CN113881930A - 使用氟抑制剂的氮化硅和氧化硅沉积方法 - Google Patents

使用氟抑制剂的氮化硅和氧化硅沉积方法 Download PDF

Info

Publication number
CN113881930A
CN113881930A CN202110733728.5A CN202110733728A CN113881930A CN 113881930 A CN113881930 A CN 113881930A CN 202110733728 A CN202110733728 A CN 202110733728A CN 113881930 A CN113881930 A CN 113881930A
Authority
CN
China
Prior art keywords
reactant
providing
fluorine
reaction chamber
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110733728.5A
Other languages
English (en)
Inventor
沟口隆志
芝英一郎
上田真也
金仙子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASM IP Holding BV
Original Assignee
ASM IP Holding BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASM IP Holding BV filed Critical ASM IP Holding BV
Publication of CN113881930A publication Critical patent/CN113881930A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/4554Plasma being used non-continuously in between ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Analytical Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

公开了在衬底表面上沉积材料的方法。该方法包括使用氟反应物来降低沉积在衬底表面上的氧化硅和/或氮化硅的每循环生长速率。

Description

使用氟抑制剂的氮化硅和氧化硅沉积方法
技术领域
本公开总体涉及将材料沉积到衬底表面上的方法、使用该方法形成的结构以及用于沉积材料的系统。
背景技术
在电子器件比如半导体器件的形成过程中,可能希望用绝缘材料比如氮化硅或氧化硅填充衬底表面上的间隙(例如沟槽、通孔或特征之间的空间)。原子层沉积(ALD)可用于在间隙上共形沉积氮化硅或氧化硅,从而填充间隙。
在某些情况下,等离子体增强过程比如等离子体增强ALD(PEALD)可用于沉积氮化硅或氧化硅。与不使用等离子体的方法相比,等离子体增强过程可以在相对较低的温度下操作和/或表现出相对较高的沉积速率。
不幸的是,使用PEALD在高纵横比特征(例如纵横比为3或更大的间隙)上沉积的氮化硅和氧化硅倾向于在沉积材料中形成空隙,因为在特征的底部(例如在间隙底部附近的底表面或侧表面上—与间隙顶部处或顶部附近的间隙侧表面相比)沉积的材料较少。沉积材料的不良保形性和/或不希望的沉积轮廓可归因于活化物质(比如自由基)的损失,这可通过自由基在例如间隙侧壁处的表面复合而发生。
提高PEALD沉积材料的低保形性和/或间隙填充能力的努力集中在调整过程参数上,比如RF功率、等离子体暴露时间、压力等,以便在特征底部附近提供足够的活化物质,比如自由基,从而增加在特征底部沉积的材料量。然而,因为自由基的重组是内在现象,所以这种努力是有限的。此外,最近的器件制造规范通常要求特征底部附近的低等离子体。对于这种应用,不能使用包括在特征底部增加活性物质和/或活性物质能量的常规方法。
为了克服这些问题,已经提出了多种技术。例如,Pore等人的美国专利号9887082公开了一种填充间隙的方法。该方法包括将前体提供到反应室中,以在衬底表面上形成吸附的物质,将吸附的物质暴露于氮等离子体,以在包括氮的特征的顶部形成物质,以及将反应物等离子体提供到反应室,其中氮充当反应物的抑制剂,与传统PEALD技术相比,导致较少的材料沉积在间隙的顶部。这种技术可产生比传统技术具有更少空隙或接缝的氮化硅,但是氮化硅内仍可以形成空隙和接缝,特别是在更高纵横比的间隙中。此外,对于一些应用,使用这种技术沉积的氮化硅的湿法蚀刻速率可能是不希望的高。
因此,需要用于沉积适于填充衬底表面上的间隙的材料的改进方法以及使用这种方法形成的结构。对相关技术中涉及的问题和解决方案的任何讨论已经包括在本公开中,仅仅是为了提供本发明的上下文,并且不应被认为是承认在做出本发明时任何或所有讨论都是已知的。
发明内容
本公开的各种实施例涉及将材料沉积到衬底表面上的方法—例如,将材料沉积在衬底表面上的特征上—其适于填充衬底表面上的间隙。虽然本公开的各种实施例解决现有方法和系统的缺点的方式将在下面更详细地讨论,但一般来说,本公开的各种实施例提供了适于填充表面上的间隙的改进方法,同时减轻了使用传统技术可能出现的空隙或接缝形成。
根据本公开的实施例,提供了一种将氮化硅和氧化硅中的一种或多种沉积到衬底表面上的方法。该方法可以包括:向反应室提供氟反应物用于氟反应物脉冲;向反应室提供硅前体用于硅前体脉冲;向反应室提供氮反应物和氧反应物中的一种或多种用于反应物脉冲;以及可选地向反应室提供氢反应物用于氢反应物脉冲。当提供氢时,氢可以单独引入到反应室中,或者可以与另一种反应物例如氮反应物混合,并与氮反应物同时引入到反应室中。根据这些实施例的示例,硅前体可以包括硅烷、卤代硅烷和有机硅烷中的一种或多种。氮反应物可以包括氮(N2)、N2O和NO中的一种或多种,和/或氧反应物可以包括例如O2。氟反应物可以包括NF3、CF4、C2F6、SF6、NH2F、C3F8和F2中的一种或多种。氢反应物可以包括氢(H2)、NH3、N2H4和N2H2中的一种或多种。如下文更详细阐述,在两个或更多个方法步骤期间,可以将反应物的各种组合连续地供应到反应室。另外或可替代地,在一些情况下,两个或更多个方法步骤可以在时间和空间上重叠。在某些情况下,可以指定两个或更多个步骤的顺序。在某些情况下,可以指定两个或更多个步骤不重叠。在这种情况下,重叠可以意味着反应物同时进入或处于同一反应室中(例如没有中间吹扫)。根据本公开的进一步实例,一种或多种反应物可以暴露于等离子体以形成活化物质。等离子体可以是直接或远程等离子体。本文描述的方法可用于形成适于填充表面上的间隙、适于形成硬掩模等的氧化硅和/或氮化硅。
根据本公开的又一示例性实施例,提供了配置为执行如本文所述的方法的沉积设备。
根据本公开的又一示例性实施例,结构包括根据本文描述的方法沉积的氧化硅和/或氮化硅。
参考附图,从下面对某些实施例的详细描述中,这些和其他实施例对于本领域技术人员来说将变得显而易见;本发明不限于公开的任何特定实施例。
附图说明
当结合以下说明性附图考虑时,通过参考详细描述和权利要求,可以获得对本公开的示例性实施例的更完整理解。
图1示出了根据本公开的至少一个实施例的方法。
图2-5示出了根据本公开实施例的方法的时序。
图6示出了根据本公开的至少一个实施例的方法。
图7和8示出了根据本公开实施例的方法的时序。
图9示出了包括间隙和部分填充间隙的层的结构,其中该层在间隙底部附近相对较薄。
图10示出了根据本公开实施例的包括间隙和部分填充间隙的层的结构,其中该层在间隙底部附近相对较厚。
图11示出了根据本公开的至少一个实施例的间隙填充方法期间的结构。
图12示出了根据本公开的至少一个实施例的系统。
应当理解,附图中的元件是为了简单和清楚而示出的,并不一定按比例绘制。例如,图中一些元件的尺寸可能相对于其他元件被夸大,以帮助提高对本公开的图示实施例的理解。
具体实施方式
尽管下面公开了某些实施例和示例,但本领域的技术人员将理解,本发明超出了具体公开的实施例和/或本发明的用途以及明显的修改和等同物。因此,意图是所公开的本发明的范围不应被下面描述的特定公开实施例限制。
本公开总体涉及将材料沉积到衬底表面上的方法、用于执行该方法的沉积设备以及使用该方法形成的结构。本文所述的方法和系统可用于处理衬底以形成例如电子器件。举例来说,本文描述的系统和方法可用于将氮化硅和/或氧化硅沉积到衬底表面上,衬底可包括高纵横比特征,以例如填充高纵横比特征内或之间的间隙。
在本公开中,“气体”可以包括在常温常压下为气体的材料、蒸发的固体和/或蒸发的液体,并且可以由单一气体或气体混合物构成,这取决于情况。除了过程气体之外的气体即没有经过气体分配组件(比如喷淋头、其他气体分配装置等)而引入的气体可以用于例如密封反应空间,其包括密封气体,比如稀有气体。在一些实施例中,术语“前体”通常是指参与产生另一种化合物的化学反应的化合物,特别是指构成膜基质或膜主骨架的化合物,而术语“反应物”是指除前体之外的化合物,其激活前体、修饰前体或催化前体的反应,其中当施加RF功率时,反应物可以向膜基质提供元素(比如O,N,C),并成为膜基质的一部分。术语“惰性气体”是指当施加RF功率时不参与化学反应的气体和/或激发前体的气体,但不同于反应物,其可能不会在可感知的程度上成为膜基质的一部分。
如本文所用,术语“衬底”可以指可用于形成或者可在其上形成器件、电路或膜的任何一种或多种底层材料。衬底可以包括块体材料,比如硅(例如单晶硅)、其他第四族材料,比如锗,或者化合物半导体材料,比如第三-第五族或第二-第六族半导体,并且可以包括在块体材料之上或之下的一个或多个层。此外,衬底可以包括各种拓扑,比如形成在衬底层的至少一部分之内或之上的凹部、线等。
在一些实施例中,“膜”是指在基本垂直于厚度方向的方向上连续延伸的层,没有针孔以覆盖整个目标或相关表面,或者简单地是覆盖目标或相关表面的层。在一些实施例中,“层”是指在表面上形成的具有一定厚度的结构,或者膜或非膜结构的同义词。膜或层可以由具有某些特性的离散单个膜或层或多个膜或层构成,并且相邻膜或层之间的边界可以或可以不清楚,并且可以或可以不基于相邻膜或层的物理、化学和/或任何其他特性、形成过程或顺序和/或功能或目的来建立。
术语“循环的沉积过程”或“循环沉积过程”可以指将前体(和/或反应物)顺序引入反应室以在衬底上沉积层,并且包括处理技术,比如原子层沉积(ALD)、循环化学气相沉积(循环CVD)和包括ALD成分和循环CVD成分的混合循环沉积过程。
如本文所用,术语“原子层沉积”(ALD)可以指气相沉积过程,其中沉积循环优选多个连续的沉积循环在处理室中进行。通常,在每个循环期间,引入前体,并可将其化学吸附到沉积表面(例如衬底表面或先前沉积的下伏表面,比如来自先前ALD循环的材料),形成不容易与另外的前体反应(即自限制反应)的单层或亚单层。此后,可以随后将反应物(例如另一种前体或反应气体)引入处理室,用于将化学吸附的前体转化为沉积表面上的期望材料。通常,该反应物能够与前体进一步反应。此外,在化学吸附的前体转化之后,在每个循环期间还可以利用吹扫步骤来从处理室移除过量的前体和/或从处理室移除过量的反应物和/或反应副产物。此外,本文使用的术语“原子层沉积”还意味着包括由相关术语指定的过程,比如化学气相原子层沉积、原子层外延(ALE)、分子束外延(MBE)、气源MBE或有机金属MBE,以及当用前体成分、反应气体和吹扫(例如惰性载气)气体的交替脉冲执行时的化学束外延。PEALD是指ALD过程,其中在一个或多个ALD步骤中施加等离子体。
如本文所用,氮化硅是指包括硅和氮的材料。氮化硅可以由式SixNy(例如Si3N4)表示。在一些情况下,氮化硅可以不包括化学计量的氮化硅。在一些情况下,氮化硅可以包括其他元素,比如碳、氧、氢等。
如本文所用,氧化硅是指包括硅和氧的材料。氧化硅可以由化学式SiOx(例如SiO2)表示。在一些情况下,氧化硅可以不包括化学计量的氧化硅。在一些情况下,氧化硅可以包括其他元素,比如碳、氮、氢等。
如本文所用,氮氧化硅是指包括硅、氧和氮的材料。氮氧化硅可以用化学式SiOxNy表示。在一些情况下,氮氧化硅可以包括其他元素,比如碳、氢等。氮氧化硅可以包括氧化硅和氮化硅。
此外,在本公开中,变量的任何两个数字可以构成变量的可工作范围,因为可工作范围可以基于常规工作来确定,并且指示的任何范围可以包括或排除端点。此外,指示的变量任何值(不管它们是否用“约”来指示)可以指精确值或近似值且包括等同物,并且在一些实施例中可以指平均值、中值、代表性值、多数值等。此外,在本公开中,在一些实施例中,术语“包括”、“由…构成”和“具有”可以独立地指“通常或广泛地包括”、“包含”、“基本由…构成”或“由…构成”。在本公开中,在一些实施例中,任何定义的含义不一定排除普通和习惯的含义。
在本公开中,“连续地”可以指以下一个或多个:不破坏真空、不中断作为时间线、不进行任何材料介入步骤、不改变处理条件、紧接其后作为下一步骤,或者在一些实施例中在除了两个结构之外的两个结构之间不介入离散的物理或化学结构。
现在转到附图,图1示出了根据本公开的至少一个实施例的方法100,该方法适于将氮化硅和氧化硅中的一种或多种沉积到反应室内的衬底表面上。方法100包括以下步骤:在反应室内提供衬底(步骤102),向反应室提供氟反应物用于氟反应物脉冲(步骤104);向反应室提供硅前体用于硅前体脉冲(步骤106);以及向反应室提供氮反应物和氧反应物中的一种或多种用于反应物脉冲(步骤108)。如图所示,方法100还可以包括向反应室提供氢反应物用于氢反应物脉冲(步骤110)。方法100可以包括循环(例如ALD)过程,比如PEALD过程。
步骤102包括将至少一个衬底提供到反应室中,并使衬底至期望的温度。反应室可以包括PEALD反应室。在步骤102期间,反应室内的温度可以达到用于后续处理的温度,例如在约-10℃和约1000℃之间或者在约75℃到约600℃之间。类似地,可以控制反应室内的压力,以在反应室中提供用于后续处理的减压气氛。例如,反应室内的压力可以小于5000Pa,或小于2000Pa,或小于1000Pa,或在约0.0001Pa和约101325Pa之间,或者在约10Pa和约13333Pa之间。
在步骤104期间,衬底的表面暴露于氟反应物。在该步骤期间,温度和/或压力可以如上文结合步骤102所述。根据本公开的示例,在向反应室提供氟反应物的步骤104的至少一部分期间施加等离子体。等离子体可以是远程等离子体,从而将活化的氟物质引入反应室,或者是直接等离子体,其中在反应室内形成活化的氟物质。根据本公开的示例,活化的氟物质可以优先与特征的顶表面(比如间隙)反应,使得与衬底表面反应的氟的影响在特征的顶部附近相对于特征的底部更大。表面上氟的存在增加了随后沉积的氮化硅和/或氧化硅的培养和/或降低了每个循环的生长速率。
在步骤104期间产生活化的氟物质的功率可以在0W和约10000W之间或者在约50W和约3000W之间。功率的频率可以在约430kHz和约或约13.56MHz之间。
根据本公开的示例,反应室内的温度可以相对较低,例如低于25℃或低于550℃,以防止或减轻步骤104期间的材料蚀刻。
在步骤104期间提供的氟反应物可以包括任何合适的含氟反应物。举例来说,氟反应物可以是或包括NF3,CF4,C2F6,SF6,NH2F,C3F8和F2中的一种或多种。在一些情况下,可以将氟反应物提供给反应室和/或与载气比如惰性气体混合的远程等离子体单元。合适的惰性或载气包括例如N2,Ar,He,Ne,Xe。
步骤104期间的示例性氟反应物流量可以是约1sccm至约1000sccm或约2sccm至约100sccm。在步骤104期间,氟反应物流的脉冲时间可以是0.01秒至约600秒或约1秒至约300秒。
根据本公开的示例,可以控制步骤104的过程条件,以减轻下层材料的蚀刻和/或控制受氟反应物影响的区域。例如,可以选择过程条件,使得随后形成的材料在特征的顶部区域(例如顶部25%或顶部10%)的生长速率低于特征的其余部分。此外,当使用氢反应物时,氢反应物可以促进特征的下部/其余部分的生长。
在步骤106期间,硅前体被提供给反应室用于硅前体脉冲。反应室内的压力和温度可以如上文结合步骤102所述。在一些情况下,步骤106期间的衬底、气体分配系统(例如喷淋头)和/或反应室壁温度可以高于步骤104期间的衬底、气体分配系统和/或反应室壁温度,例如以便于步骤106以及步骤108和110期间的沉积。根据本公开的示例,在步骤106期间不提供等离子体。
在步骤106中提供的硅前体可以包括硅烷、卤代硅烷和有机硅烷中的一种或多种。示例性的卤代硅烷包括二氯硅烷、二碘硅烷、六氯二硅烷、八氯三硅烷、二溴硅烷、三溴硅烷、三氯硅烷(HSiCl3)、氯硅烷(H3SiCl)、四氯化硅(SiCl4)、溴硅烷(H3SiBr)、三碘硅烷(HSil3)、碘硅烷(H3SiI)、二碘硅烷(H2Si2I4)、H4Si2I2和H5Si2I中的一种或多种。示例性的有机硅烷包括氨基硅烷和杂硅烷中的一种或多种。作为具体实例,硅前体可以包括三(二甲基氨基)硅烷、双(叔丁基氨基)硅烷、二(仲丁基氨基)硅烷、三硅烷胺、新戊硅烷、双(二甲基氨基)硅烷(DMAS)、双(二乙基氨基)硅烷(BDEAS)、双(乙基甲基氨基)硅烷(BEMAS)、四(二甲基氨基)硅烷(TKDMAS)、三甲基硅烷(SiH(CH3)3)、四甲基硅烷(Si(Ch3)4)、硅烷、四(乙氧基)硅烷(TEOS,Si(OC2H5)4)、三(叔丁氧基)硅烷醇(TBOS)、三(叔戊氧基)硅烷醇(TPSOL)和二甲基二氯硅烷(Si(OC2H5)4,Si(CH3)2(OCH3)2)中的一种或多种。
步骤106期间的示例性硅前体流量可以是约1sccm至约500sccm或约3sccm至约100sccm。在步骤106期间,硅前体流的脉冲时间可以是0.1秒至约10秒或约0.2秒至约3秒。
在步骤108期间,将氮反应物和氧反应物中的一种或多种提供给反应室用于反应物脉冲。步骤108期间反应室内的温度和压力可以与步骤104或106期间反应室内的温度和压力相同或相似。
根据本公开的示例,在向反应室提供氮反应物和氧反应物中的一种或多种的步骤108的至少一部分期间施加等离子体。等离子体可以是远程等离子体或直接等离子体。在步骤108期间产生等离子体的功率可以在0W和约10000W之间或者在约50W和约3000W之间。功率的频率可以在约400kHz和约60MHz之间或者为约13.56MHz。
氮反应物可以包括含氮化合物,比如氮(N2)、N2O和NO中的一种或多种。另外或可替代地,氧反应物可以包括含氧化合物,比如O2
步骤108期间的示例性氮反应物流量可以是约100sccm至约50000sccm或约5000sccm至约30000sccm。在步骤108期间,氮反应物流的脉冲时间可以是0.05秒至约20秒或约0.1秒至约10秒。在步骤108期间,示例性氧反应物流量可以是约100sccm至约50000sccm或约5000sccm至约30000sccm。在步骤108期间,氧反应物流的脉冲时间可以是0.05秒至约20秒或约0.05秒至约10秒。
在可选步骤110期间,向反应室提供氢反应物用于氢反应物脉冲。步骤110期间的反应室内的温度和压力可以与任何步骤104-108且特别是任何步骤106、108期间的反应室内的温度和压力相同或相似。
根据本公开的示例,在步骤110的至少一部分期间施加等离子体。等离子体可以是远程等离子体或直接等离子体。在步骤110期间产生等离子体的功率可以在0W和约10000W之间或在约50W和约3000W之间。功率的频率可以在约400kHz和约60MHz之间或者为约13.56MHz。
氢反应物可包括例如氢(H2)、NH3、N2H4和N2H2中的一种或多种。步骤108期间的示例性氢反应物流量可以是约1sccm至约5000sccm或约10sccm至约500sccm。在步骤108期间,氢反应物流的脉冲时间可以是0.1秒至约15秒或约0.5秒至约5秒。
如上所述,与特征的顶部相比,活化的氢和氟物质的使用可以促进特征的下部中的沉积。对于卤化硅烷和/或氨基硅烷硅前体来说尤其如此。
步骤106-110可被视为沉积循环,其可重复一次或多次(环112)。方法100可以进一步包括重复步骤104-110的环114。例如,环114可以重复多次,直到衬底表面上的间隙被氮化硅和氧化硅中的一种或多种填充和/或达到期望的膜厚度。此外,尽管没有单独示出,但步骤104-110中的任何一个都可以在进行到下一步骤之前重复。
步骤106-110中的两个或更多个可以同时执行,或者可以在时间上至少部分重叠。例如,步骤106和110可以重叠或者同时执行。另外或可替代地,步骤108和110可以重叠。此外,如下文更详细说明,一个或多个步骤—例如向反应室提供氮反应物和氧反应物中的一种或多种的步骤可以在提供硅前体、可选地提供氢反应物和/或提供氟反应物的步骤期间连续进行。
此外,除非另有说明,方法100的步骤可以以任何顺序执行。在图示的例子中,步骤104发生在步骤106之前。然而,如下所示,方法可以包括在一个或多个沉积循环之后引入氟反应物的步骤。根据一些示例,提供氢反应物(110)的步骤和提供氟反应物(104)的步骤在反应室内不重叠。
图2示出了用于在衬底表面上形成氮化硅的方法(比如方法100)的时序200。时序200包括氟处理循环202和沉积循环204。
氟处理循环202可以包括在第一时段206(例如没有等离子体)和第二时段208(有等离子体)提供吹扫气体、提供氮反应物和提供氟反应物。氟处理循环202的条件可以如上结合步骤104和108所述。
沉积循环204可以包括在时段210提供硅前体和氮反应物。然后,可以吹扫反应室—例如在时段212期间使用吹扫气体和氮反应物。当氮反应物继续流动时可以时段214施加产生等离子体的功率。然后,可以在时段216吹扫反应室。气体流量可以如上文结合图1所述。
时序200可以包括多次重复沉积循环204。此外,时序200可包括多次重复氟处理循环202和沉积循环204,如上文结合图1所述。在图示的例子中,在方法200期间没有提供单独的氢反应物。
图3示出了用氢反应物在衬底表面上形成氮化硅的方法(比如方法100)的时序300。时序300包括氟处理循环302和沉积循环304。
氟处理循环302可包括在第一时段306(例如没有等离子体)和第二时段308(有等离子体)提供吹扫气体、提供氮反应物和提供氟反应物,如上文结合氟处理步骤202所述。
沉积循环304可以包括在时段310提供硅前体和氮反应物。然后,反应室可以在时段312期间被吹扫—例如使用吹扫气体、氮反应物和氢反应物。当氮反应物和氢反应物继续流动时,可以在时段314施加产生等离子体的功率,以产生氮和氢活化的物质。然后,反应室可以在时段316被吹扫。
时序300可以包括多次重复沉积循环304。此外,时序300可包括多次重复氟处理循环302和沉积循环304,如上文结合图1所述。时段306-316期间的各种气体流量可以如上文结合图1所述。
图4示出了用于在没有额外的氢反应物的情况下在衬底表面上形成氧化硅的方法(比如方法100)的时序400。时序400类似于时序200(除了时序400包括氧反应物,而不是氮反应物)。时序400包括氟处理循环402和沉积循环404。
氟处理循环402可包括在第一时段406(例如没有等离子体)和第二时段408(有等离子体)提供吹扫气体、提供氮反应物和提供氟反应物,如上文结合氟处理步骤202所述。
沉积循环404可以包括在时段410提供硅前体和氧反应物。然后,反应室可以在时段412期间被吹扫—例如使用吹扫气体和氧反应物。当氧反应物继续流动时,可以在时段414施加产生等离子体的功率,以产生氧活化的物质。然后,反应室可以在时段416被吹扫。
时序400可以包括多次重复沉积循环404。此外,时序400可包括多次重复氟处理循环402和沉积循环404,如上文结合图1所述。
图5示出了用于用氢反应物在衬底表面上形成氧化硅的方法(比如方法100)的时序500。时序500包括氟处理循环502和沉积循环504。
氟处理循环502可以包括在第一时段506(例如没有等离子体)和第二时段508(有等离子体)提供吹扫气体、提供氧反应物(例如有载气)和提供氟反应物,如上文结合氟处理步骤202所述。
沉积循环504可以包括在时段510提供硅前体和氧反应物。然后,反应室可以在时段512期间被吹扫—例如使用吹扫气体、氧反应物和/或载气以及氢反应物。当氧反应物和氢反应物继续流动时,可以在时段514施加产生等离子体的功率,以产生氧和氢活化的物质。然后,反应室可以在时段516被吹扫。
时序500可以包括多次重复沉积循环504。此外,时序500可包括多次重复氟处理循环502和沉积循环504,如上文结合图1所述。
图6示出了根据本公开的至少一个实施例的方法600,其适于将氮化硅和氧化硅中的一种或多种沉积到反应室内的衬底表面上。方法600包括以下步骤:在反应室内提供衬底(步骤602),向反应室提供硅前体用于硅前体脉(步骤604),向反应室提供氮反应物和氧反应物中的一种或多种用于反应物脉冲(步骤606)以及向反应室提供氟反应物用于氟反应物脉冲(步骤610)。如图所示,方法600还可以包括向反应室提供氢反应物用于氢反应物脉冲(步骤608)。步骤604-610可以与方法100中的相应步骤相同或相似;然而,在方法600中,步骤610在包括步骤604-608的沉积循环之后执行,而不是在沉积循环之前。
类似于方法100,方法600可以包括重复步骤604-608(环612)和/或重复步骤604-610(环614)。
图7示出了用于在衬底表面上形成氮化硅和氧化硅中的一种或多种的方法(比如方法600)的时序700。时序700包括沉积循环702和氟处理循环704。
沉积循环702可以包括在时段706提供硅前体和反应物以及氢反应物。然后,反应室可以在时段708期间被吹扫—例如使用吹扫气体、反应物和氢反应物。当反应物和氢反应物继续流动时,可以在时段710施加产生等离子体的功率,以产生反应物和氢活化的反应物物质。可选地,反应室然后可以在反应物吹扫时段(未示出)被吹扫。
氟处理循环704可以包括在第一时段712(例如没有等离子体)和第二时段714(有等离子体)提供吹扫气体和反应物(例如不包括氢反应物)以及氟反应物,如上文结合氟处理步骤202所述。然后,反应室可以在氟反应物吹扫时段716被吹扫。
时序700可以包括多次重复沉积循环702。此外,时序700可包括多次重复沉积循环702和氟处理循环704,如上文结合图6所述。
图8示出了用于在衬底表面上形成氮化硅和氧化硅中的一种或多种的方法(比如方法600)的另一时序800。时序800包括沉积循环802、氢循环804和氟处理循环806。
在图示的例子中,沉积循环802包括在时段808提供硅前体和反应物。然后,反应室可以在时段810期间被吹扫—例如使用吹扫气体和反应物。当反应物继续流动时,可以在时段812施加产生等离子体的功率,以产生反应物活化的物质。然后,反应室可以在反应物吹扫时段814被吹扫。
氢循环804包括在时段816向反应室提供氢反应物和向等离子体单元提供功率。步骤804的反应器条件可以如上结合步骤608所述。
氟处理循环806可以包括在时段818提供吹扫气体和反应物(例如不包括氢反应物)以及氟反应物,在该时段818的至少一部分期间施加等离子体。等离子体条件可以如上结合图1和6所述。然后,反应室可以在氟反应物吹扫时段(未单独示出)被吹扫。
时序800可以包括多次重复沉积循环802—例如在进行到步骤804和806之前。此外,时序800可以包括多次重复沉积循环802、氢循环816和/或氟处理循环818,如图8所示。
图9示出了包括在衬底906的表面上形成的间隙902和904的结构900。结构900包括根据覆盖衬底906的传统方法形成的氮化硅或氧化硅层908。如图所示,氮化硅或氧化硅层908在间隙902顶部附近的厚度t1大于间隙902的底部的层908的厚度。当使用传统技术填充间隙902时,会在间隙902内形成空隙。
图10示出了包括在衬底1006的表面上形成的间隙1002和1004的结构1000。结构1000包括根据本文所述的方法(例如方法100或方法600)形成的氮化硅和氧化硅1008中的一种或多种。如图所示,氮化硅和氧化硅1008中的一个或多个在间隙1002的顶部附近的厚度t1小于在间隙1002的底部的层1008的厚度。如图11进一步所示,当间隙1002使用本文公开的示例性方法填充时,间隙1002内没有空隙形成。沉积的氮化硅和/或氧化硅的保形性可以大于100%或者甚至大于200%,其中保形性(%)=侧面(底部)厚度/侧面(顶部)厚度*100。
现在转到图12,根据本公开的示例性实施例,示出了反应器系统1200。反应器系统1200可用于执行如本文所述的一个或多个步骤或子步骤和/或形成如本文所述的一个或多个结构或其部分。
反应器系统1200包括在反应室3的内部11(反应区)中平行且彼此面对的一对导电平板电极4、2。通过从电源25向一个电极(例如电极4)施加例如HRF功率(例如100kHz、13.56MHz、27MHz、2.45GHz或其间的任何值)并将另一个电极(例如电极2)电接地,可以在反应室3内激发等离子体。温度调节器设置在下平台2(下电极)中,并且放置在其上的衬底1的温度可以保持在期望的温度,比如上述的衬底温度。电极4可以用作气体分配装置,比如喷淋板或喷淋头。可以使用气体管线23、气体管线24、气体管线25和气体管线27中的一个或多个,分别从源21、22、20和26并通过喷淋板4,将前体气体、氧气和/或氮气反应物气体、氢气反应物气体、氟反应物气体和稀释/载气(如果有的话)等引入反应室3。尽管图示为四个气体管线23、24、25和26,但反应器系统1200可以包括任何合适数量的气体管线。举例来说,源21可以对应于硅前体源,源22可以对应于氧反应物源和氮反应物源中的一个或多个,源20可以对应于氢反应物源,源26可以对应于氟反应物源。
在反应室3中,提供带有排气管线7的圆形导管13,反应室3的内部11中的气体可以通过该导管排出。此外,设置在反应室3下方的转移室5设置有密封气体管线24,以将密封气体经由转移室5的内部16(转移区)引入反应室3的内部11,其中设置有用于分离反应区和转移区的分离板14(在该图中省略了衬底通过其转移到转移室5中或从转移室5中转移出来的闸阀)。转移室还设置有排气管线6。在一些实施例中,沉积和/或氟处理步骤在相同的反应空间中进行,使得两个或更多个(例如所有)步骤可以连续进行,而无需将衬底暴露于空气或其他含氧气氛中。
在一些实施例中,载气向反应室3的连续流动可以使用流通系统(FPS)来实现,其中载气管线设置有具有前体储器(瓶)的迂回管线,并且主管线和迂回管线被切换,其中当仅打算将载气供给到反应室时,迂回管线被关闭,而当载气和前体气体都打算被供给到反应室时,主管线被关闭,载气流过迂回管线并与前体气体一起从瓶中流出。以这种方式,载气可以连续地流入反应室,并且可以通过在主管线和迂回管线之间切换来以脉冲的方式携带前体气体,而基本不会使反应室的压力波动。
反应器系统1200可以包括一个或多个控制器26,其被编程或以其他方式配置成使本文描述的一个或多个方法步骤得以进行。如本领域技术人员将理解的,控制器26与反应器的各种电源、加热系统、泵、机器人和气流控制器或阀耦合。举例来说,控制器26可以配置成控制硅前体、氮和/或氧反应物、可选的氢反应物和氟反应物进入一个或多个反应室中的至少一个中的气流,以在衬底表面上形成氮化硅层和氧化硅层中的一个或多个。
在一些实施例中,可以使用双室反应器(用于处理彼此靠近设置的衬底的两个部分或隔室),其中反应气体和惰性气体可以通过共享管线供应,而前体气体通过非共享管线供应。
上述公开的示例实施例不限制本发明的范围,因为这些实施例仅仅是本发明的实施例的示例。任何等同的实施例都在本发明的范围内。实际上,除了在此示出和描述的那些之外,本公开的各种修改比如所描述的元件(例如步骤)的替代有用组合对于本领域技术人员来说从描述中可以变得显而易见。这种修改和实施例也旨在落入所附权利要求的范围内。

Claims (24)

1.一种在反应室内将氮化硅和氧化硅中的一种或多种沉积到衬底表面上的方法,该方法包括以下步骤:
向反应室提供氟反应物用于氟反应物脉冲;
向反应室提供硅前体用于硅前体脉冲;
向反应室提供氮反应物和氧反应物中的一种或多种用于反应物脉冲;以及
可选地向反应室提供氢反应物用于氢反应物脉冲。
2.根据权利要求1所述的方法,其中,所述硅前体包括硅烷、卤代硅烷和有机硅烷中的一种或多种。
3.根据权利要求2所述的方法,其中,所述硅前体包括所述卤代硅烷,并且所述卤代硅烷包括二氯硅烷、二碘硅烷、六氯二硅烷、八氯三硅烷、二溴硅烷、三溴硅烷、三氯硅烷(HSiCl3)、氯硅烷(H3SiCl)、四氯化硅(SiCl4)、溴硅烷(H3SiBr)、三碘硅烷(HSil3)、碘硅烷(H3Sil)、二碘硅烷(H2Si2l4)、H4Si2l2和H5Si2l中的一种或多种。
4.根据权利要求2所述的方法,其中,所述硅前体包括有机硅烷,所述有机硅烷包括氨基硅烷和杂硅烷中的一种或多种。
5.根据权利要求1-4中任一项所述的方法,其中,所述硅前体包括三(二甲基氨基)硅烷、双(叔丁基氨基)硅烷、二(仲丁基氨基)硅烷、三硅烷胺、新戊硅烷、双(二甲基氨基)硅烷(DMAS)、双(二乙基氨基)硅烷(BDEAS)、双(乙基甲基氨基)硅烷(BEMAS)、四(二甲基氨基)硅烷(TKDMAS)、三甲基硅烷(SiH(CH3)3)、四甲基硅烷(Si(Ch3)4)、硅烷、四(乙氧基)硅烷(TEOS,Si(OC2H5)4)、三(叔丁氧基)硅烷醇(TBOS)、三(叔戊氧基)硅烷醇(TPSOL)和二甲基二氯硅烷(Si(OC2H5)4,Si(CH3)2(OCH3)2)中的一种或多种。
6.根据权利要求1-5中任一项所述的方法,其中,所述氮反应物包括氮(N2)、N2O和NO中的一种或多种,和/或所述氧反应物包括O2
7.根据权利要求1-6中任一项所述的方法,其中,所述方法包括向所述反应室提供所述氢反应物,并且所述氢反应物包括氢(H2)、NH3、N2H4和N2H2中的一种或多种。
8.根据权利要求1-7中任一项所述的方法,其中,所述氟反应物包括NF3、CF4、C2F6、SF6、NH2F、C3F8和F2中的一种或多种。
9.根据权利要求1-8中任一项所述的方法,其中,向所述反应室提供氮反应物和氧反应物中的一种或多种的步骤包括在提供硅前体、可选地提供氢反应物和提供氟反应物的步骤期间连续地提供氮反应物和氧反应物中的一种或多种。
10.根据权利要求1-9中任一项所述的方法,其中,提供氮反应物和氧反应物中的一种或多种的步骤和提供氢反应物的步骤在所述反应室内重叠。
11.根据权利要求1-10中任一项所述的方法,其中,提供氢反应物的步骤和提供硅前体的步骤在所述反应室内重叠。
12.根据权利要求1-11中任一项所述的方法,其中,提供氟反应物的步骤先于提供硅前体的步骤。
13.根据权利要求1-12中任一项所述的方法,其中,提供氢反应物的步骤和提供氟反应物的步骤在所述反应室内不重叠。
14.根据权利要求1-13中任一项所述的方法,其中,在提供氮反应物和氧反应物中的一种或多种的步骤期间施加等离子体,以形成活化的氮物质和活化的氧物质中的一种或多种。
15.根据权利要求1-14中任一项所述的方法,其中,在提供氢反应物的步骤期间施加等离子体,以形成活化的氢物质。
16.根据权利要求1-15中任一项所述的方法,其中,在提供氟反应物的步骤期间施加等离子体,以形成活化的氟物质。
17.根据权利要求1-16中任一项所述的方法,其中,在提供氟反应物的步骤期间,基座的温度在约-20℃和约1000℃之间或者在约75℃和约600℃之间。
18.根据权利要求16和17中任一项所述的方法,其中,在提供氟反应物的步骤期间产生活化的氟物质的功率在0W和约10000W之间或者在约50W和约3000W之间。
19.根据权利要求1-17中任一项所述的方法,其中,所述氟反应物脉冲的持续时间在约0.01秒至约600秒之间或者在约1秒至约300秒之间。
20.根据权利要求1-19中任一项所述的方法,其中,在所述氟反应物脉冲期间,所述反应室内的压力在约0.0001Pa和约101325Pa之间或者在约10Pa和约13333Pa之间。
21.根据权利要求1-20中任一项所述的方法,其中,所述方法包括用氮化硅和氧化硅中的一种或多种填充衬底表面上的间隙。
22.根据权利要求1-21中任一项所述的方法,其中,所述方法包括用氮化硅和氧化硅中的一种或多种形成硬掩模。
23.一种使用根据权利要求1-22中任一项所述的方法形成的结构。
24.一种系统,包括:
一个或多个反应室;
硅前体源;
氧反应物源和氮反应物源中的一种或多种;
可选的氢反应物源;
氟反应物源;
等离子体电源;
排气源;以及
控制器,
其中,所述控制器配置成控制硅前体、氮和/或氧反应物、可选的氢反应物和氟反应物进入一个或多个反应室中的至少一个中的气流,以在衬底表面上形成氮化硅层和氧化硅层中的一个或多个。
CN202110733728.5A 2020-07-01 2021-06-30 使用氟抑制剂的氮化硅和氧化硅沉积方法 Pending CN113881930A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063047187P 2020-07-01 2020-07-01
US63/047,187 2020-07-01

Publications (1)

Publication Number Publication Date
CN113881930A true CN113881930A (zh) 2022-01-04

Family

ID=79010663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110733728.5A Pending CN113881930A (zh) 2020-07-01 2021-06-30 使用氟抑制剂的氮化硅和氧化硅沉积方法

Country Status (4)

Country Link
US (1) US20220005693A1 (zh)
KR (1) KR20220003470A (zh)
CN (1) CN113881930A (zh)
TW (1) TW202204689A (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9564309B2 (en) * 2013-03-14 2017-02-07 Asm Ip Holding B.V. Si precursors for deposition of SiN at low temperatures
US10410857B2 (en) 2015-08-24 2019-09-10 Asm Ip Holding B.V. Formation of SiN thin films
WO2023205284A1 (en) * 2022-04-20 2023-10-26 Lam Research Corporation Lateral gap fill

Also Published As

Publication number Publication date
US20220005693A1 (en) 2022-01-06
KR20220003470A (ko) 2022-01-10
TW202204689A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
US11251040B2 (en) Cyclical deposition method including treatment step and apparatus for same
US20210225643A1 (en) Method for deposition of silicon nitride layer using pretreatment, structure formed using the method, and system for performing the method
US8946092B2 (en) Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
JP6370046B2 (ja) 有機金属共反応物を用いた交差メタセシス反応によりSiCおよびSiCN膜を成膜するための装置及び方法
US8784951B2 (en) Method for forming insulation film using non-halide precursor having four or more silicons
CN111199871A (zh) 用于形成金属硅酸盐膜的方法和半导体装置结构
KR101811531B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
US20220005693A1 (en) Silicon nitride and silicon oxide deposition methods using fluorine inhibitor
KR20180014661A (ko) 질화막의 형성 방법 및 형성 장치
WO2013054655A1 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置および記録媒体
KR101858345B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
US11072859B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
US20220319832A1 (en) Method and system for depositing silicon nitride with intermediate treatment process
US20220319833A1 (en) Method and system for mitigating underlayer damage during formation of patterned structures
US20230017874A1 (en) Cyclical deposition methods and structures formed using the methods
US20230084552A1 (en) Topology-selective nitride deposition method and structure formed using same
US20220319831A1 (en) Method and system for forming silicon nitride layer using low radio frequency plasma process
US20240014030A1 (en) Method for selective deposition of silicon nitride and structure including selectively-deposited silicon nitride layer
US20240175124A1 (en) Cyclical deposition methods and structures formed using the methods
US20230070199A1 (en) Topology-selective deposition method and structure formed using same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination