CN113856703A - 纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用 - Google Patents
纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用 Download PDFInfo
- Publication number
- CN113856703A CN113856703A CN202111201050.2A CN202111201050A CN113856703A CN 113856703 A CN113856703 A CN 113856703A CN 202111201050 A CN202111201050 A CN 202111201050A CN 113856703 A CN113856703 A CN 113856703A
- Authority
- CN
- China
- Prior art keywords
- moo
- composite photocatalyst
- nanoflower
- preparation
- nanosheet composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002057 nanoflower Substances 0.000 title claims abstract description 41
- 239000002131 composite material Substances 0.000 title claims abstract description 40
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 40
- 239000002135 nanosheet Substances 0.000 title claims abstract description 34
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- DKUYEPUUXLQPPX-UHFFFAOYSA-N dibismuth;molybdenum;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Mo].[Mo].[Bi+3].[Bi+3] DKUYEPUUXLQPPX-UHFFFAOYSA-N 0.000 title description 3
- UDWJTDBVEGNWAB-UHFFFAOYSA-N zinc indium(3+) sulfide Chemical compound [S-2].[Zn+2].[In+3] UDWJTDBVEGNWAB-UHFFFAOYSA-N 0.000 title description 2
- 229910002900 Bi2MoO6 Inorganic materials 0.000 claims abstract description 53
- 239000004098 Tetracycline Substances 0.000 claims abstract description 12
- 229960002180 tetracycline Drugs 0.000 claims abstract description 12
- 229930101283 tetracycline Natural products 0.000 claims abstract description 12
- 235000019364 tetracycline Nutrition 0.000 claims abstract description 12
- 150000003522 tetracyclines Chemical class 0.000 claims abstract description 12
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 16
- 239000008367 deionised water Substances 0.000 claims description 16
- 229910021641 deionized water Inorganic materials 0.000 claims description 16
- 238000005406 washing Methods 0.000 claims description 16
- 238000001035 drying Methods 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 9
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 claims description 8
- -1 polytetrafluoroethylene Polymers 0.000 claims description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 8
- 238000009210 therapy by ultrasound Methods 0.000 claims description 8
- 230000015556 catabolic process Effects 0.000 claims description 5
- 238000006731 degradation reaction Methods 0.000 claims description 5
- 229910004616 Na2MoO4.2H2 O Inorganic materials 0.000 claims description 4
- FDEIWTXVNPKYDL-UHFFFAOYSA-N sodium molybdate dihydrate Chemical compound O.O.[Na+].[Na+].[O-][Mo]([O-])(=O)=O FDEIWTXVNPKYDL-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 239000002957 persistent organic pollutant Substances 0.000 claims description 3
- 239000011592 zinc chloride Substances 0.000 claims 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims 1
- 230000001699 photocatalysis Effects 0.000 abstract description 9
- 238000007146 photocatalysis Methods 0.000 abstract description 4
- 230000009471 action Effects 0.000 abstract description 2
- 230000000593 degrading effect Effects 0.000 abstract description 2
- 239000011701 zinc Substances 0.000 description 54
- 239000013078 crystal Substances 0.000 description 7
- 239000003242 anti bacterial agent Substances 0.000 description 5
- 229940088710 antibiotic agent Drugs 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 241000282414 Homo sapiens Species 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229940072172 tetracycline antibiotic Drugs 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000004770 chalcogenides Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 241001198704 Aurivillius Species 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 241000482268 Zea mays subsp. mays Species 0.000 description 1
- 125000000266 alpha-aminoacyl group Chemical group 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000759 toxicological effect Toxicity 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/31—Chromium, molybdenum or tungsten combined with bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备方法及其应用,该复合光催化剂是以水热合成法制备出三维的Zn3In2S6纳米花结构,然后再通过二次水热的方法在Zn3In2S6纳米花结构上引入二维的Bi2MoO6纳米片,从而构建出纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂。本发明所得复合光催化剂在可见光的作用下展现了优异的光催化降解四环素性能,且其制备方法简单,易于操作,适合推广应用。
Description
技术领域
本发明属于光催化材料制备技术领域,具体涉及一种纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备方法及其应用。
背景技术
环境污染已引起全世界的广泛关注,尤其是抗生素的污染,已经严重危害到生态系统以及人类的生存环境。抗生素滥用日益突出,不仅对水生生物产生慢性毒理效应,且易产生耐药性,降低人体免疫力,从而影响人类身体健康。四环素类抗生素具有价格低廉、广谱抗菌等特点,是目前使用最广泛、用量最大的抗生素种类之一,其作用原理是通过阻碍氨酰tRNA与核糖体结合位点的结合来抑制菌体蛋白合成,从而达到抑菌作用。与其它抗生素相比,四环素类抗生素在环境中更稳定,持久性强,难于降解,因而更易残留在环境中,主要是来自畜禽养殖业、医院和药厂排污等的排放。如何解决抗生素污染水体是众多科学家研究的热点之一。近几年,因半导体光催化是一种绿色、安全和无二次污染的技术,已成为解决水体污染的理想技术之一。
Bi2MoO6是钼酸铋中的γ晶型,同时也是钙钛矿层状结构的奥里维里斯(Aurivillius)化合物。Bi2MoO6与钼酸铋的α-Bi2Mo3O12、β-Bi2Mo2O9两种晶型相比具有优异的光催化性能。Bi2MoO6拥有适宜的带隙2.78 eV,其导带和价带位置为0.43 eV和3.21 eV(Chemical Engineering Journal, 2017, 316: 461-470.),以及镶嵌在[Bi2O2]2+层中的八面体片层MoO6形成的特殊结构使光生电子运动不会有阶跃势垒而能快速转移,表现出优异的光催化性能,然而,Bi2MoO6光照时产生的电子与空穴容易复合,导致在光催化过程中的量子产率很低。因此,选择一种合适的半导体与其复合提高光生载流子的分离和转移效率,从而构建一种高效的复合光催化剂。Zn3In2S6是一种三元硫族化合物,其带隙为2.81 eV,导带位置约为-0.9 eV,价带位置约为1.91 eV(ACS Applied Energy Materials, 2020, 3(11): 11275-11284),并具有良好的稳定性、环保、对可见光吸收强等优点,是一种理想的半导体敏化和复合的材料。综上所述,本发明结合半导体Bi2MoO6与Zn3In2S6材料的优势,以及合适的导带、价带位置,构建纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂,并应用于四环素的降解。
发明内容
本发明的目的在于提供一种纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备方法及其应用,其通过简单的水热合成法制备出三维的Zn3In2S6纳米花结构,然后再通过二次水热的方法在Zn3In2S6纳米花结构上引入二维的Bi2MoO6纳米片,所构建出纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂,具有优异的可见光光催化降解四环素的性能。
为实现上述目的,本发明采用如下技术方案:
一种纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备方法及其应用,其通过简单的水热合成法制备出三维的Zn3In2S6纳米花结构,然后再通过二次水热的方法在Zn3In2S6纳米花结构上引入二维的Bi2MoO6纳米片,构建出纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂。其具体包括如下步骤:
1)Zn3In2S6纳米花的制备
将2 mmol InCl3·4H2O、3 mmol ZnCl2、7 mmol CH3CSNH2加入聚四氟乙烯内衬中,向内衬中加入80 mL去离子水,然后将内衬放入超声器超声处理30 min,结束超声后持续搅拌两个小时后把反应釜放置到烘箱中,180 ℃持续反应12 h;待反应结束后先用乙醇洗涤,再用去离子水洗涤,60 ℃烘干12 h,即得三维的Zn3In2S6纳米花结构;
2)纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备
将一定量步骤1)制得的Zn3In2S6纳米花分散到80 mL去离子水中,然后将1 mmolNa2MoO4.2H2O、2 mmol Bi(NO3)3.5H2O、0.05 g C19H42BrN加入聚四氟乙烯内衬中,持续搅拌30 min,然后把混合均匀的溶液移至反应釜中,放置在烘箱中保持100 ℃,反应24 h。待反应结束后先用乙醇洗涤,再用去离子水洗涤,60 ℃烘干12 h,即得三维的Zn3In2S6纳米花结构与Bi2MoO6纳米片复合光催化剂。
优选地,纳米花结构的Zn3In2S6占Zn3In2S6与Bi2MoO6总质量的5-20%。步骤2)中所述一定量步骤1)制得的Zn3In2S6纳米花为0.032 g、0.068 g、0.108 g和0.152 g,即质量分数为5%、10%、15%、20%。Zn3In2S6纳米花是少量的。
所述Zn3In2S6纳米花结构与Bi2MoO6纳米片复合光催化剂在可见光的激发下,可以降解浓度为10 ppm的有机污染物四环素溶液。
本发明的显著优点在于:
本发明针对现有光催化氧化技术存在的问题,特别是Bi2MoO6催化材料存在光生载流子的分离和转移效率低的问题,提供一种通过二次水热制备的Zn3In2S6纳米花结构与Bi2MoO6纳米片复合光催化剂。该复合光催化剂是一种三维的异质复合结构,可以降解浓度为10 ppm的有机污染物四环素溶液,在可见光激发下展现出优异的光催化降解性能,且其制备方法简单,易于操作,适合推广应用。
附图说明
图1(a)为实施例1制得的Zn3In2S6纳米花结构的SEM图;(b)为实施例4制得的Zn3In2S6/Bi2MoO6复合光催化剂的SEM图;
图2为实施例1-实施例6所制得样品的XRD图;
图3为实施例1-实施例6所制得不同催化剂的四环素降解率柱状图;
图4为Zn3In2S6/Bi2MoO6复合光催化剂降解四环素的反应机理。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
Zn3In2S6纳米花的制备
将2 mmol InCl3·4H2O、3 mmol ZnCl2、7 mmol CH3CSNH2加入聚四氟乙烯内衬中,向内衬中加入80 mL去离子水,然后将内衬放入超声器超声处理30 min,结束超声后持续搅拌两个小时后把反应釜放置到烘箱中,180 ℃持续反应12 h;待反应结束后先用乙醇洗涤,再用去离子水洗涤,60 ℃烘干12 h,即得三维的Zn3In2S6纳米花结构,样品编号为1。
实施例2
二维Bi2MoO6纳米片的制备
将1 mmol Na2MoO4.2H2O、2 mmol Bi(NO3)3.5H2O、0.05 g C19H42BrN加入聚四氟乙烯内衬中,向内衬中加入80 mL 去离子水,持续搅拌30 min,然后把混合均匀的溶液移至反应釜中,放置在烘箱中保持100 ℃,反应24 h。待反应结束后先用乙醇洗涤,再用去离子水洗涤,60 ℃烘干12 h,即得二维Bi2MoO6纳米片,样品编号为2。
实施例3
1)Zn3In2S6纳米花的制备
将2 mmol InCl3·4H2O、3 mmol ZnCl2、7 mmol CH3CSNH2加入聚四氟乙烯内衬中,向内衬中加入80 mL去离子水,然后将内衬放入超声器超声处理30 min,结束超声后持续搅拌两个小时后把反应釜放置到烘箱中,180 ℃持续反应12 h;待反应结束后先用乙醇洗涤,再用去离子水洗涤,60 ℃烘干12 h,即得三维的Zn3In2S6纳米花结构;
2)纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备
将0.032g步骤1)制得的Zn3In2S6纳米花分散到80 mL去离子水中,然后将1 mmolNa2MoO4.2H2O、2 mmol Bi(NO3)3.5H2O、0.05 g C19H42BrN加入聚四氟乙烯内衬中,持续搅拌30 min,然后把混合均匀的溶液移至反应釜中,放置在烘箱中保持100 ℃,反应24 h。待反应结束后先用乙醇洗涤,再用去离子水洗涤,60 ℃烘干12 h,即得Zn3In2S6/Bi2MoO6复合光催化剂,样品编号为3。
实施例4
将实施例3步骤3)中Zn3In2S6纳米花加入的质量由0.032 g改为0.068 g,其余步骤同实施例2,所得Zn3In2S6/Bi2MoO6复合光催化剂的样品编号为4。
实施例5
将实施例3步骤3)中Zn3In2S6纳米花加入的质量由0.032 g改为0.108 g,其余步骤同实施例2,所得Zn3In2S6/Bi2MoO6复合光催化剂的样品编号为5。
实施例6
将实施例3步骤3)中Zn3In2S6纳米花加入的质量由0.032 g改为0.152 g,其余步骤同实施例2,所得Zn3In2S6/Bi2MoO6复合光催化剂的样品编号为6。
光催化降解性能的评价
将40毫克催化剂加入到80毫升10 ppm的四环素溶液中,持续搅拌和暗吸附60分钟,以保证催化剂的吸附/脱附平衡。待暗吸附完毕后,开氙灯光照,每隔一定的时间后,取4毫升反应液离心,然后取上清液在紫外可见分光光度计上测试,实验结果见图3。
图1(a)为实施例1制得的Zn3In2S6纳米花结构的SEM图;(b)为实施例4制得的Zn3In2S6/Bi2MoO6复合光催化剂的SEM图。图1(a)展示了纯Zn3In2S6的纳米花状结构,通过二次水热后,在Zn3In2S6花状结构表面引入Bi2MoO6纳米片,构建了Zn3In2S6纳米花结构与Bi2MoO6纳米片复合光催化剂,如图1(b)所示。
图2为实施例1-实施例6所制得样品的XRD图。图中清楚地展示了纯相Bi2MoO6光催化剂在10.54°处的衍射峰对应(020)晶面、28.44°的衍射峰对应(131)晶面、32.72°处的衍射峰对应(200)晶面等特征衍射峰,结果表面制备的纯相Bi2MoO6是正交晶型。另外,引入Zn3In2S6后,构建的Zn3In2S6/Bi2MoO6复合光催化剂同时出现Zn3In2S6和Bi2MoO6的特征衍射峰,说明本发明成功地制备出Zn3In2S6/Bi2MoO6复合光催化剂。
图3为实施例1-实施例6所制得不同催化剂的四环素降解率柱状图。通过该图可知,当Zn3In2S6含量为15%时,其光催化活性最高,经过36 min的可见光激发,其降解率可达77.6%,说明我们制备Zn3In2S6/Bi2MoO6复合光催化剂是一种高效的光催化剂。当Zn3In2S6含量超过20%时,可能是由于过多的Zn3In2S6,覆盖了多数Bi2MoO6纳米片,降低了Zn3In2S6/Bi2MoO6复合光催化剂的吸收效率,导致其光催化降解率降低。
图4为Zn3In2S6/Bi2MoO6复合光催化剂降解四环素可能的反应机理。基于Zn3In2S6和Bi2MoO6的研究报告,Bi2MoO6的导带和价带位置为0.43 eV和3.21 eV,Zn3In2S6的导带和价带位置为-0.9 eV和1.91 eV,该反应的途径可能为Zn3In2S6和Bi2MoO6同时被可见光激发,Zn3In2S6产生的电子还原O2产生超氧自由基(•O2 -),同时Bi2MoO6价带的空穴直接氧化部分的四环素。另外,Bi2MoO6导带电子转移到Zn3In2S6价带,构建成固态的Z型机制,提高光生载流子的转移和分离效率,从而提高其光催化反应效率。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (4)
1.一种纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备方法,其特征在于:采用水热合成法制备出三维的Zn3In2S6纳米花结构,然后再通过水热的方法引入Bi2MoO6纳米片,构建出具有纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂。
2.根据权利要求1所述的纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备方法,其特征在于:包括如下步骤:
1)Zn3In2S6纳米花的制备
将InCl3·4H2O、ZnCl2、CH3CSNH2加入聚四氟乙烯内衬中,向内衬中加入去离子水,然后将内衬放入超声器超声处理30 min,结束超声后持续搅拌两个小时后把反应釜放置到烘箱中,180℃持续反应12 h;待反应结束后先用乙醇洗涤,再用去离子水洗涤,60℃烘干12 h,即得三维的Zn3In2S6纳米花结构;
2)纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的制备
将步骤1)制得的Zn3In2S6纳米片分散到去离子水中并加入聚四氟乙烯内衬中,然后加入Na2MoO4.2H2O、Bi(NO3)3.5H2O、C19H42BrN,持续搅拌30 min,在100℃下反应24h,待反应结束后先用乙醇洗涤,再用去离子水洗涤,60℃烘干12 h,即得纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂。
3.一种如权利要求1-2任一项所述的制备方法制得的纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂其特征在于:纳米花结构的Zn3In2S6占Zn3In2S6与Bi2MoO6总质量的5-20%。
4.一种如权利要求3所述的纳米花结构的Zn3In2S6与Bi2MoO6纳米片复合光催化剂的应用,其特征在于:所述的纳米花结构Zn3In2S6与Bi2MoO6纳米片复合光催化剂应用于可见光降解有机污染物四环素。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111201050.2A CN113856703B (zh) | 2021-10-15 | 2021-10-15 | 纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111201050.2A CN113856703B (zh) | 2021-10-15 | 2021-10-15 | 纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113856703A true CN113856703A (zh) | 2021-12-31 |
CN113856703B CN113856703B (zh) | 2023-12-29 |
Family
ID=78999475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111201050.2A Active CN113856703B (zh) | 2021-10-15 | 2021-10-15 | 纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113856703B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114481168A (zh) * | 2022-02-23 | 2022-05-13 | 辽宁大学 | 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用 |
CN114950522A (zh) * | 2022-04-27 | 2022-08-30 | 湖南工商大学 | 氮化硼/硫化铟锌复合光催化剂及其制备方法和应用 |
CN117358227A (zh) * | 2023-09-28 | 2024-01-09 | 辽宁大学 | InVO4/ZnIn2S4复合材料及其制备方法和在光催化降解抗生素中的应用 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0255246A (ja) * | 1988-08-22 | 1990-02-23 | Nippon Sheet Glass Co Ltd | 高耐久性熱線遮へいガラスおよびその製造方法 |
US20120010411A1 (en) * | 2009-03-19 | 2012-01-12 | Ecole Polytechnique Federale De Lausanne (Epfl) | Modified surface |
CN105457658A (zh) * | 2015-12-08 | 2016-04-06 | 哈尔滨工业大学深圳研究生院 | 一种模拟光合作用降解污染物同时产氢的z型催化剂及其制备方法 |
CN107376900A (zh) * | 2017-07-26 | 2017-11-24 | 福州大学 | 钼酸铋超薄纳米片光催化材料的制备方法及其应用 |
CN108404934A (zh) * | 2018-04-13 | 2018-08-17 | 西北师范大学 | 一种z型结构的杂化二氧化钛光催化剂的制备及应用 |
CN108855143A (zh) * | 2018-07-09 | 2018-11-23 | 河南师范大学 | 一种Z型结构ZnIn2S4/Ag/Bi2WO6复合光催化剂的制备方法 |
CN109569735A (zh) * | 2018-11-29 | 2019-04-05 | 南昌航空大学 | 一种铋系光催化剂及其制备方法和应用 |
CN109772369A (zh) * | 2019-02-27 | 2019-05-21 | 黑龙江大学 | 一种钼酸铋/硫化铋/二硫化钼三元光电催化薄膜材料电极的制备方法 |
CN110227516A (zh) * | 2019-06-03 | 2019-09-13 | 河北地质大学 | ZnIn2S4/BiPO4异质结光催化剂、制备方法及其应用 |
CN112221486A (zh) * | 2020-11-06 | 2021-01-15 | 生态环境部南京环境科学研究所 | 一种纳米片RGO-花状多层结构Bi2MOO6异质结可见光催化剂及其制备方法和应用 |
-
2021
- 2021-10-15 CN CN202111201050.2A patent/CN113856703B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0255246A (ja) * | 1988-08-22 | 1990-02-23 | Nippon Sheet Glass Co Ltd | 高耐久性熱線遮へいガラスおよびその製造方法 |
US20120010411A1 (en) * | 2009-03-19 | 2012-01-12 | Ecole Polytechnique Federale De Lausanne (Epfl) | Modified surface |
CN105457658A (zh) * | 2015-12-08 | 2016-04-06 | 哈尔滨工业大学深圳研究生院 | 一种模拟光合作用降解污染物同时产氢的z型催化剂及其制备方法 |
CN107376900A (zh) * | 2017-07-26 | 2017-11-24 | 福州大学 | 钼酸铋超薄纳米片光催化材料的制备方法及其应用 |
CN108404934A (zh) * | 2018-04-13 | 2018-08-17 | 西北师范大学 | 一种z型结构的杂化二氧化钛光催化剂的制备及应用 |
CN108855143A (zh) * | 2018-07-09 | 2018-11-23 | 河南师范大学 | 一种Z型结构ZnIn2S4/Ag/Bi2WO6复合光催化剂的制备方法 |
CN109569735A (zh) * | 2018-11-29 | 2019-04-05 | 南昌航空大学 | 一种铋系光催化剂及其制备方法和应用 |
CN109772369A (zh) * | 2019-02-27 | 2019-05-21 | 黑龙江大学 | 一种钼酸铋/硫化铋/二硫化钼三元光电催化薄膜材料电极的制备方法 |
CN110227516A (zh) * | 2019-06-03 | 2019-09-13 | 河北地质大学 | ZnIn2S4/BiPO4异质结光催化剂、制备方法及其应用 |
CN112221486A (zh) * | 2020-11-06 | 2021-01-15 | 生态环境部南京环境科学研究所 | 一种纳米片RGO-花状多层结构Bi2MOO6异质结可见光催化剂及其制备方法和应用 |
Non-Patent Citations (2)
Title |
---|
SUJUAN ZHANG ET AL.: "MoS2/Zn3In2S6 composite photocatalysts for enhancement of visible light-driven hydrogen production from formic acid", vol. 42, pages 196 - 199 * |
YAXIN LI ET AL.: "MoS2 as Cocatalyst for Improving Photocatalytic Performance of Bi2MoO6", vol. 4, pages 5222 - 5223 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114481168A (zh) * | 2022-02-23 | 2022-05-13 | 辽宁大学 | 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用 |
CN114481168B (zh) * | 2022-02-23 | 2024-03-22 | 辽宁大学 | 3D花状Z型异质结光电催化剂Zn3In2S6@Bi2WO6及其制备方法和应用 |
CN114950522A (zh) * | 2022-04-27 | 2022-08-30 | 湖南工商大学 | 氮化硼/硫化铟锌复合光催化剂及其制备方法和应用 |
CN117358227A (zh) * | 2023-09-28 | 2024-01-09 | 辽宁大学 | InVO4/ZnIn2S4复合材料及其制备方法和在光催化降解抗生素中的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN113856703B (zh) | 2023-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Photocatalytic removal of tetracycline by a Z-scheme heterojunction of bismuth oxyiodide/exfoliated g-C3N4: performance, mechanism, and degradation pathway | |
Wei et al. | Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress | |
Wang et al. | Ag-bridged Z-scheme 2D/2D Bi5FeTi3O15/g-C3N4 heterojunction for enhanced photocatalysis: mediator-induced interfacial charge transfer and mechanism insights | |
Lai et al. | Facile synthesis of CeO2/carbonate doped Bi2O2CO3 Z-scheme heterojunction for improved visible-light photocatalytic performance: Photodegradation of tetracycline and photocatalytic mechanism | |
Luo et al. | Facile construction of a fascinating Z-scheme AgI/Zn3V2O8 photocatalyst for the photocatalytic degradation of tetracycline under visible light irradiation | |
US11345616B2 (en) | Heterojunction composite material consisting of one-dimensional IN2O3 hollow nanotube and two-dimensional ZnFe2O4 nanosheet, and application thereof in water pollutant removal | |
Li et al. | Engineering the band-edge of Fe2O3/ZnO nanoplates via separate dual cation incorporation for efficient photocatalytic performance | |
Wang et al. | SiO2@ TiO2 core@ shell nanoparticles deposited on 2D-layered ZnIn2S4 to form a ternary heterostructure for simultaneous photocatalytic hydrogen production and organic pollutant degradation | |
CN113856703A (zh) | 纳米花结构的硫化铟锌与钼酸铋纳米片复合光催化剂及其制备方法和应用 | |
Talreja et al. | Strategic doping approach of the Fe–BiOI microstructure: An improved photodegradation efficiency of tetracycline | |
Huang et al. | In situ fabrication of ultrathin-g-C3N4/AgI heterojunctions with improved catalytic performance for photodegrading rhodamine B solution | |
Li et al. | Novel 2D SnNb2O6/Ag3VO4 S-scheme heterojunction with enhanced visible-light photocatalytic activity | |
Ke et al. | In situ fabrication of Bi2O3/C3N4/TiO2@ C photocatalysts for visible-light photodegradation of sulfamethoxazole in water | |
CN106607063A (zh) | 漂浮型可见光光催化剂及制备方法和应用 | |
Liu et al. | Visible-light induced tetracycline degradation catalyzed by dual Z-scheme InVO4/CuBi2O4/BiVO4 composites: The roles of oxygen vacancies and interfacial chemical bonds | |
CN105289657B (zh) | 石墨烯‑硫化锑纳米棒复合可见光催化剂的制备方法 | |
Hemmati-Eslamlu et al. | Anchoring spinel NiCr2O4 nanoparticles on tubular g-C3N4: Efficacious pn heterojunction photocatalysts for removal of tetracycline hydrochloride under visible light | |
Zhu et al. | Recent advances on the spherical metal oxides for sustainable degradation of antibiotics | |
Liu et al. | Synthesis of N-C3N4/Cu/Cu2O: New strategy to tackle the problem of Cu2O photocorrosion with the help of band engineering | |
Li et al. | Ultrasonic-assisted synthesis of LaFeO3/CeO2 heterojunction for enhancing the photocatalytic degradation of organic pollutants | |
Kuspanov et al. | Multifunctional strontium titanate perovskite-based composite photocatalysts for energy conversion and other applications | |
Dai et al. | 0D/1D Co3O4 quantum dots/surface hydroxylated g-C3N4 nanofibers heterojunction with enhanced photocatalytic removal of pharmaceuticals and personal care products | |
Das et al. | MoS2 nanoflowers decorated on graphene aerogels for visible-light-driven photocatalytic degradation of tetracycline | |
Zhang et al. | Novel two-dimensional AgInS2/SnS2/RGO dual heterojunctions: high spatial charge and toxicity evaluation | |
Yi et al. | Hollow BiOI/Bi5O7I hierarchical microsphere with S-scheme heterostructure for efficiently removal of tetracycline hydrochloride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |