CN113868832A - 高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法 - Google Patents

高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法 Download PDF

Info

Publication number
CN113868832A
CN113868832A CN202110959410.9A CN202110959410A CN113868832A CN 113868832 A CN113868832 A CN 113868832A CN 202110959410 A CN202110959410 A CN 202110959410A CN 113868832 A CN113868832 A CN 113868832A
Authority
CN
China
Prior art keywords
thickness
bearing steel
decarburized layer
heating
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110959410.9A
Other languages
English (en)
Inventor
王瑞章
代孟强
江雁
杨凯
王萍
侯清宇
黄贞益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Iron and Steel Co Ltd
Original Assignee
Nanjing Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Iron and Steel Co Ltd filed Critical Nanjing Iron and Steel Co Ltd
Priority to CN202110959410.9A priority Critical patent/CN113868832A/zh
Publication of CN113868832A publication Critical patent/CN113868832A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

本发明公开了高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法,涉及钢铁生产技术领域,以轴承钢GCr15在气氛炉中进行脱碳实验的加热工艺和脱碳层厚度为实验数据,构建出加热温度、保温时间、加热速度和氧气浓度各因素与轴承钢脱碳层厚度之间的多元线性回归方程,并验证其显著性;将加热温度、保温时间、加热速度和脱碳气氛作为因变量,将修正后的连续加热下轴承钢GCr15表面脱碳层厚度作为自变量,构建出四种因素与脱碳层厚度之间的多元线性回归模型,用以预测在一定加热温度、加热速率、保温时间和氧气浓度下的轴承钢表脱碳层厚度,并用Adj‑R2和轴承钢表面脱碳原理判断该线性回归方程是否适用于脱碳层厚度的预测。

Description

高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法
技术领域
本发明涉及钢铁生产技术领域,特别是涉及一种高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法。
背景技术
轴承钢是极其重要的工业用钢,主要用于各种大小型机械设备滚动轴承的滚珠、滚柱、内圈和外圈,使用时要求其具有高的硬度、耐磨性和韧性。随着各种机械工作状况愈发复杂,对轴承钢零部件也提出了更加苛刻的要求,高强度扭矩、连续交变应力、超长作业时间等都是碳簧钢性能提升方面所遇到的棘手的问题。解决这些问题,保障轴承钢表面质量首当其冲,高质量的轴承钢表面要具有高的接触疲劳强度、耐磨性以及适当的硬度,如此才能保障轴承钢部件的尺寸精度和使用寿命。轴承钢在加热过程中表面常常会发生脱碳现象,表面脱碳层对其性能有着极大地危害。当轴承钢表面出现脱碳层时,其表面强度和硬度达不到规定要求。在循环交变应力作用下,轴承钢表面所受载荷最大,因此最容易产生疲劳裂纹,导致轴承钢产生过早的断裂失效。
轴承钢在加热过程中一般升温到1200℃左右,为避免产生过厚的表面脱碳层,通常在保护性炉气或者低氧化性炉气中保温。即便如此,仍然避免不了产生脱碳层。脱碳的本质为碳原子从轴承钢内部向表面的不断扩散。轴承钢表面与炉内气氛存在一定的化学位梯度,当表层碳原子受热振动时,其逸出功上升,使碳原子脱离金属晶格的束缚的趋势增大,且碳原子与氧原子的结合力大于碳原子和铁原子之间的结合力,轴承钢表面在炉内气氛作用下不断发生脱碳反应,轴承钢表面的碳含量逐渐降低。当轴承钢表面产生脱碳之后,强度显著下降,随着轴承钢表面脱碳层深度的增加,其抗弹性减退能力逐渐削弱,材料性能发生恶化,从而极大的危害了其使用寿命。
目前,关于测量材脱碳层厚度的常规方法通常有金相法和硬度法。金相法其理论依据是:钢及制成品存在脱碳情况时,从表面到基体的碳含量是变化的,在光学显微镜下观察试样从表面到心部随着碳含量的变化而产生的组织变化。显微组织法具有适用范围广,操作简便、对设备依赖小,对待检样品形态要求不高等优点。硬度法是利用碳含量与热处理后钢的硬度存在相关性的原理来测量脱碳层深度的方法。硬度法其理论依据是:淬火钢的基体组织马氏体的硬度随碳含量的增加而增高,而从钢件表面至基体因脱碳造成了碳元素的不同程度损失,不同脱碳程度区域其硬度值也不同,从表面到已达所要求硬度值的那一点的距离作为脱碳层的厚度。
专利CN108195331A公开了一种获得钢表面脱碳层厚度的方法,将压头以预设压力恒力的压入待测钢材中,并同时连续记录压头的速度当压头的速度在预设时间内的变化值大于预设速度值时,说明此时压头达到了脱碳层与钢基体的交界位置。该发明提供的获得钢表面脱碳层厚度的方法,只需要将压头匀速压入待测钢材即可,简单且便于操作,不用再进行制样、腐蚀、用显微镜观察等步骤,省时省力,且测量成本较低,但是测量次数较多,且无法探知最大脱碳层厚度,无法精确判断出真实的脱碳层厚度。
专利CN111024738 A公开了一种测量TRIP钢表面脱碳层深度的方法,利用X射线衍射分析技术判别脱碳层过渡区与基体的分界线。优点在于,操作简单、方便,可以弥补现有技术需要人为判定脱碳层过渡区与基体分界线的不足,缺点在于过程麻烦,价格昂贵,不适合大批量轴承钢的生产测定。
发明内容
本发明针对上述技术问题,克服现有技术的缺点,提供一种高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法,
以轴承钢GCr15在气氛炉中进行脱碳实验的加热工艺和脱碳层厚度为实验数据,构建出加热温度、保温时间、加热速度和氧气浓度各因素与轴承钢脱碳层厚度之间的多元线性回归方程,并验证其显著性;
将加热温度、保温时间、加热速度和脱碳气氛作为因变量,将修正后的连续加热下轴承钢GCr15表面脱碳层厚度作为自变量,构建出四种因素与脱碳层厚度之间的多元线性回归模型,用以预测在一定加热温度、加热速率、保温时间和氧气浓度下的轴承钢表脱碳层厚度,并用拟合优度j-R2和轴承钢表面脱碳原理判断该线性回归方程是否适用于脱碳层厚度的预测。
技术效果:通过建立轴承钢表面脱碳层厚度的计算模型,可以预测不同加热工艺下的轴承钢脱碳层厚度,为生产轴承钢和提高轴承钢表面质量提供了工艺指导,减少因脱碳不合格而需要进行返工的成本等。
本发明进一步限定的技术方案是:
前所述的高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法,具体为:
(1)采用金相法测量各脱碳实验条件下的轴承钢脱碳层厚度,每组实验下的轴承钢脱碳层厚度测量若干次;
(2)将金相法测量出的多组轴承钢脱碳层厚度数据进行降误差处理;
(3)将已经进行了降误差处理的多组不同脱碳条件下获得的脱碳厚度作为因变量y,将加热温度、保温时间、加热速度和脱碳气氛作为自变量x1、x2、x3和x4,将因变量和自变量进行逐步线性回归,拟合出y与x1、x2、x3、x4之间的线性关系,用Adj-R2判断y与x1、x2、x3、x4之间是否存在多元回归线性关系;如符合,则本方法适用于预测在一定加热工艺下的轴承钢表面脱碳层厚度;如不符合,则y与x1、x2、x3、x4存在其他拟合关系,不在本方法拟合关系之内;
(4)通过逐渐减少回归方程中自变量数量的方式检验出各自变量对因变量的显著性;
(5)分析四种自变量与因变量的正负相关性是否符合轴承钢表面脱碳的基本原理。
前所述的高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法,步骤(1),每组实验下的轴承钢脱碳层厚度测量10次。
前所述的高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法,步骤(2),将多组测量数据去掉一个最低值,去掉一个最高值,再取其平均数。
本发明的有益效果是:
(1)本发明在采集脱碳层厚度数据时,多次测量后进行降误差处理,有利于保证脱碳层厚度数据的真实性,避免了人为误差对拟合结果的影响;
(2)本发明将所有与脱碳层厚度有关的因素作为因变量与脱碳层厚度进行多元线性拟合,通多逐步线性回归的方式可以分析出影响脱碳层厚度的主要因素的次要因素;
(3)本发明多元线性回归模型在保证数据准确的前提下能够较好的拟合出脱碳层厚度与各因素之间的关系,并且不需要对脱碳后的轴承钢进行检测。
附图说明
图1-9为实施例9组脱碳正交实验使用金相法测得的脱碳厚度图片。
具体实施方式
本实施例提供的一种高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法,采用高碳铬轴承钢GGr15,将试样制成10×10×12mm。在试样中心贯穿一个孔,用镍铬丝穿过,悬挂于气氛式加热炉中采用不同的加热速度、保温温度、保温时间和脱碳气氛对试样进行脱碳层的研究,脱碳加热工艺为如表1所示:
表1 脱碳加热工艺
序号 温度(℃) 加热速度(℃/min) 保温时间(min) 氧气浓度(%) 加热时长(min) 总时长(min)
1 1180 5 75 2 211 286
2 1180 6.5 85 5 162 247
3 1180 8 95 7 131 226
4 1200 5 85 7 215 300
5 1200 6.5 95 2 165 260
6 1200 8 75 5 134 209
7 1220 5 95 5 219 314
8 1220 6.5 75 7 168 243
9 1220 8 85 2 136 221
采用金相法测量各组试样的脱碳层厚度,共10次,去掉一个最大值和一个最小值,取其平均数,如表2:
表2 脱碳层厚度测量数据
序号 1 2 3 4 5 6 7 8 9 10 平均值
1 220 230 245 250 261 230 241 251 249 250 243
2 261 230 245 263 220 246 241 244 223 223 239
3 223 218 240 230 225 210 215 211 220 217 220
4 260 265 277 279 280 284 269 290 288 288 278
5 240 255 256 269 260 261 270 255 245 251 256
6 250 244 240 224 239 231 225 234 243 243 239
7 331 328 325 335 340 320 331 334 325 331 330
8 280 285 290 285 275 289 283 295 294 296 288
9 310 304 295 290 285 296 286 294 304 304 296
将温度、加热速度、保温时间以及氧气浓度作为逐步回归线性方程中的自变量x 1x 2x 3x 4,将脱碳层厚度作为因变量y,进行逐步线性回归,置信度为0.95,回归方程以及拟合程度如表3:
自变量 逐步回归方程 拟合程度
<i>x</i><sub>1</sub>、<i>x</i><sub>2</sub>、<i>x</i><sub>3</sub>、<i>x</i><sub>4</sub> <i>y</i>=-1834.67066+1.76729<i>x</i><sub>1</sub>-10.72822<i>x</i><sub>2</sub>+0.60853<i>x</i><sub>3</sub>-0.51043<i>x</i><sub>4</sub> R<sup>2</sup>=0.94235
<i>x</i><sub>1</sub>、<i>x</i><sub>2</sub>、<i>x</i><sub>3</sub> <i>y</i>= -1837.05267+ 1.76729<i>x</i><sub>1</sub> -10.72822<i>x</i><sub>2</sub>+ 0.60853<i>x</i><sub>3</sub> R<sup>2</sup>=0.94134
<i>x</i><sub>1</sub>、<i>x</i><sub>2</sub>、<i>x</i><sub>4</sub> <i>y</i>= -1782.94533+ 1.76729<i>x</i><sub>1</sub> -10.72822<i>x</i><sub>2</sub> -0.51043<i>x</i><sub>4</sub> R<sup>2</sup>=0.91979
<i>x</i><sub>1</sub>、<i>x</i><sub>3</sub>、<i>x</i><sub>4</sub> <i>y</i>= -1904.40411+ 1.76729<i>x</i><sub>1</sub> +0.60853<i>x</i><sub>3</sub> -0.51043<i>x</i><sub>4</sub> R<sup>2</sup>=0.78460
<i>x</i><sub>2</sub>、<i>x</i><sub>3</sub>、<i>x</i><sub>4</sub> <i>y</i>=286.07934 -10.72822<i>x</i><sub>2</sub> +0.60853<i>x</i><sub>3</sub> -0.51043<i>x</i><sub>4</sub> R<sup>2</sup>= 0.18131
<i>x</i><sub>1</sub>、<i>x</i><sub>2</sub> <i>y</i>= -1785.32733+ 1.76729<i>x</i><sub>1</sub> +0.60853<i>x</i><sub>2</sub> R<sup>2</sup>= 0.91879
<i>x</i><sub>1</sub>、<i>x</i><sub>3</sub> <i>y</i>= -1906.78611+ 1.76729<i>x</i><sub>1</sub> +0.60853<i>x</i><sub>3</sub> R<sup>2</sup>= 0.78360
<i>x</i><sub>1</sub>、<i>x</i><sub>4</sub> <i>y</i>= -1852.67877+ 1.76729<i>x</i><sub>1</sub> -0.51043<i>x</i><sub>4</sub> R<sup>2</sup>= 0.76204
<i>x</i><sub>2</sub>、<i>x</i><sub>3</sub> <i>y</i>= 283.69733-10.72822<i>x</i><sub>2</sub>+0.60853<i>x</i><sub>3</sub> R<sup>2</sup>= 0.18031
<i>x</i><sub>2</sub>、<i>x</i><sub>4</sub> <i>y</i>= 337.80467-10.72822<i>x</i><sub>2</sub>-0.51043<i>x</i><sub>4</sub> R<sup>2</sup>= 0.15875
<i>x</i><sub>3</sub>、<i>x</i><sub>4</sub> <i>y</i>= 216.34589-0.60853<i>x</i><sub>3</sub>-0.51043<i>x</i><sub>4</sub> R<sup>2</sup>= 0.02356
根据上表的多元线性回归方程以及方程的拟合程度可以看出温度、加热速度、保温时间以及氧气浓度四因素对脱碳层厚度的影响程度最大,所以四种因素对脱碳层厚度均有影响。通过逐渐减少回归方程中自变量数量的方式检验出各自变量对因变量的显著性。从结果可以知道温度、加热速度和保温时间三种自变量的显著性较大,氧气浓度的显著性较小。
并且,分析四种自变量与因变量的正负相关性时,可以看出温度、保温时间与脱碳层厚度呈正相关,加热速度、氧气浓度与脱碳层厚度呈负相关。加热速度越快,加热过程中表面氧化物的生成量就会越少,影响后续保温过程中轴承钢的脱碳。氧气浓度越高,表面氧化层的厚度就会越厚,阻碍碳的逸出,会减少脱碳层的厚度。所以,四种自变量与因变量的正负相关性符合脱碳过程的基本原理,且多元线性回归方程拟合程度高,可以认定该多元线性回归方程可以预测在一定加热工艺下的轴承钢表面脱碳层的厚度。
综上所述,轴承钢表面脱碳层厚度的计算模型的建立,可以预测不同加热工艺下的轴承钢脱碳层厚度,为生产轴承钢和提高轴承钢表面质量提供了工艺指导,避免了繁琐的金相检验和检验过程中容易出现的人为误差。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (4)

1.一种高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法,其特征在于:
以轴承钢GCr15在气氛炉中进行脱碳实验的加热工艺和脱碳层厚度为实验数据,构建出加热温度、保温时间、加热速度和氧气浓度各因素与轴承钢脱碳层厚度之间的多元线性回归方程,并验证其显著性;
将加热温度、保温时间、加热速度和脱碳气氛作为因变量,将修正后的连续加热下轴承钢GCr15表面脱碳层厚度作为自变量,构建出四种因素与脱碳层厚度之间的多元线性回归模型,用以预测在一定加热温度、加热速率、保温时间和氧气浓度下的轴承钢表脱碳层厚度,并用拟合优度j-R2和轴承钢表面脱碳原理判断该线性回归方程是否适用于脱碳层厚度的预测。
2.根据权利要求1所述的高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法,其特征在于:具体为:
(1)采用金相法测量各脱碳实验条件下的轴承钢脱碳层厚度,每组实验下的轴承钢脱碳层厚度测量若干次;
(2)将金相法测量出的多组轴承钢脱碳层厚度数据进行降误差处理;
(3)将已经进行了降误差处理的多组不同脱碳条件下获得的脱碳厚度作为因变量y,将加热温度、保温时间、加热速度和脱碳气氛作为自变量x1、x2、x3和x4,将因变量和自变量进行逐步线性回归,拟合出y与x1、x2、x3、x4之间的线性关系,用Adj-R2判断y与x1、x2、x3、x4之间是否存在多元回归线性关系;如符合,则本方法适用于预测在一定加热工艺下的轴承钢表面脱碳层厚度;如不符合,则y与x1、x2、x3、x4存在其他拟合关系,不在本方法拟合关系之内;
(4)通过逐渐减少回归方程中自变量数量的方式检验出各自变量对因变量的显著性;
(5)分析四种自变量与因变量的正负相关性是否符合轴承钢表面脱碳的基本原理。
3.根据权利要求1所述的高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法,其特征在于:所述步骤(1),每组实验下的轴承钢脱碳层厚度测量10次。
4.根据权利要求1所述的高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法,其特征在于:所述步骤(2),将多组测量数据去掉一个最低值,去掉一个最高值,再取其平均数。
CN202110959410.9A 2021-08-20 2021-08-20 高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法 Pending CN113868832A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110959410.9A CN113868832A (zh) 2021-08-20 2021-08-20 高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110959410.9A CN113868832A (zh) 2021-08-20 2021-08-20 高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法

Publications (1)

Publication Number Publication Date
CN113868832A true CN113868832A (zh) 2021-12-31

Family

ID=78987898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110959410.9A Pending CN113868832A (zh) 2021-08-20 2021-08-20 高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法

Country Status (1)

Country Link
CN (1) CN113868832A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705820A (zh) * 2022-03-30 2022-07-05 上海康恒环境股份有限公司 一种垃圾焚烧锅炉受热面的防腐合金涂层残余寿命的检测方法和评价方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705820A (zh) * 2022-03-30 2022-07-05 上海康恒环境股份有限公司 一种垃圾焚烧锅炉受热面的防腐合金涂层残余寿命的检测方法和评价方法

Similar Documents

Publication Publication Date Title
US10094014B2 (en) Nitriding method and nitrided part production method
KR102053485B1 (ko) 베어링 부품, 구름베어링 및 베어링 부품의 제조 방법
WO2011122632A1 (ja) 軸受部品、軸受および軸受部品の検査方法
CN113868832A (zh) 高碳铬轴承钢连续加热保温形成的脱碳层厚度的预测方法
Feistle et al. Reduction of burr formation for conventional shear cutting of boron-alloyed sheets through focused heat treatment
Yagita et al. Plasma nitriding treatment of high alloy steel for bearing components
WO2014196431A1 (ja) 軸受部品および転がり軸受
WO2018155588A1 (ja) 軸受部品の製造方法
JP2014237869A (ja) 軸受部品および転がり軸受
JP6416735B2 (ja) 窒化部品の製造方法及び窒化部品
Easton et al. Effects of forming route and heat treatment on the distortion behaviour of case-hardened martensitic steel type S156
CN112881207B (zh) 一种渗碳钢超高周疲劳性能的评价方法
CN107254658B (zh) 轴承部件和滚动轴承
CN105256242A (zh) 一种海洋石油开采设备用锻件毛坯的制造方法
CN106148881B (zh) 用于线性滑轨的渗碳沃斯回火滑块及其制造方法
Paschke et al. Load-Adapted Surface Modifications to Increase Lifetime of Forging Dies
RU2790841C1 (ru) Способ обработки поверхности жаропрочной нержавеющей стали
RU2796338C1 (ru) Способ обработки поверхности детали из жаропрочной нержавеющей стали
Desai et al. Failure analysis of HSS punch tool: a case study
Piccilli et al. Crack avoidance in steel piston rings through the optimization of process and gas nitriding parameters
Elhadj et al. EFFECT OF TIME ON THE COMPOUND LAYER FORMED DURING SALT BATH NITRIDING OF AISI 4140 STEEL
CN113088639B (zh) 一种冷碾扩轴承用轴承钢管检验品控方法
CN117607384A (zh) 一种评估井式炉渗碳淬火系统均匀性的方法
KR101403789B1 (ko) 열간프레스성형용 냉연강판의 성형성 평가방법
JP2000314427A (ja) 転がり軸受

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination