186525A (zh) * 2015-10-29 2015-12-23 山东大学 风电接入下无功电压控制分区方法
CN110957731A (zh) * 2019-11-04 2020-04-03 天津大学 基于模型预测控制的分布式电源就地集群电压控制方法
CN111682594A (zh) * 2020-06-15 2020-09-18 天津大学 数据驱动的配电网柔性变电站无模型自适应电压控制方法
CN112467748A (zh) * 2020-12-10 2021-03-09 山东大学 三相不平衡主动配电网双时标分布式电压控制方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.N.R.L.SIRISHA 等: "Cosine Similarity Based Directional Comparison Scheme for Subcycle Transmission Line Protection", 《 IEEE TRANSACTIONS ON POWER DELIVERY》 *
葛维春等: "双时间尺度电-气耦合网络动态潮流计算", 《辽宁工程技术大学学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116191445A (zh) * 2023-04-07 2023-05-30 费莱(浙江)科技有限公司 一种用于分布式电源的自适应电压控制方法及系统
CN116191445B (zh) * 2023-04-07 2023-08-08 费莱(浙江)科技有限公司 一种用于分布式电源的自适应电压控制方法及系统
CN117293807A (zh) * 2023-09-25 2023-12-26 上海能优网电力科技有限公司 一种配电网信息侧模型多时间尺度优化方法及系统

Also Published As

Publication number Publication date
CN113890017B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
CN109062053B (zh) 一种基于多变量校正的脱硝喷氨控制方法
Yu et al. Stochastic optimal relaxed automatic generation control in non-markov environment based on multi-step $ Q (\lambda) $ learning
CN109861202B (zh) 一种柔性互联配电网动态优化调度方法及系统
CN113890017B (zh) 基于关键量测的配电网电压自适应控制方法
CN110009529B (zh) 一种基于堆栈降噪自动编码器的暂态频率获取方法
Li et al. A research on short term load forecasting problem applying improved grey dynamic model
CN111092429B (zh) 一种柔性互联配电网的优化调度方法、存储介质及处理器
CN113363998B (zh) 一种基于多智能体深度强化学习的配电网电压控制方法
CN106549396B (zh) 一种配电网多目标概率无功优化方法
CN112183641B (zh) 融合预估-校正深度学习的暂态频率稳定评估方法及系统
Zhang et al. A novel deep reinforcement learning enabled sparsity promoting adaptive control method to improve the stability of power systems with wind energy penetration
CN110380444B (zh) 一种基于变结构Copula的多场景下分散式风电有序接入电网的容量规划方法
CN104037776A (zh) 随机惯性因子粒子群优化算法的电网无功容量配置方法
CN114362196A (zh) 一种多时间尺度主动配电网电压控制方法
CN105896575B (zh) 基于自适应动态规划的百兆瓦储能功率控制方法及系统
CN113890016B (zh) 数据驱动的配电网多时间尺度电压协调控制方法
CN112418496B (zh) 一种基于深度学习的配电台区储能配置方法
CN113315164B (zh) 无功电压控制方法和装置、介质以及计算装置
CN115313403A (zh) 一种基于深度强化学习算法的实时电压调控方法
CN113872213A (zh) 一种配电网电压自主优化控制方法及装置
CN111651878B (zh) 计及态势评估的大电网静态电压稳定优化决策方法及系统
CN113067334A (zh) 基于神经网络的有源电力滤波器非线性预测控制方法
CN117200213A (zh) 基于自组织映射神经网络深度强化学习的配电系统电压控制方法
CN112821383A (zh) 一种基于深度学习的电力系统自然频率特性系数区间预测方法
CN116522752A (zh) 一种基于机理与数据融合的压缩空气储能系统仿真方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant