CN113868771B - 一种考虑结构和气动非线性的飞行动力学建模方法 - Google Patents

一种考虑结构和气动非线性的飞行动力学建模方法 Download PDF

Info

Publication number
CN113868771B
CN113868771B CN202111214154.7A CN202111214154A CN113868771B CN 113868771 B CN113868771 B CN 113868771B CN 202111214154 A CN202111214154 A CN 202111214154A CN 113868771 B CN113868771 B CN 113868771B
Authority
CN
China
Prior art keywords
model
nonlinear
aerodynamic
pneumatic
unmanned aerial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111214154.7A
Other languages
English (en)
Other versions
CN113868771A (zh
Inventor
李道春
赵仕伟
张健
申童
阚梓
邵浩原
姚卓尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202111214154.7A priority Critical patent/CN113868771B/zh
Publication of CN113868771A publication Critical patent/CN113868771A/zh
Application granted granted Critical
Publication of CN113868771B publication Critical patent/CN113868771B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Abstract

本发明公开了一种考虑结构和气动非线性的飞行动力学建模方法,将无人机结构三维梁问题解耦为非线性梁运动分析和梁截面变形分析,建立无人机非线性结构模型;基于气动降阶模型建立无人机非线性气动模型,通过结构模型与气动力模型的耦合,建立无人机非线性气动弹性模型,将重力载荷和气动力载荷的贡献项以及边界条件项,代入到结构半离散化方程,得到柔性飞机非线性气动弹性与飞行动力学耦合模型,基于Newton‑Raphson方法求解系统方程的静平衡解,采用Generalized‑α算法求解非线性时域响应。

Description

一种考虑结构和气动非线性的飞行动力学建模方法
技术领域
本发明属于无人机技术领域,具体涉及一种考虑结构和气动非线性的飞行动力学建模方法,可以用于考虑结构和气动非线性的飞行动力学建模。
背景技术
高空长航时飞机为降低重量、提高升阻比,使用轻质、各向异性材料,机翼细长,具有柔性。结构大变形、气动失速和结构低频振动与刚体运动耦合,是高空长航时柔性飞机在常规低速飞行状态下的普遍现象,显著影响其气动弹性和飞行动力学特性。高空长航时无人机具有极其重要的应用价值和发展潜力。但面对苛刻的飞行任务要求,应用新技术以扩大设计空间的同时,创新性的设计方案却引发出新的问题。这些新问题,概括起来,主要表现在如下三个方面:
(1)结构几何非线性:为获得低重量和高升阻比,普遍使用复合材料等轻质材料,且采用大展弦比设计,结构细长,导致结构具有柔性,甚至大柔性的特点。结构几何非线性将导致结构静、动态特性和气动载荷分布等的改变,进而影响气动弹性特性。
(2)气动力非线性:高空低速飞行时,局部攻角较大,且受结构大变形影响,更易于发生气动失速,出现流动分离;而在高空高亚音速飞行时,使用层流翼型,易于产生跨音速激波,出现流动分离。结构几何非线性与气动力非线性的耦合,将导致新的非线性气动弹性特性。
(3)结构弹性运动与全机刚体运动的耦合:飞翼布局是这一问题的典型代表,柔性结构固有频率很低时,将与刚体运动发生耦合,可能导致不稳定运动模态或较低刚体自由颤振速度,为方案设计带来不利影响。
面对这三方面主要因素,研究者们意识到在涉及气动弹性的多学科新问题上理论基础与分析手段的不足——尤其体现在Helios原型机失事和飞翼/连翼布局传感器飞机研究上。因此,针对以高空长航时无人机为代表的柔性飞机,开展考虑结构和气动非线性的飞行动力学建模研究十分必要。
发明内容
本发明属于无人机技术领域,具体涉及一种考虑结构和气动非线性的飞行动力学建模方法,通过耦合非线性结构模型和非线性气动模型,建立考虑结构和气动非线性的飞行动力学模型。
为了实现以上发明目的,本发明采取的技术方案如下:
一种考虑结构和气动非线性的飞行动力学建模方法,包括以下步骤:
步骤1、将无人机结构三维梁问题解耦为非线性梁运动分析和梁截面变形分析,建立无人机非线性结构模型;
步骤2、基于气动降阶模型建立无人机非线性气动模型;
步骤3、通过无人机非线性结构模型与无人机非线性气动模型的耦合,建立无人机气动弹性模型;
步骤4、将重力载荷和气动力载荷的贡献项以及边界条件项,代入到无人机非线性气动弹性模型,得到柔性飞机气动弹性与飞行动力学耦合模型;
步骤5、基于Newton-Raphson方法求解柔性飞机非线性气动弹性与飞行动力学耦合模型的静平衡解,采用Generalized-α算法求解非线性时域响应。
进一步的详细步骤为:
步骤1、考虑剪切变形和翘曲变形,基于有限元离散,构建表征剖面特性的刚度矩阵,建立二维梁剖面模型。通过非连续协调方程表征节点质量等不连续因素,结合二维梁剖面模型和几何精确本征梁理论建立非线性梁结构模型,从而建立无人机非线性结构模型。
步骤2、建立结构实体模型,对该结构模型进行模态分析。得到各阶模态向量和结构节点坐标。基于结构节点坐标和对应的模态向量通过差值可以得到气动节点坐标对应的各阶模态位移向量,从而用于非定常气动力的节点位移输入。建立结构几何外形以及外部流场几何形状,将该几何导入流体网格绘制软件中绘制气动网格,导入计算流体力学软件中计算,设置压力远场条件。机翼表面设置为无滑动静态壁面条件,网格在翼型附近被细化。采用动态网格结合用户自定义函数接口编程,采用弹簧方法进行网格重构实现机翼的模态位移连续变形。在数值计算中,采用双精度求解器进行数值模拟,采用Spalart-Allmaras湍流模型。采用广义位移输入,计算广义气动力,基于气动降阶模型建立二者的非线性关系,最终得到无人机非线性气动模型。
步骤3、将重力载荷贡献项、气动力载荷贡献项,边界条件项,以及连续条件项代入梁结构离散化方程中,最终得到梁结构的无人机气动弹性模型:
其中下标stru,aero,grav分别表示结构、气动、重力,M、q、f表示刚度矩阵、状态变量、载荷。其中Mstru,aero表示气动载荷对结构状态方程中一阶变量的影响项,可由气动力方程中推导得出,Maero,stru表示结构运动对气动状态方程中一阶变量的影响项,可由气动和结构耦合方程中推导得出。
步骤4、考虑气动弹性与飞行力学的耦合效应,在参考原点引入集中质量,引入刚体质点运动方程
其中Mrigid和Irigid为刚体质点的质量矩阵和转动惯量矩阵,Vrigid和Ωrigid为其运动的线速度和角速度,frigid和mrigid为作用在其上的力和力矩。
步骤5、耦合柔性梁的气动弹性方程和刚体质点的飞行力学方程,将其简单表示为
式中,q为由结构状态和气动状态等变量组成的未知列向量,矩阵Mcoup和列向量fcoup均为未知向量q的函数。
系统方程的静平衡解q0,可通过Newton-Raphson迭代算法求解非线性代数方程组
fcoup(q0)=0
获得。
为了提高计算效率,优选的,利用控制相对/绝对误差和迭代步数来实现自适应步长的Newton-Raphson算法迭代求解其静态平衡状态。系统方程的动态时域响应,可采用Generalized-α算法进行求解,在时间步进时,以前一时刻作为当前时刻的初始猜测,求解出当前时刻的状态。计算中根据迭代收敛速度调整时间步进长度,实现变步长时域积分。
本发明提供了一种考虑结构和气动非线性的飞行力学建模方法,能准确模拟高空长航时柔性飞机结构大变形、气动失速和结构低频振动与刚体运动耦合现象,分析其气动弹性和飞行动力学特性,为高空长航时柔性飞机设计提供重要理论支撑,具有重要的应用价值。
附图说明
图1是本发明方法流程图;
图2是实施例的柔性飞机布局示意图纵向运动模态根轨迹图;
图3是实施例的柔性飞机配平状态下全机静变形;
图4是实施例的柔性飞机满载时的时间历程。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下根据附图并列举实施例,对本发明做进一步详细说明。
如图1所示,一种考虑结构和气动非线性的飞行动力学建模方法,包括以下步骤:
步骤1、将无人机结构三维梁问题解耦为非线性梁运动分析和梁截面变形分析,建立无人机非线性结构模型;
步骤2、基于气动降阶模型建立无人机非线性气动模型;
步骤3、通过无人机非线性结构模型与无人机非线性气动模型的耦合,建立无人机非线性气动弹性模型;
步骤4、将重力载荷和气动力载荷的贡献项以及边界条件项,代入到无人机非线性气动弹性模型,得到柔性飞机非线性气动弹性与飞行动力学耦合模型;
步骤5、基于Newton-Raphson方法求解柔性飞机非线性气动弹性与飞行动力学耦合模型的静平衡解,采用Generalized-α算法求解非线性时域响应。
进一步的详细步骤为:
步骤1、考虑剪切变形和翘曲变形,基于有限元离散,构建表征剖面特性的刚度矩阵,建立二维梁剖面模型。通过非连续协调方程表征节点质量等不连续因素,结合二维梁剖面模型和几何精确本征梁理论建立非线性梁结构模型,从而建立无人机非线性结构模型。
步骤2、建立结构实体模型,对该结构模型进行模态分析。得到各阶模态向量和结构节点坐标。基于结构节点坐标和对应的模态向量通过差值可以得到气动节点坐标对应的各阶模态位移向量,从而用于非定常气动力的节点位移输入。建立结构几何外形以及外部流场几何形状,将该几何导入流体网格绘制软件中绘制气动网格,导入计算流体力学软件中计算,设置压力远场条件。机翼表面设置为无滑动静态壁面条件,网格在翼型附近被细化。采用动态网格结合用户自定义函数接口编程,采用弹簧方法进行网格重构实现机翼的模态位移连续变形。在数值计算中,采用双精度求解器进行数值模拟,采用Spalart-Allmaras湍流模型。采用广义位移输入,计算广义气动力,基于气动降阶模型基于气动降阶模型建立二者的非线性关系,最终得到非定常非线性气动力模型。
步骤3、将重力载荷贡献项、气动力载荷贡献项,边界条件项,以及连续条件项代入梁结构离散化方程中,最终得到梁结构的无人机气动弹性模型:
其中下标stru,aero,grav分别表示结构、气动、重力,M、q、f表示刚度矩阵、状态变量、载荷。其中Mstru,aero表示气动载荷对结构状态方程中一阶变量的影响项,可由气动力方程中推导得出,Maero,stru表示结构运动对气动状态方程中一阶变量的影响项,可由气动和结构耦合方程中推导得出。
步骤4、考虑气动弹性与飞行力学的耦合效应,在参考原点引入集中质量,引入刚体质点运动方程
其中Mrigid和Irigid为刚体质点的质量矩阵和转动惯量矩阵,Vrigid和Ωrigid为其运动的线速度和角速度,frigid和mrigid为作用在其上的力和力矩。
步骤5、耦合柔性梁的气动弹性方程和刚体质点的飞行力学方程,将其简单表示为
式中,q为由结构状态和气动状态等变量组成的未知列向量,矩阵Mcoup和列向量fcoup均为未知向量q的函数。
系统方程的静平衡解q0,可通过Newton-Raphson迭代算法求解非线性代数方程组
fcoup(q0)=0
获得。为了提高计算效率,本文利用控制相对/绝对误差和迭代步数来实现自适应步长的Newton-Raphson算法迭代求解其静态平衡状态。系统方程的动态时域响应,可采用Generalized-α算法进行求解,在时间步进时,以前一时刻作为当前时刻的初始猜测,求解出当前时刻的状态。计算中根据迭代收敛速度调整时间步进长度,实现变步长时域积分。
以一常规布局高空长航时柔性飞机为例,考虑分析包括全机配平和纵向动稳定性,布局如图2所示。其翼展为72.78m,外翼有10°上反角;弦长为2.438m,根稍比为1;展向对称布置5个发动机和3个吊舱,其中,左右两侧吊舱质量为22.68kg,翼展中心处吊舱用于装载有效载荷,质量为27.22kg(空载)~254.0kg(满载)。
如图3所示为柔性飞机配平状态下全机静变形,图4为考虑失速和不考虑失速状态柔性飞机满载时的时间历程,在发生失速的响应过程中,失速区域局限于翼尖附近。全机升力损失较小(在当前计算时间范围内),考虑失速和不考虑失速的两种响应结果没有明显区别。

Claims (2)

1.一种考虑结构和气动非线性的飞行动力学建模方法,其特征在于,包括以下步骤:
步骤1、将无人机结构三维梁问题解耦为非线性梁运动分析和梁截面变形分析,建立无人机非线性结构模型;
步骤2、基于气动降阶模型建立无人机非线性气动模型;
步骤3、通过无人机非线性结构模型与无人机非线性气动模型的耦合,建立无人机气动弹性模型;
步骤4、将重力载荷和气动力载荷的贡献项以及边界条件项,代入到无人机非线性气动弹性模型,得到柔性飞机气动弹性与飞行动力学耦合模型;
步骤5、基于Newton-Raphson方法求解柔性飞机非线性气动弹性与飞行动力学耦合模型的静平衡解,采用Generalized-α算法求解非线性时域响应;
步骤1中,考虑剪切变形和翘曲变形,基于有限元离散,构建表征剖面特性的刚度矩阵,建立二维梁剖面模型;通过非连续协调方程表征节点质量不连续因素,结合二维梁剖面模型和几何精确本征梁理论建立非线性梁结构模型,从而建立无人机非线性结构模型;
步骤2中,建立结构实体模型,对该结构模型进行模态分析;得到各阶模态向量和结构节点坐标;基于结构节点坐标和对应的模态向量通过差值得到气动节点坐标对应的各阶模态位移向量,从而用于非定常气动力的节点位移输入;建立结构几何外形以及外部流场几何形状,将该几何形状导入流体网格绘制软件中绘制气动网格,导入计算流体力学软件中计算,设置压力远场条件;机翼表面设置为无滑动静态壁面条件,网格在翼型附近被细化;采用动态网格结合用户自定义函数接口编程,采用弹簧方法进行网格重构实现机翼的模态位移连续变形;在数值计算中,采用双精度求解器进行数值模拟,采用Spalart-Allmaras湍流模型;采用广义位移输入,计算广义气动力,建立二者的非线性关系,最终得到无人机非线性气动模型;
步骤3中,将重力载荷贡献项、气动力载荷贡献项,边界条件项,以及连续条件项代入梁结构离散化方程中,最终得到梁结构的无人机气动弹性模型:
其中下标stru,aero,grav分别表示结构、气动、重力,M、q、f表示刚度矩阵、状态变量、载荷;其中Mstru,aero表示气动载荷对结构状态方程中一阶变量的影响项,可由气动力方程中推导得出,Maero,stru表示结构运动对气动状态方程中一阶变量的影响项,可由气动和结构耦合方程中推导得出;
步骤4中,考虑气动弹性与飞行力学的耦合效应,在参考原点引入集中质量,引入刚体质点运动方程:
其中Mrigid和Irigid为刚体质点的质量矩阵和转动惯量矩阵,Vrigid和Ωrigid为其运动的线速度和角速度,frigid和mrigid为作用在其上的力和力矩;
步骤5中,耦合柔性梁的柔性飞机气动弹性与飞行动力学耦合模型,将其简单表示为:
式中,q为由结构状态和气动状态变量组成的未知列向量,矩阵Mcoup和列向量fcoup均为未知向量q的函数;
系统方程的静平衡解q0,通过Newton-Raphson迭代算法求解非线性代数方程组;
fcoup(q0)=0
获得。
2.根据权利要求1所述的一种考虑结构和气动非线性的飞行动力学建模方法,其特征在于,步骤5中,为了提高计算效率,利用控制相对/绝对误差和迭代步数来实现自适应步长的Newton-Raphson算法迭代求解其静态平衡状态;系统方程的动态时域响应,采用Generalized-α算法进行求解,在时间步进时,以前一时刻作为当前时刻的初始猜测,求解出当前时刻的状态;计算中根据迭代收敛速度调整时间步进长度,实现变步长时域积分。
CN202111214154.7A 2021-10-19 2021-10-19 一种考虑结构和气动非线性的飞行动力学建模方法 Active CN113868771B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111214154.7A CN113868771B (zh) 2021-10-19 2021-10-19 一种考虑结构和气动非线性的飞行动力学建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111214154.7A CN113868771B (zh) 2021-10-19 2021-10-19 一种考虑结构和气动非线性的飞行动力学建模方法

Publications (2)

Publication Number Publication Date
CN113868771A CN113868771A (zh) 2021-12-31
CN113868771B true CN113868771B (zh) 2024-04-16

Family

ID=79000380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111214154.7A Active CN113868771B (zh) 2021-10-19 2021-10-19 一种考虑结构和气动非线性的飞行动力学建模方法

Country Status (1)

Country Link
CN (1) CN113868771B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115146376A (zh) * 2022-06-23 2022-10-04 西北工业大学 联结翼布局飞机气动载荷分配与结构变形协调设计方法
CN114942595B (zh) * 2022-07-25 2022-11-18 西安爱生技术集团有限公司 一种考虑降雨影响的无人机阵风响应建模和分析方法
CN115659523B (zh) * 2022-12-27 2023-03-10 北京航空航天大学 一种大展弦比无人机刚柔耦合建模分析方法
CN115795701B (zh) * 2023-02-20 2023-04-21 北京航空航天大学 一种随动载荷突变的大展弦比无人机飞行动力学分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012953A (zh) * 2010-11-04 2011-04-13 西北工业大学 Cfd/csd耦合求解非线性气动弹性仿真方法
US9073623B1 (en) * 2013-03-15 2015-07-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System and method for dynamic aeroelastic control
CN108052772A (zh) * 2017-12-30 2018-05-18 北京航空航天大学 一种基于结构降阶模型的几何非线性静气动弹性分析方法
CN108363843A (zh) * 2018-01-25 2018-08-03 北京航空航天大学 一种基于结构降阶模型的几何非线性静气动弹性全机配平方法
CN112580241A (zh) * 2020-12-15 2021-03-30 北京航空航天大学 一种基于结构降阶模型的非线性气动弹性动响应分析方法
CN113111430A (zh) * 2021-03-06 2021-07-13 北京航空航天大学 基于非线性气动力降阶的弹性飞机飞行动力学建模方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8060350B2 (en) * 2007-03-29 2011-11-15 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of performing computational aeroelastic analyses
DE102009002392A1 (de) * 2009-04-15 2010-11-04 Airbus Deutschland Gmbh System und Verfahren zur Bestimmung von lokalen Beschleunigungen, dynamischen Lastverteilungen und aerodynamischen Daten bei einem Luftfahrzeug

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012953A (zh) * 2010-11-04 2011-04-13 西北工业大学 Cfd/csd耦合求解非线性气动弹性仿真方法
US9073623B1 (en) * 2013-03-15 2015-07-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration System and method for dynamic aeroelastic control
CN108052772A (zh) * 2017-12-30 2018-05-18 北京航空航天大学 一种基于结构降阶模型的几何非线性静气动弹性分析方法
CN108363843A (zh) * 2018-01-25 2018-08-03 北京航空航天大学 一种基于结构降阶模型的几何非线性静气动弹性全机配平方法
CN112580241A (zh) * 2020-12-15 2021-03-30 北京航空航天大学 一种基于结构降阶模型的非线性气动弹性动响应分析方法
CN113111430A (zh) * 2021-03-06 2021-07-13 北京航空航天大学 基于非线性气动力降阶的弹性飞机飞行动力学建模方法

Also Published As

Publication number Publication date
CN113868771A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
CN113868771B (zh) 一种考虑结构和气动非线性的飞行动力学建模方法
Murua et al. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics
De Leon et al. Aeroelastic tailoring using fiber orientation and topology optimization
Zhao et al. Multibody dynamic approach of flight dynamics and nonlinear aeroelasticity of flexible aircraft
CN102012953A (zh) Cfd/csd耦合求解非线性气动弹性仿真方法
CN113806871B (zh) 一种考虑结构非线性的柔性飞行动力学建模方法
CN113723027A (zh) 一种针对弹性飞机的静气动弹性计算方法
CN115659523B (zh) 一种大展弦比无人机刚柔耦合建模分析方法
Kier et al. Integrated flexible dynamic loads models based on aerodynamic influence coefficients of a 3d panel method
Juhasz et al. Flight dynamics simulation modeling of a large flexible tiltrotor aircraft
Danowsky et al. Control oriented aeroservoelastic modeling of a small flexible aircraft using computational fluid dynamics and computational structural dynamics-invited
Castellani et al. Flight loads prediction of high aspect ratio wing aircraft using multibody dynamics
Xie et al. Geometrically nonlinear aeroelastic stability analysis and wind tunnel test validation of a very flexible wing
Ritter et al. Comparison of nonlinear aeroelastic methods for maneuver simulation of very flexible aircraft
Suleman et al. Non-linear aeroelastic analysis in the time domain of high-aspect-ratio wings: Effect of chord and taper-ratio variation
Yang et al. Aeroelastic trim and flight loads analysis of flexible aircraft with large deformations
Koreanschi et al. Flutter analysis of a morphing wing technology demonstrator: numerical simulation and wind tunnel testing
Chen et al. Overset Euler/Boundary-Layer solver with panel-based aerodynamic modeling for aeroelastic applications
Voss et al. Maneuver loads calculation with enhanced aerodynamics for a UCAV configuration
Raveh et al. Nonlinear design loads for maneuvering elastic aircraft
Perry III et al. DYLOFLEX: A Computer Program for Flexible Aircraft Flight Dynamic Loads Analyses with Active Controls
Kier et al. Development of aircraft flight loads analysis models with uncertainties for pre-design studies
Wang et al. Static aeroelastic analysis of flexible aircraft with large deformations
Rizzi et al. Virtual aircraft design and control of transcruiser-A canard configuration
Li et al. Dynamic modeling for a variable-span and variable-sweep unmanned aerial vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant