CN113862572A - 一种海洋用抗氢致开裂x80级管线钢及其制造方法 - Google Patents

一种海洋用抗氢致开裂x80级管线钢及其制造方法 Download PDF

Info

Publication number
CN113862572A
CN113862572A CN202111145706.3A CN202111145706A CN113862572A CN 113862572 A CN113862572 A CN 113862572A CN 202111145706 A CN202111145706 A CN 202111145706A CN 113862572 A CN113862572 A CN 113862572A
Authority
CN
China
Prior art keywords
induced cracking
hydrogen induced
steel
pipeline steel
marine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111145706.3A
Other languages
English (en)
Other versions
CN113862572B (zh
Inventor
张施琦
刘静
黄峰
葛锐
彭志贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202111145706.3A priority Critical patent/CN113862572B/zh
Publication of CN113862572A publication Critical patent/CN113862572A/zh
Application granted granted Critical
Publication of CN113862572B publication Critical patent/CN113862572B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种海洋用抗氢致开裂X80级管线钢及其制造方法,涉及海洋工程用钢技术领域,本发明海洋用抗氢致开裂X80级管线钢,按化学成分质量百分比计,包括C:0.05~0.07%、Si:0.24~0.30%、Mn:1.75~1.95%、S:≤0.003%、P:≤0.005%、Cu:0.20~0.30%、Ni:0.25~0.30%、Mo:0.22~0.27%、Ta:0.03~0.06%、N:0.005~0.01%、余量为Fe;本发明管线钢的制造工艺包括:配料、冶炼和浇铸成坯‑铸坯再加热‑粗轧‑气雾冷却和缓慢冷却‑精轧‑卷曲;本发明通过添加适量Ta元素、控制Ta/N比以及粗轧后雾冷、缓冷工艺,使钢中形成弥散分布的碳化钽析出相,并细化粒状贝氏体基体和降低Σ3界面比例,从而实现兼具高强、高韧和优异氢致开裂抗力。

Description

一种海洋用抗氢致开裂X80级管线钢及其制造方法
技术领域
本发明涉及海洋工程用钢技术领域,特别涉及一种海洋用抗氢致开裂 X80级管线钢及其制造方法。
背景技术
近年来,我国海洋经济发展迅猛,随着我国南海深水油气田的大规模勘探开发,深海油气输送用高强度管线钢的应用规模将迅速扩大。我国开发生产海底管线钢始于2004年,到目前为止,宝钢、鞍钢、武钢等开发生产了 X70及以下级别的海底专用管线钢在浅海环境得到应用,深海用X70及更高级别的管线钢开发还处于起步阶段;
目前现有技术中涉及的高氢致开裂抗力海洋用管线钢主要为强度较低的低钢级管线钢,如X70、X65钢级等,尚无技术涉及X80及以上的高钢级海洋用管线钢;而涉及到高强度、高韧性管线钢的X80管线钢技术均未提到高氢致开裂抗力及深海应用。这是因为通常而言,管线钢的强度越高,韧性会越差,氢致开裂的敏感也越高,如何同时兼顾高强度、高韧性和高氢致开裂抗力成为了深海管线钢开发的核心问题和技术难题。为此,我们提出一种海洋用抗氢致开裂X80级管线钢及其制造方法。
发明内容
本发明的主要目的在于提供一种海洋用抗氢致开裂X80级管线钢及其制造方法,通过添加适量Ta元素、控制Ta/N比以及粗轧后雾冷、缓冷工艺,来获取大量纳米碳化钽析出相,借助其对粒状贝氏体基体的细化作用、对氢的强捕获作用和对Σ3界面占比的降低作用,来协同提升管线钢的强度、韧性以及氢致开裂抗力,以解决目前海洋用管线钢存在的强、韧性和氢致开裂抗力难以协同提升的技术问题。
为实现上述目的,本发明采取的技术方案为:一种海洋用抗氢致开裂X80 级管线钢,按化学成分质量百分比计,包括C:0.05~0.07%、Si:0.24~0.30%、 Mn:1.75~1.95%、S:≤0.003%、P:≤0.005%、Cu:0.20~0.30%、Ni:0.25~ 0.30%、Mo:0.22~0.27%、Ta:0.03~0.06%、N:0.005~0.01%、余量为 Fe。
优选地,所述Ta和N的化学成分质量百分比符合6≤Ta/N≤9;基体组织为贝氏体铁素体和细小马奥岛组成的粒状贝氏体,基体上分布有大量纳米 TaC析出相,且具有较低的Σ3界面比例。
优选地,所述NACE标准试验方法进行浸泡试验后,氢致开裂敏感性参数(裂纹敏感率CSR、裂纹长度敏感率CLR、裂纹厚度敏感率CTR)均为0。
一种海洋用抗氢致开裂X80级管线钢的制造方法,包括如下步骤:
Step1:按照所述元素质量百分比配料、冶炼和浇铸成坯;
Step2:将铸坯再加热至1180~1230℃并保温1-2h;
Step3:对上述钢锭进行控制轧制,粗轧开轧温度1100~1150℃,终轧温度控制为1000~1050℃;粗轧压下量为奥氏体再结晶临界变形量的80-90%;
Step4:粗轧完后气雾冷却至960±20℃,再缓慢冷却至920±20℃进行保温处理15min;
Step5:对钢板进行精轧,精轧开轧温度为870~920℃,精轧终轧温度为840~870℃,精轧压下量≥70%;
Step6:水冷至420~470℃后卷曲,完成海洋用抗氢致开裂X80级管线钢的制备。
优选地,所述Step4中缓慢冷却+保温处理时长为20-25min。
本发明方案中各主要元素的基本作用如下:
C:管线钢中的C主要以固溶原子和析出碳化物的形式存在,从而起到强化效果,但过高的C会导致焊接困难和韧性不足;因此,为实现较好的强度、韧性匹配,C含量选取为0.05~0.07%;
Si:Si能通过增加钢的电阻率以及改变锈层α-FeOOH状态而提高管线钢在海洋环境中的耐腐蚀性能;但过高的Si含量同样也易导致可焊接变差,因此,Si含量选取为0.24~0.30%;
Mn:Mn是钢中的重要固溶强化元素,可用于补偿管线钢中C含量减少带来的强度损失,但Mn含量过高时,可能会导致钢板心部产生MnS偏析带,对钢的力学性能和氢致开裂性能带来不利影响,因此,Si含量选取为1.75~ 1.95%;
Cu:Cu可通过在锈层中富集减缓氯离子对钢的腐蚀加速作用,同时还可以通过析出富Cu析出相使钢中氢均匀化,提升氢致开裂性能,但Cu过高时会偏聚于晶界,带来不利影响,因此,Cu含量选取为0.20~0.30%;
Ni:Ni可以改变自腐蚀电位和促进腐蚀产物细化、致密化而提高钢的耐蚀性能,同时还能防止Cu带来的热脆现象,对钢的低温韧性有益,本发明中Ni含量选取为0.25~0.30%;
Mo:可扩大钢的奥氏体相区和细化相变组织,影响钢材相变过程和提高钢的淬透性,Mo在晶界中的适量富集,可起到强化晶界的作用,对减缓氢致开裂和提高低温韧性有利,但由于Mo成本较高,选取为0.22~0.27%;
Ta:是强碳化物形成元素之一,主要通过与C结合析出碳化物来起到析出强化效果,并具有显著的晶粒细化作用,可协同改善钢的强化和韧性,而且,碳化钽析出相可提供大量深氢陷阱,从而阻碍氢在夹杂等缺陷处富集,提升氢致开裂抗力,Ta添加高于0.06%时,有益效果逐渐饱和,因此,综合考虑经济性和性能指标,选取含量为0.03~0.06%;
N:具有较弱的固溶强化和增加淬透性的作用,并可与Ta、Ti、Nb等微合金元素形成氮化物,但N含量过高时,会减少碳化钽析出体积分数,并可能带来脆性,因此,需要控制合适的Ta/N比,选取N含量为0.005~0.01%;
此外,本发明之所以粗轧完后气雾冷却至960±20℃,再缓慢冷却至920 ±20℃进行保温处理,是因为920-960℃温度区间内Ta易于析出碳化物,从而能借助其析出强化和晶粒细化作用来达到较好的强、韧性匹配;
本发明具有如下有益效果:
一、本发明采用Ta微合金化设计,控制Ta/N比以及粗轧后雾冷、缓冷工艺使钢中Ta尽可能多的与C结合,从而析出大量弥散分布的纳米尺度TaC 析出相,通过其晶粒细化作用来实现获得良好的强度、韧性匹配;适量增加 Mo元素的添加量,并使其尽可能固溶在基体和偏析于晶界中,从而提高晶界结合力,达到提高韧性效果;所制备的管线钢屈服强度Rt0.5≥575MPa,抗拉强度Rm≥705MPa,延伸率≥11.5%。
二、本发明制备的X80级管线钢具有优异的抗氢致开裂性能,在NACE A溶液中浸泡96小时试验后,氢致开裂敏感性参数,包括裂纹敏感率CSR、裂纹长度敏感率CLR和裂纹厚度敏感率CTR均为0,表现出优异的抗HIC 性能;这主要归因于:弥散的TaC纳米析出相可提供大量氢陷阱而捕获氢,从而抑制氢向夹杂等处的扩散和偏聚;Ta降低了Σ3界面比例,Mo提升了晶界强度,增加了裂纹扩展阻力和晶界开裂难度。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
图1为本发明实施例(a)和比较例(b-c)的显微组织形貌;
图2为本发明实施例(a)和比较例(b-c)的重位点阵晶界统计结果;
图3为本发明实施例(a)和比较例(b-c)的透射电镜形貌图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
一种海洋用抗氢致开裂X80级管线钢,按化学成分质量百分比计,包括 C:0.05~0.07%、Si:0.24~0.30%、Mn:1.75~1.95%、S:≤0.003%、P:≤0.005%、Cu:0.20~0.30%、Ni:0.25~0.30%、Mo:0.22~0.27%、Ta: 0.03~0.06%、N:0.005~0.01%、余量为Fe。
其中,Ta和N的化学成分质量百分比符合6≤Ta/N≤9;基体组织为贝氏体铁素体和细小马奥岛组成的粒状贝氏体,基体上分布有大量纳米TaC析出相,且具有较低的Σ3界面比例。
其中,NACE标准试验方法进行浸泡试验后,氢致开裂敏感性参数,包括裂纹敏感率CSR、裂纹长度敏感率CLR和裂纹厚度敏感率CTR均为0。
一种海洋用抗氢致开裂X80级管线钢的制造方法,包括如下步骤:
Step1:按照元素质量百分比配料、冶炼和浇铸成坯;
Step2:将铸坯再加热至1180~1230℃并保温1-2h;
Step3:对上述钢锭进行控制轧制,粗轧开轧温度1100~1150℃,终轧温度控制为1000~1050℃;粗轧压下量为奥氏体再结晶临界变形量的80-90%;
Step4:粗轧完后气雾冷却至960±20℃,再缓慢冷却至920±20℃进行保温处理15min;缓慢冷却+保温处理时长为20-25min;
Step5:对钢板进行精轧,精轧开轧温度为870~920℃,精轧终轧温度为840~870℃,精轧压下量≥70%;
Step6:水冷至420~470℃后卷曲,完成海洋用抗氢致开裂X80级管线钢的制备。
采用本发明实施例及比较例管线钢的化学成分,如表1所示,其中实施例1与比较例1Ta元素含量不同(其他成分基本一致),实施例1与比较例2 控制冷却工艺不同,各钢材具体制备工艺如下:
Step1:配料、冶炼和浇铸成坯;
Step2:将铸坯再加热至1200℃并保温1h;
Step3:进行粗轧:开轧温度1130℃,终轧温度1020℃;
Step4:控制冷却:
实施例1和比较例1:粗轧完后气雾冷却至960℃,再缓慢冷却至920℃进行保温处理15min,缓慢冷却+保温处理总时长为25min;
比较例2:粗轧完后气雾冷却至980℃,无缓冷和保温处理直接进行下一步。
Step5:对钢板进行精轧,精轧开轧温度为910℃,精轧终轧温度为850℃,精轧压下量75%;
Step6:水冷至420~470℃后卷曲,完成管线钢制备;
取上述一组实施例和两组比较例进行力学性能及氢致开裂敏感性对比测试,所测数据如表2所示。
表1为本发明实施例及比较例的化学组成(质量分数%)
Figure RE-GDA0003341751230000071
表2为本发明实施例和比较例的力学性能及氢致开裂敏感性
Figure RE-GDA0003341751230000072
参阅图1-2所示,将实施例及比较例管线钢经过机械抛光、硝酸酒精浸蚀后利用SEM观察显微组织,如图1,其中实施例1、比较例1和比较例2 分别如图1(a)、(b)、(c)所示;通过电解抛光方法制备实施例及比较例的样品,并进行电子背散射衍射(EBSD)观察,统计得到不同类型低重位点阵晶界占比,所获得的实施例1、比较例1和比较例2的结果分别如图2;采用电镜双喷制备实施例1、比较例1和比较例2管线钢的透射电镜样品并进行观察,所得到的析出相形貌如图3(a)、(b)、(c);由上述图1-图3可知,与比较例相比,实施例的基体组织为更细的粒状贝氏体,基体上分布有大量纳米TaC析出相,且具有较低的Σ3界面比例;这抑制了氢向夹杂等处的扩散和偏聚,增加了裂纹扩展阻力和晶界开裂难度,从而具有高的氢致开裂抗力,以及良好的强、韧性匹配。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

1.一种海洋用抗氢致开裂X80级管线钢,其特征在于:按化学成分质量百分比计,包括C:0.05~0.07%、Si:0.24~0.30%、Mn:1.75~1.95%、S:≤0.003%、P:≤0.005%、Cu:0.20~0.30%、Ni:0.25~0.30%、Mo:0.22~0.27%、Ta:0.03~0.06%、N:0.005~0.01%、余量为Fe。
2.根据权利要求1所述的一种海洋用抗氢致开裂X80级管线钢,其特征在于:所述Ta和N的化学成分质量百分比符合6≤Ta/N≤9;基体组织为贝氏体铁素体和细小马奥岛组成的粒状贝氏体,基体上分布有纳米TaC析出相,且具有较低的Σ3界面比例。
3.根据权利要求1所述的一种海洋用抗氢致开裂X80级管线钢,其特征在于:所述NACE标准试验方法进行浸泡试验后,氢致开裂敏感性参数均为0。
4.一种海洋用抗氢致开裂X80级管线钢的制造方法,其特征在于:包括如下步骤:
Step1:按照所述元素质量百分比配料、冶炼和浇铸成坯;
Step2:将铸坯再加热至1180~1230℃并保温1-2h;
Step3:对上述钢锭进行控制轧制,粗轧开轧温度1100~1150℃,终轧温度控制为1000~1050℃;粗轧压下量为奥氏体再结晶临界变形量的80-90%;
Step4:粗轧完后气雾冷却至960±20℃,再缓慢冷却至920±20℃进行保温处理15min;
Step5:对钢板进行精轧,精轧开轧温度为870~920℃,精轧终轧温度为840~870℃,精轧压下量≥70%;
Step6:水冷至420~470℃后卷曲,完成海洋用抗氢致开裂X80级管线钢的制备。
5.根据权利要求4所述的一种海洋用抗氢致开裂X80级管线钢的制造方法,其特征在于:所述Step4中缓慢冷却+保温处理时长为20-25min。
CN202111145706.3A 2021-09-28 2021-09-28 一种海洋用抗氢致开裂x80级管线钢及其制造方法 Active CN113862572B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111145706.3A CN113862572B (zh) 2021-09-28 2021-09-28 一种海洋用抗氢致开裂x80级管线钢及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111145706.3A CN113862572B (zh) 2021-09-28 2021-09-28 一种海洋用抗氢致开裂x80级管线钢及其制造方法

Publications (2)

Publication Number Publication Date
CN113862572A true CN113862572A (zh) 2021-12-31
CN113862572B CN113862572B (zh) 2022-07-26

Family

ID=78992192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111145706.3A Active CN113862572B (zh) 2021-09-28 2021-09-28 一种海洋用抗氢致开裂x80级管线钢及其制造方法

Country Status (1)

Country Link
CN (1) CN113862572B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024461A (zh) * 2012-03-30 2014-09-03 新日铁住金株式会社 抗氢诱发裂纹性优良的高强度管道用钢管和其所使用的高强度管道用钢板、以及它们的制造方法
CN106232850A (zh) * 2014-04-24 2016-12-14 杰富意钢铁株式会社 厚钢板及其制造方法
JP2020200498A (ja) * 2019-06-07 2020-12-17 日本製鉄株式会社 ラインパイプ用鋼板および鋼管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024461A (zh) * 2012-03-30 2014-09-03 新日铁住金株式会社 抗氢诱发裂纹性优良的高强度管道用钢管和其所使用的高强度管道用钢板、以及它们的制造方法
CN106232850A (zh) * 2014-04-24 2016-12-14 杰富意钢铁株式会社 厚钢板及其制造方法
JP2020200498A (ja) * 2019-06-07 2020-12-17 日本製鉄株式会社 ラインパイプ用鋼板および鋼管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIQI ZHANG ET AL.: "Mitigation of hydrogen embrittlement in ultra-high strength lath martensitic steel via Ta microalloying", 《MATERIALS & DESIGN》 *

Also Published As

Publication number Publication date
CN113862572B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
KR102016432B1 (ko) 고강도 냉연 강판 및 그의 제조 방법
JP5821912B2 (ja) 高強度冷延鋼板およびその製造方法
JP4792778B2 (ja) ラインパイプ用厚肉継目無鋼管の製造方法
CN113234995B (zh) 一种屈服强度600MPa级超厚热轧H型钢及其生产方法
CN110088344B (zh) 具有优异的抗氢致开裂性的压力容器用钢及其制造方法
CN104264069B (zh) 一种特厚规格x70管线钢及其制造方法
CN109161791A (zh) 具有优良低温韧性的690MPa级别船舶及海洋工程用钢及其制造方法
WO2020238851A1 (zh) 一种钢、棒材及棒材的制造方法
WO2007013503A1 (ja) 継目無鋼管およびその製造方法
WO2003042420A1 (en) Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
CN109913763B (zh) 1000MPa级冷加工性能良好的低成本冷轧双相钢及其制造方法
CN110088335B (zh) 具有优异的表面部分nrl-dwt特性的超厚钢材及其制造方法
JPWO2013089156A1 (ja) 低温靭性に優れた高強度h形鋼及びその製造方法
WO2021058003A1 (zh) 一种管线钢及其制造方法
CN103866204A (zh) 一种低温大压下工艺生产的大应变x80双相钢板
CN108368593B (zh) 具有优异的低温应变时效冲击特性的高强度钢材及其制造方法
CN105925895B (zh) 抗应变时效脆化与消除残余应力退火脆化特厚600MPa级调质钢板及其制造方法
CN109207854A (zh) 超宽规格高强高韧性能的海洋工程用钢及其制造方法
JP5510024B2 (ja) 穴拡げ性と局部延性に優れた高強度薄鋼板およびその製造方法
KR101359082B1 (ko) 저온 dwtt 연성파면율이 우수한 라인파이프용 후물강판 및 그 제조방법
Zhu et al. Effect of modifying matrix microstructures and nanosized precipitates on strengthening mechanisms and ductile-to-brittle-transition-temperature in a 1000 MPa Ni–Cr–Mo–Cu steel
CN113862572B (zh) 一种海洋用抗氢致开裂x80级管线钢及其制造方法
KR20160078714A (ko) 대입열 용접열영향부 인성이 우수한 용접구조용 강재 및 그 제조방법
CN110952040B (zh) EH460级150-200mm特厚钢板的生产方法
CN103088259B (zh) 耐冲击稀土微合金化高强度船体结构用钢板及生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant