CN113832919A - Seepage-proofing and water-stopping method for hydraulic engineering - Google Patents

Seepage-proofing and water-stopping method for hydraulic engineering Download PDF

Info

Publication number
CN113832919A
CN113832919A CN202111121925.8A CN202111121925A CN113832919A CN 113832919 A CN113832919 A CN 113832919A CN 202111121925 A CN202111121925 A CN 202111121925A CN 113832919 A CN113832919 A CN 113832919A
Authority
CN
China
Prior art keywords
concrete
stones
dam
hydraulic engineering
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111121925.8A
Other languages
Chinese (zh)
Other versions
CN113832919B (en
Inventor
张�廷
杨硕
李允强
刘汉民
杨朝亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202111121925.8A priority Critical patent/CN113832919B/en
Publication of CN113832919A publication Critical patent/CN113832919A/en
Application granted granted Critical
Publication of CN113832919B publication Critical patent/CN113832919B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/16Sealings or joints
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations
    • E02D15/02Handling of bulk concrete specially for foundation or hydraulic engineering purposes

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The invention relates to the technical field of hydraulic engineering, in particular to an anti-seepage water-stopping method for hydraulic engineering. The method comprises the following steps: the method comprises the following steps: after the hydraulic engineering dam is solidified, punching a hole above the dam body of the hydraulic engineering dam by using a drilling machine, and placing a steel pipe in the hole; step two: digging a foundation of the anti-seepage wall body from the bottom of the dam from the dam body, punching a hole in the middle of the foundation by using a drilling machine, and placing a steel pipe in the hole; step three: manufacturing a concrete mould, wherein the shape of the concrete mould is Contraband font; step four: pouring impervious concrete into the mould; step five: building wall stones with an angle of 70 degrees between the outer sides of the concrete impervious walls and the foundation; step six: bending a steel bar with the diameter of 15CM, and fixing the steel bar in a hole site by using concrete; step seven: and building a coping stone between the top of the dam and the top of the wall stone. The invention provides an anti-seepage water-stopping method for hydraulic engineering, which can prevent water seepage of dams, adopts a multi-layer waterproof structure and uses steel bars for connection between buildings.

Description

Seepage-proofing and water-stopping method for hydraulic engineering
Technical Field
The invention relates to the technical field of hydraulic engineering, in particular to an anti-seepage water-stopping method for hydraulic engineering.
Background
In China, the number of hydraulic engineering projects is very large, the shapes and the characteristics of the earth dams are very diverse due to the diversity of geographic positions, various natural disasters such as flood, debris flow and the like which are not met in future exist every year, the hydraulic engineering projects play a very important role at this time, the hydraulic engineering projects can play a great role in various aspects of living and production such as rural farmland irrigation and the like, China recognizes the importance of the hydraulic engineering on the production and the life of people from the old, a plurality of facilities are built to reduce and resist flood, a plurality of problems also occur in the hydraulic engineering, the main problems include weak soil dam tolerance, leakage, incapability of adapting to climate change, aging and hysteresis phenomena, incapability of meeting the standard, and the main reasons for damaging the earth dams and reservoirs include that the earth dams run away earth dams exist, The damage of the earth dam is mainly caused by the long-term osmosis and scouring action, the earth dam can be seriously deformed through the long-term osmosis, the overall property can also be changed, cracks and gliding are easily caused, and the dam body is seriously damaged, the osmosis of the reservoir mainly means that water flows out of the reservoir, so that a large amount of water is lost, and the water flow scouring mainly means that the water flow scouring inertia is high when a large-scale water quality disaster occurs, so that the pressure generated on the dam body is also high, and the influence on the earth dam is very destructive.
Disclosure of Invention
The invention provides an anti-seepage water-stopping method for hydraulic engineering, which can prevent water seepage of dams, adopts a multi-layer waterproof structure and uses steel bars for connection between buildings.
The invention adopts a technical scheme that an anti-seepage water-stopping method on a hydraulic engineering is characterized in that: the method comprises the following steps:
the method comprises the following steps: after the hydraulic engineering dam is solidified, drilling holes above a dam body of the hydraulic engineering dam by using a drilling machine, wherein the depth of each hole is 0.5 m, the diameter of each hole is 20CM, placing steel pipes with the height of 0.5 m, the outer diameter of 20CM and the inner diameter of 15CM into the holes, and filling concrete between the outer sides of the steel pipes and the holes;
step two: digging out the foundation of the anti-seepage wall body from the dam body at the bottom of the dam by using an excavator, punching holes with the depth of 0.5 m and the diameter of 20CM in the middle of the foundation by using a drilling machine, and placing steel pipes with the outer diameter of 20CM and the inner diameter of 15CM in the holes;
step three: manufacturing a concrete mould according to the height of the dam and the width of the foundation, wherein the shape of the concrete mould is Contraband characters, and the concrete mould penetrates through two rows of steel pipes with the outer diameter of 20CM and the inner diameter of 15CM from the top to the bottom;
step four: pouring impervious concrete into the mold, waiting for the concrete to solidify, removing the mold, transporting the concrete impervious wall to one side of the dam, and placing the wall with the opening facing outwards;
step five: building wall stones with an angle of 70 degrees between the outer sides of the concrete impervious walls and the foundation, wherein the positions of steel pipes penetrating through the concrete impervious walls are needed when the wall stones are built;
step six: fixing one end of a steel bar with the diameter of 15CM in a hole above the bus by using concrete, penetrating the middle of the steel bar through a concrete impervious wall body and wall stones, and fixing the lower end of the steel bar in the hole on the foundation by using concrete;
step seven: and building a layer of capping stone between the top of the dam and the top of the wall stone, pouring the capping stone by using concrete, filling the concrete in the foundation and filling the foundation.
The punching distance on the dam is determined according to the width of the dam needing to be constructed.
The height of the concrete mould is determined according to the height of a dam needing to be constructed.
The concrete anti-permeability wall body is made of anti-permeability concrete, raw materials comprise ordinary portland cement with the strength not lower than 32.5Mpa and low-hydration-heat cement, the 7-day hydration-heat index of the cement is not higher than 275kJ/kg, early-strength cement with an R character cannot be used, fly ash not lower than II grade is not used, the 5-31.5 mm grading is uniform, the content of mud is not more than 1% of mechanically crushed stone, the fineness modulus is 2.5-3.0, the mud content is not more than 3% of medium coarse sand, calcium formate, polypropylene reticular fiber and anti-permeability fiber are added during manufacturing, and the addition amount of the additive is not more than 5% of the mass of the cement.
Before the wall stone is built, the wall stone materials are manually checked, the used stone materials are checked one by one, firstly, stones with large-scale weathering at the edges are removed, then whether cracks exist on the stones are checked, the stones with cracks but clean surfaces are broken and used as fillers, the stones with large cracks and silt in the cracks are removed, the stones need to be intensively cleaned before being laid, moss, mud and the like on the surfaces are removed, then, the stones are washed and soaked by clean water, and the softened parts of the corners are removed after the soaking is finished.
When the wall surface stones are built, stones must be kept wet, mortar is paved on a building surface, then the stones are placed, the same layer of the stones is approximately parallel to rise, the built stones face downwards in a large scale to prevent shaking, the stones are filled with the mortar, when gaps are large, broken stone slice filling materials are filled when the mortar is filled, the minimum width of a building joint between the stones is not more than 1.5CM, a joint cut between the upper part and the lower part and the front part and the rear part are staggered, and water seepage of the whole row of wall surface due to one opening is prevented.
Before the steel bar is placed in the steel pipe, oil stain, dust, rust and the like on the surface of the steel bar are thoroughly removed, the steel bar is soaked in an antirust agent for about ten minutes, and each liter of the antirust agent adopts 300g of phosphoric acid with the concentration of 85%, 20g of nitric acid with the concentration of 65%, 30g of hydrochloric acid with the concentration of 36.5%, 100g of sodium citrate, 30g of sodium sulfite, 20g of urotropine, 50g of sodium dodecyl benzene sulfonate and 100g of zinc sulfate, and is added into pure water, the total amount is 1L, and the stirring and the mixing are uniform.
The invention has the beneficial effects that:
the concrete anti-permeability wall body is made of anti-permeability concrete, calcium formate, polypropylene reticular fiber and anti-permeability fiber are added into anti-permeability cement, water in a dam can be effectively prevented from permeating, wall stones are built in front of the concrete anti-permeability wall body, building stones are screened and cleaned through multiple processes before the wall stones are built, the stability of the wall stones can be enhanced and the possibility of water seepage of the wall stones can be reduced according to building standards when the wall stones are built, a plurality of wall bodies are connected through reinforcing steel bars, the reinforcing steel bars are soaked in high-quality antirust agents, the service life of the reinforcing steel bars is prolonged, and meanwhile, the labor cost of subsequent repair is reduced.
Detailed Description
Example 1:
an anti-seepage water-stopping method on hydraulic engineering is characterized in that: the method comprises the following steps:
the method comprises the following steps: after the hydraulic engineering dam is solidified, drilling holes above a dam body of the hydraulic engineering dam by using a drilling machine, wherein the depth of each hole is 0.5 m, the diameter of each hole is 20CM, placing steel pipes with the height of 0.5 m, the outer diameter of 20CM and the inner diameter of 15CM into the holes, and filling concrete between the outer sides of the steel pipes and the holes;
step two: digging out the foundation of the anti-seepage wall body from the dam body at the bottom of the dam by using an excavator, punching holes with the depth of 0.5 m and the diameter of 20CM in the middle of the foundation by using a drilling machine, and placing steel pipes with the outer diameter of 20CM and the inner diameter of 15CM in the holes;
step three: manufacturing a concrete mould according to the height of the dam and the width of the foundation, wherein the shape of the concrete mould is Contraband characters, and the concrete mould penetrates through two rows of steel pipes with the outer diameter of 20CM and the inner diameter of 15CM from the top to the bottom;
step four: pouring impervious concrete into the mold, waiting for the concrete to solidify, removing the mold, transporting the concrete impervious wall to one side of the dam, and placing the wall with the opening facing outwards;
step five: building wall stones with an angle of 70 degrees between the outer sides of the concrete impervious walls and the foundation, wherein the positions of steel pipes penetrating through the concrete impervious walls are needed when the wall stones are built;
step six: fixing one end of a steel bar with the diameter of 15CM in a hole above the bus by using concrete, penetrating the middle of the steel bar through a concrete impervious wall body and wall stones, and fixing the lower end of the steel bar in the hole on the foundation by using concrete;
step seven: and building a layer of capping stone between the top of the dam and the top of the wall stone, pouring the capping stone by using concrete, filling the concrete in the foundation and filling the foundation.
The punching distance on the dam is determined according to the width of the dam needing to be constructed.
The height of the concrete mould is determined according to the height of a dam needing to be constructed.
The concrete anti-permeability wall body is made of anti-permeability concrete, raw materials comprise ordinary portland cement with the strength not lower than 32.5Mpa and low-hydration-heat cement, the 7-day hydration-heat index of the cement is not higher than 275kJ/kg, early-strength cement with an R character cannot be used, fly ash not lower than II grade is not used, the 5-31.5 mm grading is uniform, the content of mud is not more than 1% of mechanically crushed stone, the fineness modulus is 2.5-3.0, the mud content is not more than 3% of medium coarse sand, calcium formate, polypropylene reticular fiber and anti-permeability fiber are added during manufacturing, and the addition amount of the additive is not more than 5% of the mass of the cement.
Before the wall stone is built, the wall stone materials are manually checked, the used stone materials are checked one by one, firstly, stones with large-scale weathering at the edges are removed, then whether cracks exist on the stones are checked, the stones with cracks but clean surfaces are broken and used as fillers, the stones with large cracks and silt in the cracks are removed, the stones need to be intensively cleaned before being laid, moss, mud and the like on the surfaces are removed, then, the stones are washed and soaked by clean water, and the softened parts of the corners are removed after the soaking is finished.
When the wall surface stones are built, stones must be kept wet, mortar is paved on a building surface, then the stones are placed, the same layer of the stones is approximately parallel to rise, the built stones face downwards in a large scale to prevent shaking, the stones are filled with the mortar, when gaps are large, broken stone slice filling materials are filled when the mortar is filled, the minimum width of a building joint between the stones is not more than 1.5CM, a joint cut between the upper part and the lower part and the front part and the rear part are staggered, and water seepage of the whole row of wall surface due to one opening is prevented.
Before the steel bar is placed in the steel pipe, oil stain, dust, rust and the like on the surface of the steel bar are thoroughly removed, the steel bar is soaked in an antirust agent for about ten minutes, and each liter of the antirust agent adopts 300g of phosphoric acid with the concentration of 85%, 20g of nitric acid with the concentration of 65%, 30g of hydrochloric acid with the concentration of 36.5%, 100g of sodium citrate, 30g of sodium sulfite, 20g of urotropine, 50g of sodium dodecyl benzene sulfonate and 100g of zinc sulfate, and is added into pure water, the total amount is 1L, and the stirring and the mixing are uniform.
The concrete anti-permeability wall body is made of anti-permeability concrete, calcium formate, polypropylene reticular fiber and anti-permeability fiber are added into anti-permeability cement, water in a dam can be effectively prevented from permeating, wall stones are built in front of the concrete anti-permeability wall body, building stones are screened and cleaned through multiple processes before the wall stones are built, the stability of the wall stones can be enhanced and the possibility of water seepage of the wall stones can be reduced according to building standards when the wall stones are built, a plurality of wall bodies are connected through reinforcing steel bars, the reinforcing steel bars are soaked in high-quality antirust agents, the service life of the reinforcing steel bars is prolonged, and meanwhile, the labor cost of subsequent repair is reduced.
The above examples are only intended to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some technical features may be equivalently replaced; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions of the embodiments of the present invention.

Claims (7)

1. An anti-seepage water-stopping method on hydraulic engineering is characterized in that: the method comprises the following steps:
the method comprises the following steps: after the hydraulic engineering dam is solidified, drilling holes above a dam body of the hydraulic engineering dam by using a drilling machine, wherein the depth of each hole is 0.5 m, the diameter of each hole is 20CM, placing steel pipes with the height of 0.5 m, the outer diameter of 20CM and the inner diameter of 15CM into the holes, and filling concrete between the outer sides of the steel pipes and the holes;
step two: digging out the foundation of the anti-seepage wall body from the dam body at the bottom of the dam by using an excavator, punching holes with the depth of 0.5 m and the diameter of 20CM in the middle of the foundation by using a drilling machine, and placing steel pipes with the outer diameter of 20CM and the inner diameter of 15CM in the holes;
step three: manufacturing a concrete mould according to the height of the dam and the width of the foundation, wherein the shape of the concrete mould is Contraband characters, and the concrete mould penetrates through two rows of steel pipes with the outer diameter of 20CM and the inner diameter of 15CM from the top to the bottom;
step four: pouring impervious concrete into the mold, waiting for the concrete to solidify, removing the mold, transporting the concrete impervious wall to one side of the dam, and placing the wall with the opening facing outwards;
step five: building wall stones with an angle of 70 degrees between the outer sides of the concrete impervious walls and the foundation, wherein the positions of steel pipes penetrating through the concrete impervious walls are needed when the wall stones are built;
step six: fixing one end of a steel bar with the diameter of 15CM in a hole above the bus by using concrete, penetrating the middle of the steel bar through a concrete impervious wall body and wall stones, and fixing the lower end of the steel bar in the hole on the foundation by using concrete;
step seven: and building a layer of capping stone between the top of the dam and the top of the wall stone, pouring the capping stone by using concrete, filling the concrete in the foundation and filling the foundation.
2. The seepage-proofing and water-stopping method for the hydraulic engineering according to claim 1, which is characterized in that: the punching distance on the dam is determined according to the width of the dam needing to be constructed.
3. The seepage-proofing and water-stopping method for the hydraulic engineering according to claim 1, which is characterized in that: the height of the concrete mould is determined according to the height of a dam needing to be constructed.
4. The seepage-proofing and water-stopping method for the hydraulic engineering according to claim 1, which is characterized in that: the concrete anti-permeability wall body is made of anti-permeability concrete, raw materials comprise ordinary portland cement with the strength not lower than 32.5Mpa and low-hydration-heat cement, the 7-day hydration-heat index of the cement is not higher than 275kJ/kg, early-strength cement with an R character cannot be used, fly ash not lower than II grade is not used, the 5-31.5 mm grading is uniform, the content of mud is not more than 1% of mechanically crushed stone, the fineness modulus is 2.5-3.0, the mud content is not more than 3% of medium coarse sand, calcium formate, polypropylene reticular fiber and anti-permeability fiber are added during manufacturing, and the addition amount of the additive is not more than 5% of the mass of the cement.
5. The seepage-proofing and water-stopping method for the hydraulic engineering according to claim 1, which is characterized in that: before the wall stone is built, the wall stone materials are manually checked, the used stone materials are checked one by one, firstly, stones with large-scale weathering at the edges are removed, then whether cracks exist on the stones are checked, the stones with cracks but clean surfaces are broken and used as fillers, the stones with large cracks and silt in the cracks are removed, the stones need to be intensively cleaned before being laid, moss, mud and the like on the surfaces are removed, then, the stones are washed and soaked by clean water, and the softened parts of the corners are removed after the soaking is finished.
6. The seepage-proofing and water-stopping method for the hydraulic engineering according to claim 1, which is characterized in that: when the wall surface stones are built, stones must be kept wet, mortar is paved on a building surface, then the stones are placed, the same layer of the stones is approximately parallel to rise, the built stones face downwards in a large scale to prevent shaking, the stones are filled with the mortar, when gaps are large, broken stone slice filling materials are filled when the mortar is filled, the minimum width of a building joint between the stones is not more than 1.5CM, a joint cut between the upper part and the lower part and the front part and the rear part are staggered, and water seepage of the whole row of wall surface due to one opening is prevented.
7. The seepage-proofing and water-stopping method for the hydraulic engineering according to claim 1, which is characterized in that: before the steel bar is placed in the steel pipe, oil stain, dust, rust and the like on the surface of the steel bar are thoroughly removed, the steel bar is soaked in an antirust agent for about ten minutes, and each liter of the antirust agent adopts 300g of phosphoric acid with the concentration of 85%, 20g of nitric acid with the concentration of 65%, 30g of hydrochloric acid with the concentration of 36.5%, 100g of sodium citrate, 30g of sodium sulfite, 20g of urotropine, 50g of sodium dodecyl benzene sulfonate and 100g of zinc sulfate, and is added into pure water, the total amount is 1L, and the stirring and the mixing are uniform.
CN202111121925.8A 2021-09-24 2021-09-24 Seepage-proofing and water-stopping method for hydraulic engineering Active CN113832919B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111121925.8A CN113832919B (en) 2021-09-24 2021-09-24 Seepage-proofing and water-stopping method for hydraulic engineering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111121925.8A CN113832919B (en) 2021-09-24 2021-09-24 Seepage-proofing and water-stopping method for hydraulic engineering

Publications (2)

Publication Number Publication Date
CN113832919A true CN113832919A (en) 2021-12-24
CN113832919B CN113832919B (en) 2023-03-31

Family

ID=78969876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111121925.8A Active CN113832919B (en) 2021-09-24 2021-09-24 Seepage-proofing and water-stopping method for hydraulic engineering

Country Status (1)

Country Link
CN (1) CN113832919B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201087334Y (en) * 2007-05-15 2008-07-16 江苏省水利科学研究所 Reservoir bottom and dam body integrated anti-seepage structure
CN105040006A (en) * 2015-08-12 2015-11-11 无锡阳工机械制造有限公司 Water-based antirust agent used for electric generator metal cover
CN207032148U (en) * 2017-07-31 2018-02-23 余启飞 Hydraulic engineering ecological wall
KR20190006310A (en) * 2017-07-10 2019-01-18 최종선 Construction Method of Reinforced Earth Retaining Wall
CN110184999A (en) * 2019-05-05 2019-08-30 广州中寓建设工程有限公司 A kind of anti-seepage reinforcing technique of hydraulic engineering dam foundation
CN110668761A (en) * 2019-11-06 2020-01-10 李秀利 Concrete special for hydraulic engineering
CN210031669U (en) * 2019-03-14 2020-02-07 杜庆娟 Water conservancy retaining wall

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201087334Y (en) * 2007-05-15 2008-07-16 江苏省水利科学研究所 Reservoir bottom and dam body integrated anti-seepage structure
CN105040006A (en) * 2015-08-12 2015-11-11 无锡阳工机械制造有限公司 Water-based antirust agent used for electric generator metal cover
KR20190006310A (en) * 2017-07-10 2019-01-18 최종선 Construction Method of Reinforced Earth Retaining Wall
CN207032148U (en) * 2017-07-31 2018-02-23 余启飞 Hydraulic engineering ecological wall
CN210031669U (en) * 2019-03-14 2020-02-07 杜庆娟 Water conservancy retaining wall
CN110184999A (en) * 2019-05-05 2019-08-30 广州中寓建设工程有限公司 A kind of anti-seepage reinforcing technique of hydraulic engineering dam foundation
CN110668761A (en) * 2019-11-06 2020-01-10 李秀利 Concrete special for hydraulic engineering

Also Published As

Publication number Publication date
CN113832919B (en) 2023-03-31

Similar Documents

Publication Publication Date Title
CN105544460B (en) Cast-in-place plant growing type eco-concrete slope protection construction method
CN204000956U (en) A kind of basement bottom plate rear pouring tape structure
CN101725258A (en) Integral jacking method of heritage buildings
CN110965595B (en) Raft foundation building lifting reinforcement structure and method under corrosive geological environment
CN105649000A (en) Back pressure backfilling shallow-buried excavation construction method for tunnel undercrossing gully
CN112709237A (en) Construction method of anchor rod sash beam for high-speed slope protection
CN101498136A (en) After-pouring strips structure with high underground water level
CN106917410B (en) A kind of construction method of downstream slope slope shoulder safeguard structure
CN113832919B (en) Seepage-proofing and water-stopping method for hydraulic engineering
CN111851407A (en) Construction method of gabion retaining wall
CN109610407B (en) Ecological barricade of landslide prevention based on dead weight is balanced
CN112176954A (en) Construction method for newly excavated channel
CN114214975B (en) Repair method for bridge pier and protection structure of bridge pier
CN110093939A (en) A kind of method of mining area slope ecological reparation
CN218027470U (en) Take glutinous rice mortar stone structure of building of multidirectional hole
CN216999263U (en) Protective structure of pier
CN104153350A (en) Octagonal meshed water-stopping rectangular pile of support
CN108547306A (en) A kind of building waste block stone does the construction method of bank protection
CN114657851A (en) Roadbed disposal method for river pond area crossing
KR100300230B1 (en) Anti-Scouring and Erosion Fabric Form for Bridge
CN108411851B (en) construction method of concrete slab facing structure for slope dike of river and sea reclamation area
CN108755597B (en) Prefabricated part check dam and preparation method and using method thereof
CN112813996A (en) Construction method of deepwater cast-in-place concrete cofferdam
CN112176944A (en) Construction method of hydrophilic platform revetment structure
KR100263733B1 (en) Prevention stand make use of polyethylene resin and concrete waste matters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant