CN113832477B - 一种高效水分解催化剂空心磷化钴及其制备方法 - Google Patents

一种高效水分解催化剂空心磷化钴及其制备方法 Download PDF

Info

Publication number
CN113832477B
CN113832477B CN202111158446.3A CN202111158446A CN113832477B CN 113832477 B CN113832477 B CN 113832477B CN 202111158446 A CN202111158446 A CN 202111158446A CN 113832477 B CN113832477 B CN 113832477B
Authority
CN
China
Prior art keywords
shell
cop
cobalt phosphide
nanocage
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111158446.3A
Other languages
English (en)
Other versions
CN113832477A (zh
Inventor
张漩
张炜
姜银珠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZJU Hangzhou Global Scientific and Technological Innovation Center
Original Assignee
ZJU Hangzhou Global Scientific and Technological Innovation Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZJU Hangzhou Global Scientific and Technological Innovation Center filed Critical ZJU Hangzhou Global Scientific and Technological Innovation Center
Priority to CN202111158446.3A priority Critical patent/CN113832477B/zh
Publication of CN113832477A publication Critical patent/CN113832477A/zh
Application granted granted Critical
Publication of CN113832477B publication Critical patent/CN113832477B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高效水分解催化剂空心磷化钴及其制备方法,涉及水分解催化剂制备技术领域。该磷化钴微观形貌为单壳纳米笼,以CoP为壳、内为空心的菱形十二面体,形似笼状。其制备步骤为:以Na2MoO4水溶液为反应介质,通过柯肯达尔效应构建Co(OH)2空心结构,然后将制备的Co(OH)2空心结构在空气中500℃退火制备Co3O4单壳纳米笼,随后,将Co3O4单壳纳米笼前驱体与NaH2PO2在N2气氛下700℃退火,形成CoP中空结构CoP。采用本发明方法制备的空心磷化钴具有介孔特性,比表面积更大,水分解效率更高。

Description

一种高效水分解催化剂空心磷化钴及其制备方法
技术领域
本发明属于水分解催化剂领域,具体涉及一种作为高效水分解催化剂的空心磷化钴的制备方法。
背景技术
近年来,随着世界经济的快速发展,对于化石原料的需求与消耗量大增。由于化石原料为非可再生能源,其储量已经不能满足人们的需求。除此之外,其带来的二氧化碳的释放导致了温室效应,也严重影响着人类的生存,因此,替代能源的开发已经成为了大势所趋。而这其中,氢气由于其可再生性和无污染性成为了研究热点。
目前,工业上制备氢气主要采用催化水蒸气重整、煤气化以及石油裂解等方法,但这些方法普遍存在着一些缺点,例如能耗高、制备的氢气不纯、排出大量二氧化碳等。硼氢化物如硼氢化钠、硼烷氨和硼氢化锂等的催化水解为制备氢气提供了一个环境友好的途径。其中,硼烷氨由于其具有高的理论氢含量、相对较高的环境稳定性、无毒、环境友好等特点成为了理想的水解制氢材料。但是,硼烷氨的大规模应用还依赖于高效稳定且价格低廉催化剂的开发。
过度金属磷化物是一类稳定且高效的催化剂。由于磷原子进入了过渡金属晶格中形成了间隙化合物,这使得其具有了极强的导电性、高的热稳定性以及化学稳定性,这使其可以作为性能优异的催化剂应用于硼烷氨的催化降解制备氢气。其中,磷化钴由于其优异的性能吸引了研究者的目光,但是由于其比表面积过低,活性位点过少,这些不利因素限制了其催化效率的发挥,使得其仍然不能达到商业化使用的要求。
发明内容
本发明的在于提供了一种作为高效水分解催化剂的空心磷化钴的制备方法,本发明方法制得的空心磷化钴比表面积更大,水分解催化效率更高。
为实现上述发明目的,本发明采用如下技术方案。
首先,本发明提供了一种水分解催化剂空心磷化钴,该磷化钴化学式CoP,其微观形貌为单壳纳米笼,即单个CoP晶体颗粒微结构以CoP为壳、内为空心的菱形十二面体,形似笼状;单壳纳米笼的表面起皱且边缘呈突起状;各晶体颗粒堆叠一起,颗粒大小均匀,单个晶体颗粒的直径在600到800nm之间。
本发明还提供一种上述高效水分解催化剂的空心磷化钴的制备方法,制备步骤如下:
S1.准备所需的材料:Na2MoO4·2H2O、Co(NO3)2·6H2O、2-甲基咪唑(2-MIM)、甲醇和乙醇。
S2. ZIF-67的合成:取30 mL 20 mM的Co(NO32·6H2O加入到甲醇溶液中,并进行超声混合,然后添加50 mL 160 mM的2-MIM至甲醇溶液;混合物在室温下反应24小时,无需搅拌,反应后,通过离心回收沉淀物,用过量的甲醇洗涤,并在60℃空气中干燥,得到 ZIF-67。
S3. Co(OH)2的合成:取40mg S2制得的ZIF-67搅拌分散在20mL乙醇中,搅拌得ZIF-67分散体;同时,取10mL包含100mg Na2MoO4·2H2O的去离子水溶液加入到ZIF-67分散体中,得混合溶液;将混合溶液加热到85ºC,直至紫色完全消失,然后对混合溶液中的沉淀进行离心水洗,并在70℃下隔夜干燥,以获得Co(OH)2
S4. Co3O4单壳纳米笼的合成:在空气中,将Co(OH)2粉末于500℃下退火3小时获得Co3O4单壳纳米笼。
S5. CoP单壳纳米笼的合成:取Co3O4单壳纳米笼和NaH2PO2H2O粉体放置在管状炉内,在高纯氩气氛下,将管式炉加热到700℃,保持2小时,自然冷却之后既得 CoP单壳纳米笼,其中Co3O4和NaH2PO2H2O的质量比为1:5~1:15,优选1:10。
进一步,步骤S1中准备的化学品均按原样使用,无需进一步纯化。
进一步,步骤S3中离心水洗的次数为3次。
进一步,步骤S5中的Co3O4单壳纳米笼和NaH2PO2H2O粉体分别放置在管状炉的两个位置,NaH2PO2H2O粉体位于管状炉的上部。
进一步,步骤S5中管式炉的加温速率为2℃min-1
与现有技术相比,本发明的有益效果是:
1.本发明制得的磷化钴具有空心结构,颗粒表面平坦、大小均匀。
2.本发明制得的磷化钴纯度高,比表面积更大,并具有介孔特性,同时对碱性溶液中的OER和HER具有优异的电化学稳定性,水分解效率更高。
附图说明
图 1为本发明实施例制得的ZIF-67的扫描电镜图。
图 2为本发明实施例制得的Co(OH)2的扫描电镜图。
图 3为本发明实施例制得的Co3O4的扫描电镜图。
图 4为本发明实施例制得的CoP-HS的扫描电镜图。
图 5为本发明实施例制得的ZIF-67的X射线衍图。
图 6为本发明实施例制得的Co(OH)2的X射线衍图。
图 7为本发明实施例制得的Co3O4的X射线衍图。
图 8为本发明实施例制得的CoP-HS的的X射线衍图。
图 9为OER下测得的CoP-HS、IrO2和空白碳纸的LSV曲线。
图10为对比例一中样本相应的Tafel图。
图11为对比例一中CoP-HS的电势与时间的关系图。
图12为对比例二中CoP-HS的计时电位曲线。
图13为基于CoP || CoP和Pt / C || IrO2电极的总水分解性能。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明:
实施例一
一种作为高效水分解催化剂的空心磷化钴的制备方法,制备步骤如下:
S1.准备所需的材料:Na2MoO4·2H2O、Co(NO3)2·6H2O(98%)、2-甲基咪唑(2-MIM,95%)、KOH(85%)、甲醇、乙醇、Nafion(5 wt%)和IrO2,准备的化学品均按原样使用,无需进一步纯化,实验中使用的水均通过离子交换膜过滤纯化。
S2. ZIF-67的合成:取30 mL 20 mM的Co(NO32·6H2O加入到甲醇溶液中,并进行超声混合,然后添加50 mL 160 mM的2-MIM甲醇溶液;混合物在室温下反应24小时,无需搅拌,反应后,通过离心回收沉淀物,用过量的甲醇洗涤沉淀物,洗涤后的沉淀物于60℃空气中干燥,得到 ZIF-67。
S3. Co(OH)2的合成:取40mg S2制得的ZIF-67搅拌分散在20mL乙醇中,搅拌的同时,取10mL包含100mg Na2MoO4·2H2O的去离子水溶液加入前一分散体中;将混合溶液加热到85℃,直至紫色完全消失,然后对混合溶液中的沉淀进行离心水洗3次,并在70℃下隔夜干燥,以获得Co(OH)2
S4. Co3O4单壳纳米笼的合成:在空气中,将Co(OH)2粉末于500℃下退火3小时获得Co3O4单壳纳米笼。
S5. CoP单壳纳米笼的合成:取20 mg Co3O4单壳纳米笼和0.2 g NaH2PO2H2O粉体分别放置在管状炉的两个位置,NaH2PO2H2O粉体位于管状炉的上部,在高纯氩气气氛下,将管式炉以2℃min-1的速率加热到700℃,保持2小时,自然冷却之后既得 CoP单壳纳米笼(下文及各说明书附图中记作CoP-HS或CoP)。
发明人在研究中进行过反复试验,S5中Co3O4和NaH2PO2H2O的质量比为1:5~1:15之间均可获得本发明的CoP,本实施例两者采用了1:10的质量比。
在相同的ZIF-67牺牲模板的基础上,通过精心设计,逐步合成了CoP空心结构。首先,以Na2MoO4水溶液为反应介质,通过柯肯达尔效应构建Co(OH)2空心结构,然后将制备的Co(OH)2空心结构在空气中500℃退火制备Co3O4单壳纳米笼,随后,将Co3O4单壳纳米笼前驱体与NaH2PO2在N2气氛下700℃退火,形成中空结构的CoP单壳纳米笼 (CoP- Hs)。
SEM测试
图1为本发明实施例一制得的ZIF-67的扫描电镜图,制备的ZIF-67颗粒呈菱形十二面体,颗粒均匀,约800nm,表面完全平坦。经过表面处理和退火后,形成了Co(OH)2和Co3O4单壳纳米笼,如图2、图3所示,可以清楚地观察到,ZIF-67的形态和粒径可以很好地保持,因为内部结构从固体转变为空心,所以Co(OH)2和Co3O4单壳纳米笼的表面起皱且呈突起状。磷化后,磷化钴单壳纳米笼保持前体的原始多面体形状,这些颗粒的直径在600到800nm之间,如图4。
XRD分析
图5为本发明实施例一制得的ZIF-67的X射线衍图,ZIF-67的X射线衍射图与模拟图(如图5中标示“Simulated ZIF-67”的XRD图)相匹配,说明材料相的纯度高。图6显示制备的Co(OH)2中同时存在α-Co(OH)2和β-Co(OH)2。如图7所示,制备的Co3O4的衍射图与Co3O4(JCPDS 1-1152)粉末的标准图非常吻合。如图8所示,XRD证实了所制备样品的晶体结构和成功的磷化过程,图8中本发明制得的CoP的XRD图谱与相应的标准CoP晶体结构(JCPDS:029-0497)匹配得很好,没有未知的峰,说明Co3O4已完全转化为目标磷化钴,确保了催化剂的纯度。
N2吸附实验
通过N2吸附实施例1合成的CoP-HS的比表面积和孔径分布。CoP-HS都显示出IV型等温线,表明该材料具有介孔特性。对于CoP-HS,主要的孔径分布显示在1.5至3.0 nm的区域内。此外,CoP-HS的BET表面积为24.1 m2g-1
对比例一
用典型的三电极系统在1.0 M KOH中测试实施例制得的CoP-HS的电催化OER性能,作为对比分析,在碳纸上分别涂覆了约1 mg cm-2负载量的CoP-HS、IrO2和碳纸。之后,以50mV / s的扫描速率激活50个循环的CV,并用具有iR校正的LSV评估这些催化剂的OER性能,如图9所示,CoP-HS在10 mA cm-2的电流密度下需要281 mV的过电势,商用IrO2需要375 mV的过电势,CoP-HS表现出更好的性能。同时,即使在高的超电势下,裸露的碳纸(图9中标示“Blank carbon paper”)也几乎没有显示出对OER的任何电催化活性。
比较了所制备电极的OER动力学,相应的Tafel斜率是根据从电位对log(j)绘制的Tafel曲线计算得出的,如图10所示。Tafel斜率给出了实现电流密度增加10倍所需的过电位的增加。因此,较低的Tafel斜率可以促进反应动力学,这对于工业化应用尤为重要。CoP-HS的Tafel斜率为57 mV dec-1。在恒定电流密度为20 mA cm-2时,采用计时电势法研究磷化钴电极的电催化稳定性,如图11所示。计时电位曲线表明,在长达100小时的耐久试验后,CoP-HS的催化活性仅降低了6.5%。该结果表明CoP-HS对于碱性溶液中的OER具有优异的电化学稳定性。OER循环后,与新鲜样品相比,CoP-HS仍保持良好状态。
对比例二
测试CoP-HS的HER活性,以10 mV / s的扫描速率记录了在1.0 M KOH中进行CV扫描后的LSV曲线,并对所有曲线进行了IR校正。裸碳纸的HER活性可以忽略不计,而Pt / C在电流密度为10 mA cm-2时表现出最佳活性,其超电势为25 mV。 CoP-HS需要116 mV的电流才能达到10 mA cm-2的电流密度。用LSV极化曲线推导出Tafel图,用于估计反应动力学,商业Pt/C的Tafel斜率为34 mV dec-1, CoP-HS的Tafel斜率为89 dec-1。采用计时电位法对催化剂的稳定性进行了评价。在恒定电流密度为20 mA cm-2时,经过100小时的耐用性测试后,本发明实施例制得的CoP-HS保持了良好的催化活性,仅发生了17%的轻微电势衰减,如图12所示。
根据以上结果,CoP-HS电催化剂在1.0 M KOH中通过两电极配置同时用作水分解的阳极和阴极,如图13所示,在1.47 V极低的电池电压下,获得了10mA cm-2的电流密度,优于相同质量负载的基准Pt/C||IrO2系统。在20 mA cm-2电流密度下,采用计时电位法检测CoP-HS||CoP-HS系统的长期运行稳定性。在高达100 h的测试后,几乎没有观察到降解现象,说明CoP-HS||CoP-HS对于碱性水电解具有超高的稳定性。
以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以做出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

Claims (7)

1.一种水分解催化剂空心磷化钴,其特征在于:所述磷化钴化学式为CoP,其微观形貌为单壳纳米笼,即单个CoP晶体颗粒微结构以CoP为壳、内为空心的菱形十二面体,形似笼状;单壳纳米笼的表面起皱且边缘呈突起状;各晶体颗粒堆叠一起,颗粒大小均匀,单个晶体颗粒的直径在600到800nm之间。
2.根据权利要求1所述一种水分解催化剂空心磷化钴的制备方法,其特征在于,制备步骤如下:
S1.准备所需的材料:Na2MoO4·2H2O、Co(NO32·6H2O、2-甲基咪唑、甲醇和乙醇;
S2. ZIF-67的合成:取30 mL 20 mM的Co(NO32·6H2O加入到甲醇溶液中,并进行超声混合,然后添加50 mL 160 mM的2-MIM甲醇溶液;混合物在室温下反应后,通过离心回收沉淀物,用过量的甲醇洗涤,并在60℃空气中干燥,得到 ZIF-67;
S3. Co(OH)2的合成:取40mg S2制得的ZIF-67搅拌分散在20mL乙醇中,得ZIF-67分散体;同时,取10mL包含100mg Na2MoO4·2H2O的去离子水溶液加入ZIF-67分散体中,得混合溶液;将混合溶液加热到85℃,直至紫色完全消失,然后对混合溶液中的沉淀进行离心水洗,并在70℃下隔夜干燥,以获得Co(OH)2
S4. Co3O4单壳纳米笼的合成:在空气中,将Co(OH)2粉末于500℃下退火3小时获得Co3O4单壳纳米笼;
S5. CoP单壳纳米笼的合成:取Co3O4单壳纳米笼和NaH2PO2· H2O粉体放置在管状炉内,在高纯氩气氛下,将管式炉加热到700℃,保持2小时,自然冷却之后既得 CoP单壳纳米笼即所述空心磷化钴。
3.根据权利要求2所述的一种水分解催化剂空心磷化钴的制备方法,其特征在于:所述步骤S3中离心水洗的次数为3次。
4.根据权利要求2所述的一种水分解催化剂空心磷化钴的制备方法,其特征在于:所述步骤S5中的Co3O4单壳纳米笼和NaH2PO2· H2O粉体分别放置在管状炉的两个位置,所述NaH2PO2· H2O粉体位于管状炉的上部。
5.根据权利要求2所述的一种水分解催化剂空心磷化钴的制备方法,其特征在于:所述步骤S5中管式炉的加温速率为2℃· min-1
6.根据权利要求2所述的一种水分解催化剂空心磷化钴的制备方法,其特征在于:所述步骤S5中的Co3O4和NaH2PO2· H2O的质量比为1:5~1:15。
7.根据权利要求6所述的一种水分解催化剂空心磷化钴的制备方法,其特征在于:所述步骤S5中的Co3O4和NaH2PO2· H2O的质量比为1:10。
CN202111158446.3A 2021-09-30 2021-09-30 一种高效水分解催化剂空心磷化钴及其制备方法 Active CN113832477B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111158446.3A CN113832477B (zh) 2021-09-30 2021-09-30 一种高效水分解催化剂空心磷化钴及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111158446.3A CN113832477B (zh) 2021-09-30 2021-09-30 一种高效水分解催化剂空心磷化钴及其制备方法

Publications (2)

Publication Number Publication Date
CN113832477A CN113832477A (zh) 2021-12-24
CN113832477B true CN113832477B (zh) 2023-03-21

Family

ID=78967845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111158446.3A Active CN113832477B (zh) 2021-09-30 2021-09-30 一种高效水分解催化剂空心磷化钴及其制备方法

Country Status (1)

Country Link
CN (1) CN113832477B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105107536B (zh) * 2015-10-09 2017-11-21 清华大学 一种多面体形磷化钴电解水制氢催化剂的制备方法
CN108816258B (zh) * 2018-06-13 2020-12-29 吉林大学 一种原位掺杂中空磷化钴纳米微粒的中空碳材料、制备方法及其在催化电解水产氢中的应用
CN109956458A (zh) * 2019-03-21 2019-07-02 华中科技大学 一种分级结构磷化物、其制备方法和应用
CN110299530B (zh) * 2019-07-22 2022-04-01 福州大学 一种zif-67基钴钼氧化物空心纳米笼/石墨烯复合材料及其制备方法与应用
CN111116934B (zh) * 2020-01-20 2021-07-27 福州大学 一种空心结构的MOFs衍生物的制备及其在催化烯烃环氧化中应用
CN111604062B (zh) * 2020-06-08 2023-11-14 中国石油大学(华东) 一种超小中空立方体纳米材料及其制备方法与电催化析氢中的应用
CN113265674A (zh) * 2021-05-28 2021-08-17 青岛科技大学 一种MOF衍生CoP析氢催化剂的制备方法

Also Published As

Publication number Publication date
CN113832477A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
Du et al. A self-templating method for metal–organic frameworks to construct multi-shelled bimetallic phosphide hollow microspheres as highly efficient electrocatalysts for hydrogen evolution reaction
Li et al. Immobilization of Fe3N nanoparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air batteries
Yang et al. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting
Sekhon et al. Biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reaction: A review
Zhang et al. Template-free synthesis of non-noble metal single-atom electrocatalyst with N-doped holey carbon matrix for highly efficient oxygen reduction reaction in zinc-air batteries
Niu et al. Ultrafine NiCoP-decorated N, S, P-codoped hierarchical porous carbon nanosheets as an efficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution
Huang et al. In situ Fe 2 N@ N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction
Wu et al. Role of flower-like ultrathin Co 3 O 4 nanosheets in water splitting and non-aqueous Li–O 2 batteries
Wang et al. Towards superior oxygen evolution through graphene barriers between metal substrates and hydroxide catalysts
CN110993968B (zh) 一种碳气凝胶单金属原子催化剂的制备方法及电催化应用
CN107583662B (zh) 一种氧还原催化剂及其制备方法和应用
Li et al. A ZIF-derived hierarchically porous Fe–Zn–N–C catalyst synthesized via a two-stage pyrolysis for the highly efficient oxygen reduction reaction in both acidic and alkaline media
CN112221530A (zh) 一种非贵金属单原子双功能电催化剂的制备方法与应用
CN113013428A (zh) 一种Fe,Co双金属掺杂介孔碳氧还原催化剂的制备方法及应用
CN108946692B (zh) 一种磷酸钴纳米材料及其制备方法和应用
CN113373471B (zh) 一种用于电催化还原co2制低碳醇的铟基催化剂的制备方法及应用
Chen et al. Template-free synthesis of 3D hierarchical nanostructured NiCo 2 O 4 mesoporous ultrathin nanosheet hollow microspheres for excellent methanol electrooxidation and supercapacitors
Yan et al. Hierarchical cobalt phosphide hollow nanoboxes as high performance bifunctional electrocatalysts for overall water splitting
Tan et al. Highly dispersed ultrafine Ni particles embedded into MOF-74 arrays by partial carbonization for highly efficient hydrogen evolution
CN110560094B (zh) 一种3d多孔钴锡钼三金属催化剂的制备方法
Sun et al. Rh particles in N-doped porous carbon materials derived from ZIF-8 as an efficient bifunctional electrocatalyst for the ORR and HER
CN110038612B (zh) 一种n掺杂微孔碳球orr催化材料及其制备方法和应用
Jang et al. Single atomic Fe-based honeycomb catalysts with hierarchically ordered meso-and macropore for the oxygen reduction reaction
CN112853393B (zh) 一种用于电化学合成氨的四氧化三铁催化剂及其制备方法与应用
CN112899724B (zh) 一种纳米级二氧化钌包覆钌负载碳微米片、其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant