CN113842473A - 一种用于小梁类细胞标记的双模态纳米探针及其制备方法和应用 - Google Patents

一种用于小梁类细胞标记的双模态纳米探针及其制备方法和应用 Download PDF

Info

Publication number
CN113842473A
CN113842473A CN202111193841.5A CN202111193841A CN113842473A CN 113842473 A CN113842473 A CN 113842473A CN 202111193841 A CN202111193841 A CN 202111193841A CN 113842473 A CN113842473 A CN 113842473A
Authority
CN
China
Prior art keywords
plga
nanoprobe
solution
spio
bimodal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111193841.5A
Other languages
English (en)
Other versions
CN113842473B (zh
Inventor
王祥吉
朱玮
曹洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202111193841.5A priority Critical patent/CN113842473B/zh
Publication of CN113842473A publication Critical patent/CN113842473A/zh
Application granted granted Critical
Publication of CN113842473B publication Critical patent/CN113842473B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4409Non condensed pyridines; Hydrogenated derivatives thereof only substituted in position 4, e.g. isoniazid, iproniazid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0054Macromolecular compounds, i.e. oligomers, polymers, dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明提供了一种用于小梁类细胞标记的双模态纳米探针及其制备方法和应用,所述双模态纳米探针以PLGA为载体,包被功能性近红外染料cypate和超顺磁性氧化铁纳米粒子SPIO,从而形成PLGA‑Cypate‑SPIO多功能纳米探针。本发明所述的双模态纳米探针作为近红外成像的显影剂,可用于共聚焦荧光显微镜对小梁类细胞进行近红外荧光成像;作为磁共振成像的显影剂,可用于核磁共振成像仪对小梁类细胞进行磁共振成像;同时该磁性纳米探针可作为药物递送载体,可载送包括Rho激酶抑制剂在内的多种药物,实现Rho激酶抑制剂的靶向递送,有效提高小梁网通路房水外排效率。

Description

一种用于小梁类细胞标记的双模态纳米探针及其制备方法和 应用
技术领域
本发明属于纳米材料技术领域,特别涉及一种用于小梁类细胞标记的双模态纳米探针及其制备方法和应用。
背景技术
青光眼是全球第二大致盲原因,主要与眼压升高有关。而小梁网(trabecularmeshwork,TM)是常规房水(aqueous humor,AH)外流通路的重要组成部分,在调节AH流出发挥重要作用。TM功能失调是导致高眼压症和原发性开角型青光眼的主要原因。
目前,药物治疗是降低青光眼患者眼压的主要手段。主要包括用于减少AH产生的经典药物(包括β-肾上腺素能拮抗剂、α-肾上腺素能激动剂和碳酸酐酶抑制剂)、增加AH外流的常见药物(包括胆碱能激动剂和前列腺素类似物)。但由于这些药物尚存在一定的副作用、单药治疗存在一定的局限性,多药治疗患者的依从性较差等问题,这些药物的临床应用始终面临着很大的挑战。
具体来说,上述药物不具靶向性,应用于青光眼患者后,其未靶向作用于小梁网组织结构,可能影响治疗作用的发挥,还有可能破坏其他组织的功能障碍,产生一定副作用。
因此,如何开发一种能够靶向作用于小梁网的药物,是一个需要解决的问题。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种用于小梁类细胞标记的双模态纳米探针及其制备方法和应用,所述纳米探针在不影响细胞生物学特性的前提下,可用于共聚焦荧光显微镜对小梁类细胞进行NIR近红外荧光成像,MRI核磁共振成像示踪细胞,实时监测小梁类细胞的状态;同时该探针可载送药物,使其靶向小梁网,可有效提高药物的治疗效果。
本发明的目的是通过以下技术方案实现的:
一种用于小梁类细胞标记的双模态纳米探针,所述双模态纳米探针以PLGA为载体,包被功能性近红外染料cypate和超顺磁性氧化铁纳米粒子SPIO,从而形成PLGA-Cypate-SPIO多功能纳米探针。
进一步的,所述双模态纳米探针的粒径为200 nm~300 nm。
通过乳化法制备所述双模态纳米探针,其制备方法包括以下步骤:
S1,将PLGA-PEG-COOH充分溶解在二氯甲烷(CH2Cl2)中形成PLGA溶液,然后将SPIO和Cypate一起添加到PLGA溶液中,通过使用超声波探头对溶液进行乳化,从而得到第一乳化溶液;
S2,将S1获得的第一乳化溶液缓慢倒入聚乙烯醇(PVA)溶液中,并通过超声波探头进行乳化,从而得到第二乳化溶液;
S3,向S2获得的第二乳化溶液中异丙醇溶液,过夜搅拌从而挥发CH2Cl2,再经离心处理后,得到的沉淀即为PLGA-Cypate-SPIO多功能纳米探针,于4 ℃下保存。
进一步的,S1中所述PLGA-PEG-COOH、SPIO和Cypate的重量比为(12.5~50):(0.4~1.2):(1~4)。
进一步的,S2中所述聚乙烯醇溶液的质量浓度为3%~5%。
进一步的,S3中所述异丙醇溶液的体积浓度为1%~3%。
进一步的,S3中所述离心处理的条件为10000~12000 rpm离心6~11分钟。
本发明的另一方面:
上述双模态纳米探针作为药物递送载体的用途,其中,所述药物包括Rho激酶抑制剂;包括但不限于小分子抑制剂Y-27632(MedChemExpress 美国MCE生物科技公司)、法苏地尔Fasudil(HA-1077;Asahi Kasei Corporation日本旭化成公司)、利帕苏地尔Ripasudil(K-115,Kowa兴和制药)和内塔苏地尔Netarsudil(AR-13324,艾瑞制药有限公司AeriePharmaceuticals Inc.)等商业药物,以及处于临床试验阶段的AMA0076(Amakem)和PG324(Aerie Pharmaceuticals Inc.)。
本发明相比现有技术的有益效果为:
1、在生物安全方面,现有的显影剂多为金属等无机材料,生物相容性较差;在成像方面,现有成像探针多为单一成像,如光学荧光成像,材料多为Cd, Te等重金属组成的无机材料、稀土材料、有机荧光分子等。一方面这些重金属,稀土材料在体内安全性存在争议;另一方面部分材料存在代谢快,荧光淬灭性快,深层组织成像受限,自身荧光影响较大等缺点,不适合做长期标记细胞。磁共振成像MRI显影剂多为重金属,基于氧化铁或钆鳌合物之类的磁性造影剂,存在体内残留,无特异性分布,对人体产生毒性副作用等问题;而本发明所述PLGA-Cypate-SPIO多功能纳米探针,所采用的材料均为FDA批准或改良的,生物相容性较好,安全性高;
2、本发明所述的PLGA-Cypate-SPIO多功能纳米探针,本发明采用荧光/MRI双模态成像,弥补了单一成像的不足。选择合适的具有较高灵敏度和荧光性能的荧光成像材料,选择合适的具有高弛豫性能和安全性能的磁共振成像材料。即选用生物相容性高,组织穿透力强,波长范围内自身荧光弱,灵敏度高的近红外荧光染料cypate;易代谢,成本低,灵敏度高,生物安全性高(Fe是红细胞的重要成分)的超顺磁性氧化铁纳米粒子SPIO;通过PLGA聚合物包被可有效保护荧光染料,减缓有效成分的分解代谢,达到缓释,长时间标记的效果,同时可以增强细胞的标记,提高纳米探针的生物相容性;
3、本发明所述的双模态纳米探针可以作为药物递送载体,可载送包括Rho激酶抑制剂在内的多种药物,实现Rho激酶抑制剂的准确靶向,有效提高小梁网通路房水外排效率。
附图说明
下面结合附图和实施例对本发明作进一步说明:
图1为实施例所述双模态纳米探针的制备示意图;
图2为实施例所述双模态纳米探针PLGA-Cypate-SPIO的粒径分布图及电镜图;其中,A为马尔文激光粒度仪测得的粒径分布图;B为未包裹任何物质的PLGA纳米粒子透射电镜图;C, D为双模态纳米探针PLGA-Cypate-SPIO的透射电镜图,D为纳米粒子的局部放大图;
图3为各粒子的可见近红外吸收光谱图、荧光激发/发射图及磁滞回线;其中,A为PLGA, Cypate , SPIO, PLGA-SPIO, PLGA-Cypate, PLGA-Cypate-SPIO 双模态纳米探针的可见近红外吸收光谱图;B为纳米粒子的荧光激发/发射图;C为纳米粒子的磁滞回线;
图4为实施例所述双模态纳米探针PLGA-Cypate-SPIO对小梁类细胞的细胞毒性结果图;
图5为细胞的吞噬情况图;其中,A为细胞吞噬与未吞噬的流式检测图;B, C为细胞生物透射电镜图;D为细胞普鲁士蓝染色;
图6为对标记后细胞标记物的检测结果图;
图7为免疫荧光鬼笔环肽染色结果图;
图8为地塞米松处理后,Western blot蛋白(myocilin)检测结果图;
图9为为体外细胞近红外荧光成像结果图;其中,A为标记后三种细胞的共聚焦荧光图;B为小动物活体成像拍摄细胞团块图;
图10为体外细胞MRI成像结果图;其中,A为不同浓度下的多功能纳米粒子NPs溶液的MRI成像图及标记的细胞的成像图;B为三种细胞的MRI成像图。
具体实施方式
实施例1——纳米探针的制备及表征
本实施例提供了一种用于小梁类细胞标记的双模态纳米探针,如图1所示,通过乳化法制备所述纳米探针,其制备方法包括以下步骤:
S1,将25 mg PLGA-PEG-COOH充分溶解在2 mL二氯甲烷(CH2Cl2)中形成PLGA溶液,然后将800 μg SPIO(10 nm,水分散型)和2 mg Cypate一起添加到PLGA溶液中,通过使用超声波探头对溶液进行乳化,从而得到第一乳化溶液;
S2,将S1获得的第一乳化溶液缓慢倒入5 mL聚乙烯醇(PVA)溶液(4% w/v)中,并通过超声波探头进行乳化,从而得到第二乳化溶液;
S3,向S2获得的第二乳化溶液中50 mL异丙醇溶液(2% v/v),过夜搅拌从而挥发CH2Cl2,再经11000 rpm离心7分钟后,得到的沉淀即为PLGA-Cypate-SPIO多功能纳米探针,于4 ℃下保存。
其中,PLGA是一种递送载体,生物降解性好、延长循环时间和易于表面修饰等优点,在显像剂和药物递送中发挥着重要作用。SPIO具有超顺磁性,不仅能够磁靶向而且具有优异的生物相容性和低毒性,还能作为显像剂。Cypate是FDA批准的有机近红外荧光染料ICG衍生物,生物相容性好,灵敏度高、空间分辨率高。
为了验证是否成功制备纳米粒子,双模态纳米探针是否具有近红外成像NIR,磁共振成像MRI及磁靶向的能力。需要对制备得到的纳米粒子进行相应的表征测试。本实施例通过马尔文激光粒度仪测试其粒径大小、Zeta电位值。TEM透射电镜观察NPs形态,SPIO是否已经被PLGA包被。紫外分光光度计测试NPs吸光度,荧光分光光度计测试NPs荧光性。振动样品磁强计检测NPs磁性参数。
如图2的马尔文激光粒度仪测试显示,本实施例所述PLGA-Cypate-SPIO多功能纳米探针的粒径在243 nm左右,Zeta电位-21.7 mv。PLGA NPs和PLGA-Cypate-SPIO NPs的TEM图片显示合成的纳米粒子呈球型且边缘清晰,SPIO被包裹在PLGA骨架材料中。
如图3中UV-VIS-NIR显示在780 nm处,PLGA -Cypate-SPIO有较大吸收,荧光分光光度计显示NPs有明显的激发(781 nm)/发射峰(815 nm)。通过振动样品磁强计得到的S型磁滞曲线可以看出,随着外磁场增加的磁化过程中,磁化强度由负到正,在接近零磁场时,磁化曲线呈线性趋势,并且经过原点,证明PLGA-Cypate-SPIO NPs具有超顺磁性特征。
实施例2——双模态纳米探针PLGA-Cypate-SPIO性质测定
本实施例测定了不同浓度下实施例1所述PLGA-Cypate-SPIO多功能纳米探针,与小梁类细胞(miPSC-TM,hpTM,HTM三种细胞)孵育24h,利用CCK8法检测PLGA-Cypate-SPIONPs对细胞的增殖活性影响。
如图4所示,纳米探针PLGA-Cypate-SPIO与小梁类细胞孵育24h后,并未对细胞造成凋亡,说明PLGA-Cypate-SPIO多功能纳米探针不具有细胞毒性。
本实施例测定了不同浓度下实施例1所述PLGA-Cypate-SPIO多功能纳米探针的细胞吞噬能力,选用不同浓度的PLGA-Cypate-SPIO多功能纳米探针与细胞进行孵育,通过流式细胞仪,生物电镜,普鲁士蓝染色及荧光成像,观察细胞对纳米粒子的吞噬情况。
根据测图5可以看到流式细胞仪检测可以看出吞噬了纳米粒的细胞信号明显强于对照组的,细胞透射电镜表明纳米粒子主要分布在细胞质中已被吞噬,普鲁士蓝染色表明纳米粒子被细胞吞噬主要分布在细胞核周围(箭头指向的蓝色)。
为验证PLGA-Cypate-SPIO多功能纳米探针对细胞的影响,是否影响其细胞功能及特性。我们对标记的细胞(标记浓度35μg/mL)的细胞标记物及小梁特性(地塞米松诱导细胞骨架形成交叉连接蛋白网CLANs,增强Myocilin蛋白的表达)进行检测。由图6-8可以看出,多功能纳米粒子标记的细胞与未标记的细胞相比,细胞标记物未发生改变,都能检测到。在地塞米松的诱导下,能够形成CLANs细胞骨架,MYOC蛋白表达增加。由上可见PLGA-Cypate-SPIO多功能纳米探针没有影响细胞的正常细胞功能及特性。
本实施例还进行了体外细胞示踪定位实验,具体如下:
体外细胞近红外成像实验:
由图9可以看出,miPSC-TM,hpTM,HTM三种细胞都能在近红外荧光下成像。参照图10 A中DAPI染色,可以看出PLGA-Cypate-SPIO多功能纳米探针主要存在于细胞质内,细胞核的周围,进一步表明PLGA-Cypate-SPIO多功能纳米探针被细胞吞噬。
体外细胞MRI成像:
由图10可见,实施例1所制备的PLGA-Cypate-SPIO多功能纳米粒子具有MRI成像能力,可以标记细胞,可用于MRI成像。
实施例3——双模态纳米探针PLGA-Cypate-SPIO载药
本实施例提供了一种利用实施例1所述PLGA-Cypate-SPIO多功能纳米探针载送Rho激酶抑制剂的方法,包括以下步骤:
S1,将25 mg PLGA-PEG-COOH充分溶解在2 mL二氯甲烷(CH2Cl2)中形成PLGA溶液;
S2,混溶800 μg SPIO(10 nm,水分散型)和1 mg的Rho激酶抑制剂,得到混合液;
所述Rho激酶抑制剂可选用包括Y-27632,HA-1077,K-115,AR-13324等在内的水溶性药物;
S3,将S2所得混合液与2 mg 荧光染料Cypate一起添加到S1中PLGA溶液中,通过使用超声波探头对溶液进行乳化,从而得到第一乳化溶液;
S4,将S3获得的第一乳化溶液缓慢倒入5 mL聚乙烯醇(PVA)溶液(4% w/v)中,并通过超声波探头进行乳化,从而得到第二乳化溶液;
S5,向S4获得的第二乳化溶液中50 mL异丙醇溶液(2% v/v),过夜搅拌从而挥发CH2Cl2,再经11000 rpm离心7分钟后,得到的沉淀即为Rho@PLGA-Cypate-SPIO多功能纳米药物,于4 ℃下保存。
最后应说明的是,以上仅用以说明本发明的技术方案而非限制,尽管参照较佳布置方案对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (8)

1.一种用于小梁类细胞标记的双模态纳米探针,其特征在于,所述双模态纳米探针以PLGA为载体,包被功能性近红外染料cypate和超顺磁性氧化铁纳米粒子SPIO,从而形成PLGA-Cypate-SPIO多功能纳米探针。
2. 根据权利要求1所述的双模态纳米探针,其特征在于,所述纳米探针的粒径为200nm~300 nm。
3.一种如权利要求1或2所述双模态纳米探针的制备方法,其特征在于,通过乳化法制备所述双模态纳米探针,包括以下步骤:
S1,将PLGA-PEG-COOH充分溶解在二氯甲烷(CH2Cl2)中形成PLGA溶液,然后将SPIO和Cypate一起添加到PLGA溶液中,通过使用超声波探头对溶液进行乳化,从而得到第一乳化溶液;
S2,将S1获得的第一乳化溶液缓慢倒入聚乙烯醇(PVA)溶液中,并通过超声波探头进行乳化,从而得到第二乳化溶液;
S3,向S2获得的第二乳化溶液中异丙醇溶液,过夜搅拌从而挥发CH2Cl2,再经离心处理后,得到的沉淀即为PLGA-Cypate-SPIO多功能纳米探针,于4 ℃下保存。
4.根据权利要求3所述双模态纳米探针的制备方法,其特征在于,S1中所述PLGA-PEG-COOH、SPIO和Cypate的重量比为(12.5~50):(0.4~1.2):(1~4)。
5.根据权利要求3所述双模态纳米探针的制备方法,其特征在于,S2中所述聚乙烯醇溶液的质量浓度为3%~5%。
6.根据权利要求3所述双模态纳米探针的制备方法,其特征在于,S3中所述异丙醇溶液的体积浓度为1%~3%。
7. 根据权利要求3所述双模态纳米探针的制备方法,其特征在于,S3中所述离心处理的条件为10000~12000 rpm离心6~11分钟。
8.一种如权利要求1或2所述双模态纳米探针作为药物递送载体的用途,其特征在于,所述药物包括Rho激酶抑制剂。
CN202111193841.5A 2021-10-13 2021-10-13 一种用于小梁类细胞标记的双模态纳米探针及其制备方法和应用 Active CN113842473B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111193841.5A CN113842473B (zh) 2021-10-13 2021-10-13 一种用于小梁类细胞标记的双模态纳米探针及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111193841.5A CN113842473B (zh) 2021-10-13 2021-10-13 一种用于小梁类细胞标记的双模态纳米探针及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113842473A true CN113842473A (zh) 2021-12-28
CN113842473B CN113842473B (zh) 2024-01-30

Family

ID=78978355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111193841.5A Active CN113842473B (zh) 2021-10-13 2021-10-13 一种用于小梁类细胞标记的双模态纳米探针及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113842473B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110212032A1 (en) * 2007-08-29 2011-09-01 Korea Research Institute Of Bioscience And Biotechnology Polymer particles for nir/mr bimodal molecular imaging and method for preparing the same
CN102743764A (zh) * 2012-04-11 2012-10-24 中山大学中山眼科中心 RhoA的RNA干扰靶点序列在制备治疗青光眼药物中的应用
US20140178308A1 (en) * 2011-07-29 2014-06-26 Institut National De La Sante Et De La Recherche Medicale (Inserm) Method for increasing the intraocular pressure in an animal
CN105056253A (zh) * 2015-07-21 2015-11-18 福州市传染病医院 用于脂肪干细胞标记、活体示踪和治疗的多功能纳米探针
WO2021126989A1 (en) * 2019-12-17 2021-06-24 The Regents Of The University Of California Two-way magnetic resonance tuning nanoprobe enhanced subtraction imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110212032A1 (en) * 2007-08-29 2011-09-01 Korea Research Institute Of Bioscience And Biotechnology Polymer particles for nir/mr bimodal molecular imaging and method for preparing the same
US20140178308A1 (en) * 2011-07-29 2014-06-26 Institut National De La Sante Et De La Recherche Medicale (Inserm) Method for increasing the intraocular pressure in an animal
CN102743764A (zh) * 2012-04-11 2012-10-24 中山大学中山眼科中心 RhoA的RNA干扰靶点序列在制备治疗青光眼药物中的应用
CN105056253A (zh) * 2015-07-21 2015-11-18 福州市传染病医院 用于脂肪干细胞标记、活体示踪和治疗的多功能纳米探针
WO2021126989A1 (en) * 2019-12-17 2021-06-24 The Regents Of The University Of California Two-way magnetic resonance tuning nanoprobe enhanced subtraction imaging

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
E.J.SINDER ET AL: "Improving Stem Cell Delivery to the Trabecular Meshwork Using Magnetic Nanoparticles", 《SCIENTIFIC REPORTS》 *
E.J.SINDER ET AL: "Improving Stem Cell Delivery to the Trabecular Meshwork Using Magnetic Nanoparticles", 《SCIENTIFIC REPORTS》, 16 August 2018 (2018-08-16), pages 2 *
KELSEY KUBELICK ET AL: "Ultrasound and photoacoustic imaging to monitor ocular stem cell delivery and tissue regeneration", 《PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING》 *
XIANGJI WANG ET AL: "Magnetic Nano-Platform Enhanced iPSC-Derived Trabecular Meshwork Delivery and Tracking Efficiency", 《INTERNATIONAL JOURNAL OF NANOMEDICINE》 *
XIANGJI WANG ET AL: "Magnetic Nano-Platform Enhanced iPSC-Derived Trabecular Meshwork Delivery and Tracking Efficiency", 《INTERNATIONAL JOURNAL OF NANOMEDICINE》, 22 March 2022 (2022-03-22) *
杨新光, 李美玉: "牛眼小梁网细胞体外培养及吞噬功能的研究", 中华眼科杂志, no. 02 *
蒋鑫等: "小梁网的干细胞移植治疗原发性开角型青光眼的研究进展", 《国际眼科杂志》 *
蒋鑫等: "小梁网的干细胞移植治疗原发性开角型青光眼的研究进展", 《国际眼科杂志》, no. 06, 12 June 2019 (2019-06-12) *

Also Published As

Publication number Publication date
CN113842473B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
Guller et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells
Yang et al. Hyaluronic acid conjugated magnetic prussian blue@ quantum dot nanoparticles for cancer theranostics
Lu et al. Hybrid drug nanocrystals
Gilad et al. MR tracking of transplanted cells with “positive contrast” using manganese oxide nanoparticles
Ling et al. Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma
Zhou et al. Ultrabright NIR‐II emissive polymer dots for metastatic ovarian cancer detection
US9987378B2 (en) Prussian blue-inspired constructs for multimodal imaging and therapy
Chen et al. Dispersion stability and biocompatibility of four ligand-exchanged NaYF4: Yb, Er upconversion nanoparticles
Wadajkar et al. Dual‐imaging enabled cancer‐targeting nanoparticles
Sulek et al. Peptide functionalized superparamagnetic iron oxide nanoparticles as MRI contrast agents
Wu et al. Negatively charged magnetite nanoparticle clusters as efficient MRI probes for dendritic cell labeling and in vivo tracking
Orringer et al. In vitro characterization of a targeted, dye-loaded nanodevice for intraoperative tumor delineation
US20120045399A1 (en) Positively-charged superparamagnetic iron oxide nanoparticle, contrast agent using the same and method of preparing the same
Wilk et al. Photo-oxidative action in MCF-7 cancer cells induced by hydrophobic cyanines loaded in biodegradable microemulsion-templated nanocapsules
US20150265728A1 (en) Magnetic and fluorescent reverse nanoassemblies
Xu et al. Monodisperse magnetite nanoparticles coupled with nuclear localization signal peptide for cell‐nucleus targeting
Xu et al. Fabrication of folic acid functionalized pH-responsive and thermosensitive magnetic chitosan microcapsules via a simple sonochemical method
JP6618680B2 (ja) 光力学的治療用自己組立型薬学の組成物
Zhao et al. Multifunctional magnetic nanoparticles for simultaneous cancer near-infrared imaging and targeting photodynamic therapy
Iliasov et al. Non-magnetic shell coating of magnetic nanoparticles as key factor of toxicity for cancer cells in a low frequency alternating magnetic field
JP6425486B2 (ja) 癌細胞の造影用mri造影剤組成物
Linot et al. PEGylated anionic magnetofluorescent nanoassemblies: impact of their interface structure on magnetic resonance imaging contrast and cellular uptake
Zhang et al. Holmium (III)-doped multifunctional nanotheranostic agent for ultra-high-field magnetic resonance imaging-guided chemo-photothermal tumor therapy
CN113842473B (zh) 一种用于小梁类细胞标记的双模态纳米探针及其制备方法和应用
KR101717010B1 (ko) 암의 조기 진단 또는 치료용 폴리아미노산 기반의 생체환경 감응형 나노입자

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant