CN113822193A - 一种基于窄带增强包络谱的滚动轴承故障诊断方法及系统 - Google Patents

一种基于窄带增强包络谱的滚动轴承故障诊断方法及系统 Download PDF

Info

Publication number
CN113822193A
CN113822193A CN202111101709.7A CN202111101709A CN113822193A CN 113822193 A CN113822193 A CN 113822193A CN 202111101709 A CN202111101709 A CN 202111101709A CN 113822193 A CN113822193 A CN 113822193A
Authority
CN
China
Prior art keywords
narrow
spectrum
band
rolling bearing
envelope spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111101709.7A
Other languages
English (en)
Inventor
李夫忠
杜红梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Yunda Technology Co Ltd
Original Assignee
Chengdu Yunda Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Yunda Technology Co Ltd filed Critical Chengdu Yunda Technology Co Ltd
Priority to CN202111101709.7A priority Critical patent/CN113822193A/zh
Publication of CN113822193A publication Critical patent/CN113822193A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Discrete Mathematics (AREA)
  • Algebra (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Acoustics & Sound (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种基于窄带增强包络谱的滚动轴承故障诊断方法及系统,通过采集滚动轴承的振动加速度信号构建谱相干函数,并对谱相干函数的谱频带进行二叉树频带划分,构建一组窄带增强包络谱,利用最大稀疏指标准则从窄带增强包络谱中选择最优窄带增强包络谱,并根据轴承故障特征频率对比最优窄带增强包络谱频率进行轴承故障诊断;本发明通过二叉树策略对谱相干的谱频带进行自适应划分,构造出一组具有相同带宽、不同中心频率的窄带增强包络谱,解决窄带增强包络谱的谱频带带宽固定的问题,并利用稀疏指标有效评估窄带增强包络谱中的轴承故障信息,无需轴承故障的先验知识,准确地检测滚动轴承故障类型,提高检测准确性以及自适应力性。

Description

一种基于窄带增强包络谱的滚动轴承故障诊断方法及系统
技术领域
本发明涉及滚动轴承故障诊断技术领域,具体涉及一种基于窄带增强包络谱的滚动轴承故障诊断方法及系统。
背景技术
随着现代机械设备向着高速化、精密化和智能化方向发展,机械设备的故障诊断日益受到高度重视。滚动轴承作为旋转机械中的一种关键零部件,其健康状态对机械设备的稳定运行至关重要。因此,滚动轴承的早期故障诊断对于保证机械设备正常运行具有重要意义。
目前,振动分析是滚动轴承故障诊断的常用方法之一。轴承元件故障引起的滚动轴承振动信号具有循环平稳的特点,采用由谱相干构造的增强包络谱进行分析是一种有效的故障诊断方法。但是,由谱相干构造的全频带增强包络谱不能有效地揭示淹没在滚动轴承振动信号中的故障特征信息,尤其是滚动轴承的振动信号受到强烈的背景噪声干扰时。由于轴承元件故障引起的瞬态冲击具有很宽的频率范围,滚动轴承的故障信息通常包含在由故障引起的共振频带内。因此,根据共振频带构造的窄带增强包络谱既能保持增强包络谱的故障检测能力又能克服全频带增强包络谱的缺点。然而,目前已有的窄带增强包络谱方法主要存在两方面的不足,一方面,谱频带划分策略的自适应性较弱,用于构造窄带增强包络谱的谱频带具有固定的带宽;另一方面,用于确定共振频带的选择标准需要轴承故障的先验知识,共振频带选择的自适应性较弱。
发明内容
针对现有技术中的上述不足,本发明提供了一种基于窄带增强包络谱的滚动轴承故障诊断方法及系统。
为了达到上述发明目的,本发明采用的技术方案为:
第一方面,本发明提供了一种基于窄带增强包络谱的滚动轴承故障诊断方法,包括以下分步骤:
S1、采集滚动轴承的振动加速度信号;
S2、根据步骤S1中振动加速度信号构建谱相干函数;
S3、采用二叉树频带划分策略划分步骤S2中谱相干函数,并构建窄带增强包络谱;
S4、采用最大稀疏化指标准则从步骤S3中窄带增强包络谱中选择最优窄带增强包络谱;
S5、根据滚动轴承的故障特征频率对比步骤S4中最优窄带增强包络谱的谱频率,判断滚动轴承故障类型。
进一步地,所述步骤S2包括以下分步骤:
S21、根据步骤S1中振动加速度信号构建瞬时自相关函数,表示为:
Figure BDA0003270892280000021
其中,Rx(tnm)为瞬时自相关函数,
Figure BDA0003270892280000022
是期望算子,tn为采样时间,τm为时间延长,*表示复数共轭;
S22、对步骤S21中瞬时自相关函数进行二维离散傅里叶变换,得到谱相关函数;
Figure BDA0003270892280000023
其中,Sx(α,f)为谱相关函数,α为谱频率,f为循环频率,N为信号长度,Fs为采样频率;
S23、根据步骤S22中谱相关函数计算谱相干函数。
进一步地,所述步骤S23中根据谱相关函数计算谱相干函数的计算方式为:
Figure BDA0003270892280000031
其中,γx(α,f)为谱相干函数。
进一步地所述步骤S3具体包括以下分步骤:
S31、采用二叉树频带划分策略划分步骤S2中谱相干函数的整个谱频带,得到多个窄谱频带;
S32、根据步骤S31中多个窄谱频带构建窄带增强包络谱。
进一步地,所述步骤S31具体为:
预设分解层数,将谱相干函数的整个谱频带划分为多个具有相同带宽、不同的中心频率的窄谱频带。
进一步地,所述步骤S32中根据窄谱频带构建窄带增强包络谱的计算方式为:
Figure BDA0003270892280000032
其中,EESk,b(α)为第k分解层中第b个窄谱频带构造的窄带增强包络谱。
进一步地,所述步骤S4具体包括以下分步骤:
S41、对步骤S3中窄带增强包络谱进行离散化;
S42、根据步骤S41中离散化窄带增强包络谱计算稀疏化指标参数;
S43、根据最大稀疏化指标准则选择步骤S42中最大稀疏化指标参数对应的窄带增强包络谱为最优窄带增强包络谱。
进一步地,所述步骤S5具体包括以下分步骤:
S51、计算滚动轴承各元件的故障特征频率;
S52、对比步骤S4中最优窄带增强包络谱的谱频率与步骤S51中故障特征频率,并根据对比结果判别存在的滚动轴承故障类型。
第二方面,本发明提供了一种基于窄带增强包络谱的滚动轴承故障诊断系统,包括:
信号采集模块,用于采集滚动轴承的振动加速度信号;
谱相干函数构建模块,用于根据振动加速度信号构建谱相干函数;
频带划分模块,用于采用二叉树频带划分策略划分谱相干函数,构建窄带增强包络谱;
稀疏化选择模块,用于采用最大稀疏化指标准则根据窄带增强包络谱选择最优窄带增强包络谱;
故障诊断模块,用于根据滚动轴承的故障特征频率对比各轴承元件的最优窄带增强包络谱,判断滚动轴承故障类型。
第三方面,本发明还提供了一种基于窄带增强包络谱的滚动轴承故障诊断设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如权利要求1至8任一项所述的基于窄带增强包络谱的滚动轴承故障诊断方法的步骤。
本发明具有以下有益效果:
通过采集滚动轴承的故障信息构建谱相干函数,采用二叉树频带划分策略对谱相干函数进行划分,完成窄带增强包络谱构建,构造出一系列具有不同带宽的窄带增强包络谱,解决现有窄带增强包络谱的谱频带固定带宽的问题,提供不同带宽的窄带增强包络谱,提高谱频带划分策略的自适应性,并结合最大稀松化指标准则选择最优窄带增强包络谱,采用无需先验知识的稀松化指标,自适应确定包含丰富轴承故障信息的共振频率,有效评估窄带增强包络谱中的轴承故障信息并通过轴承故障特征频率完成滚动轴承故障类型判断,准确地检测滚动轴承故障类型,提高了检测准确性以及自适应性。
附图说明
图1为本发明提供的一种基于窄带增强包络谱的滚动轴承故障诊断方法的步骤示意图;
图2为本发明中步骤S2的分步骤示意图;
图3为本发明中步骤S3的分步骤流程图;
图4为本发明中基于二叉树策略的频谱划分示意图;
图5为本发明中步骤S4的分步骤流程图;
图6为本发明中步骤S5的分步骤流程图;
图7为本发明中实施例1中外圈故障滚动轴承的振动加速度信号及其处理结果,其中,图7(a)、图7(b)、图7(c)、图7(d)与图7(e)分别为轴承振动加速度信号、频谱、包络谱、谱相干以及全频带增强包络谱;
图8为本发明实施例1中外圈故障轴承振动加速度信号的稀疏指标图,其中,图8(a)、图8(b)、图8(c)、图8(d)、图8(e)与图8(f)分别为峭度指标图、L2和L1的范数比指标图、Hoyer指数指标图、平滑指数的倒数指标图、基尼指数指标图以及负熵指标图;
图9为本发明实施例1中外圈故障轴承振动加速度信号的最优窄带增强包络谱,其中,图9(a)、图9(b)、图9(c)、图9(d)、图9(e)与图9(f)分别为峭度指标图、L2和L1的范数比指标图、Hoyer指数指标图、平滑指数的倒数指标图、基尼指数指标图以及负熵指标图;
图10为本发明中实施例2中滚动体故障的滚动轴承的振动加速度信号及其处理结果,其中,图10(a)、图10(b)、图10(c)、图10(d)与图10(e)分别为轴承振动加速度信号、频谱、包络谱、谱相干以及全频带增强包络谱;
图11为本发明中实施例2中滚动体故障的轴承振动加速度信号的稀疏指标图,其中,图10(a)、图10(b)、图10(c)、图10(d)、图10(e)与图10(f)分别为峭度指标图、L2和L1的范数比指标图、Hoyer指数指标图、平滑指数的倒数指标图、基尼指数指标图以及负熵指标图;
图12为本发明中实施例2中滚动体故障的轴承振动加速度信号的最优窄带增强包络谱,其中,图12(a)、图12(b)、图12(c)、图12(d)、图12(e)与图12(f)分别为峭度指标图、L2和L1的范数比指标图、Hoyer指数指标图、平滑指数的倒数指标图、基尼指数指标图以及负熵指标图;
图13为本发明实施例提供的一种基于窄带增强包络谱的滚动轴承故障诊断系统的结构图;
图14为本发明实施例提供的一种基于窄带增强包络谱的滚动轴承故障诊断设备的结构图。
具体实施方式
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
如图1所示,本发明实施例提供了一种基于窄带增强包络谱的滚动轴承故障诊断方法,包括以下步骤S1-步骤S5:
S1、采集滚动轴承的振动加速度信号;
实际中,利用信号采集设备以一定采样频率采集滚动轴承的振动加速度x(tn),其中,tn为采样时间,表示为:tn=n/Fs,n=0,1,…,N-1,Fs为采样频率。
S2、根据步骤S1中振动加速度信号构建谱相干函数;
如图2示,本实施例中,步骤S2具体包括以下分步骤:
S21、根据步骤S1中振动加速度信号构建瞬时自相关函数,表示为:
Figure BDA0003270892280000071
其中,Rx(tnm)为瞬时自相关函数,
Figure BDA0003270892280000072
是期望算子,tn为采样时间,τm为时间延长,表示为:τm=m/Fs,m=1,2,3,…,*表示复数共轭;
实际中,假定滚动轴承振动加速度信号x(tn)为二阶循环平稳,则对应的瞬时自相关函数为采样时间tn的一个周期性函数。
S22、对步骤S21中瞬时自相关函数进行二维离散傅里叶变换,得到谱相关函数;
Figure BDA0003270892280000073
其中,Sx(α,f)为谱相关函数,α为谱频率,f为循环频率,N为信号长度,Fs为采样频率;
实际中,谱相关定义为瞬时自相关函数的二维离散傅里叶变换,是谱频率α与循环频率f的二维函数,可同时揭示滚动轴承振动信号的共振频率与故障特征频率。
S23、根据步骤S22中谱相关函数计算谱相干函数。
本实施例中,步骤S23中根据谱相关函数计算谱相干函数的计算方式为:
Figure BDA0003270892280000081
其中,γx(α,f)为谱相干函数,其值介于(0,1)。
实际中,谱相干函数为谱相关函数的标准化形式。
S3、采用二叉树频带划分策略划分步骤S2中谱相干函数,并构建窄带增强包络谱;
如图3所示,实施例中,步骤S3具体包括以下分步骤:
S31、采用二叉树频带划分策略划分步骤S2中谱相干函数,得到多个窄谱频带;
本实施例中,预设分解层数,将谱相干函数的整个谱频带划分为多个具有相同带宽、不同的中心频率的窄谱频带。
实际中,将分解层数设置为k,则谱相干函数的整个谱频带[0,Fs/2]可划分为2k个具有相同带宽的窄谱频带,且划分的窄谱频带具有不同的中心频率;其中第k分解层的窄谱频带的带宽Δfk,表示为:Δfk=Fs/2k+1;第k分解层的第b个窄谱频带的中心频率fk,b,表示为:fk,b=Fs·(b-2-1)/2k+1,b=1,2,3,…,2k
对于全频带增强包络谱,其频带的下限和上限分别为0Hz和Fs/2Hz,其中Fs为采样频率,采用二叉树频带划分策略,以第k分解层中谱相干的全频带为例,可划分为2k个窄谱频带,如图4所示,对于每一个窄谱频带均可以构造得到一个窄带增强包络谱。
S32、根据步骤S31中多个窄谱频带构建窄带增强包络谱。
本实施例中,步骤S32中根据窄谱频带构建窄带增强包络谱的计算方式表示为:
Figure BDA0003270892280000091
其中,EESk,b(α)为第k分解层中第b个窄谱频带构造的窄带增强包络谱。
实际中,根据带宽和中心频率,第k分解层的第b个窄谱频带的频率下限f1和频率上限f2分别表示为:
f1=fk,b-Δfk/2=Fs·(b-1)/2k+1
f2=fk,b+Δfk/2=Fs·b/2k+1
其中,fk,b为第k分解层中第b个窄谱频带的中心频率,表示为:fk,b=Fs·(b-2-1)/2k+1,Δfk为第k分解层中第b个窄谱频带的带宽,表示为:Δfk=Fs/2k+1
根据轴承振动信号的谱相干,可定义增强包络谱,表示为:
Figure BDA0003270892280000092
其中,f1和f2分别为所选择第k分解层的谱频带下限和上限,该频带的带宽为f2-f1
可得到由第k分解层的第b个窄带频谱构造的窄带增强包络谱,采用同样的计算方法,可以得到一系列具有不同带宽的窄带增强包络谱,其中第k分解层共有2k个窄带增强包络谱。
S4、采用最大稀疏化指标准则从步骤S3中窄带增强包络谱中选择最优窄带增强包络谱;
如图5所示,本实施例中,步骤S4具体包括以下分步骤:
S41、对步骤S3中窄带增强包络谱进行离散化;
实际中,对第k分解层的第b个窄谱频带构造的窄带增强包络谱EESk,b(α)进行离散化,可得到离散后的窄带增强包络谱EESk,b[i]。
S42、根据步骤S41中离散化窄带增强包络谱计算稀疏化指标参数;
实际中,稀疏指标是一类指标的统称,当滚动轴承出现故障时,其振动加速度信号呈现出一系列的瞬态脉冲特征,相应地,其增强包络谱中轴承故障特征频率及其谐波成分对应的幅值会变得明显。稀疏指标能够有效度量瞬态脉冲特征,且脉冲强度越大,其值越大;
实际中,以六种典型的稀疏指标为例;
峭度:
Figure BDA0003270892280000101
其中,Kurtk,b为第k分解层中第b个窄带增强包络谱的峭度,L为离散循环频率的数量,EESk,b[i]为第k分解层中第b个窄谱频带离散后窄带增强包络谱;
L2和L1的范数比:
Figure BDA0003270892280000102
其中,L2/L1k,b为第k分解层中第b个窄带增强包络谱的的范数比;
Hoyer指数:
Figure BDA0003270892280000111
其中,HIk,b为第k分解层中第b个窄带增强包络谱的的Hoyer指数;
平滑指数的倒数:
Figure BDA0003270892280000112
其中,RSIk,b为第k分解层中第b个窄带增强包络谱的平滑指数的倒数;
基尼指数:
Figure BDA0003270892280000113
其中,GIk,b为第k分解层中第b个窄带增强包络谱的基尼指数,
Figure BDA0003270892280000115
为离散后窄带增强包络谱升序排列结果,即满足
Figure BDA0003270892280000116
负熵:
Figure BDA0003270892280000114
其中,NEk,b为第k分解层中第b个窄带增强包络谱的负熵。
S43、根据最大稀疏化指标准则选择步骤S42中最大稀疏化指标参数对应的窄带增强包络谱为最优窄带增强包络谱。
S5、根据滚动轴承的故障特征频率对比步骤S4中最优窄带增强包络谱的谱频率,判断滚动轴承故障类型。
如图6所示,本实施例中,步骤S5具体包括以下分步骤:
S51、计算滚动轴承各元件的故障特征频率;
实际中,在恒定转速下采集轴承的振动信号中,由轴承故障引起的瞬态脉冲特征以特定的频率反复出现,该特征频率由滚动轴承的几何参数和转速共同决定;
假定滚动轴承外圈固定,滚动轴承的节圆直径为D,滚动体直径为d,滚动体数量为Z,接触角为
Figure BDA0003270892280000125
轴承内圈的转速为fr,分别计算滚动轴承各元件的故障特征频率,表示为:
内圈故障特征频率BPFI:
Figure BDA0003270892280000121
外圈故障特征频率BPFO:
Figure BDA0003270892280000122
滚动体故障特征频率BSF:
Figure BDA0003270892280000123
保持架故障特征频率FTF:
Figure BDA0003270892280000124
S52、对比步骤S4中最优窄带增强包络谱的谱频率与步骤S51中故障特征频率,并根据对比结果判别存在的滚动轴承故障类型。
实际中,根据计算的轴承元件的各故障特征频率判断轴承元件的最优窄带增强包络谱中是否存在轴承故障特征频率及其谐波成分,若轴承故障特征频率及其谐波成分所对应的谱线明显存在,即可判断当前轴承故障类型。
本发明实施例1中,对外圈故障的滚动轴承进行故障诊断,选择窗口长度为64个采样点的汉宁窗(Hanning),并设置谱频带分解层数为4,并选择最大循环频率为500Hz;
如图7所示,为外圈故障滚动轴承的原始信号及其处理结果,其中图7(c)、图7(e)中点线分别指示了轴承外圈故障特征频率及其前两次谐波的谱线位置,其中轴承振动信号的采样频率为12.8kHz,分析的信号长度为8192个采样点;基于本发明提供的一种基于窄带增强包络谱的滚动轴承故障诊断方法分别采用峭度、L2和L1的范数比、Hoyer指数、平滑指数的倒数、基尼指数和负熵为评价标准对轴承外圈故障信号进行处理,得到如图8所示的稀疏指标图,以及如图9所示的最优窄带增强包络谱;
如图8可知采用峭度、L2和L1的范数比、Hoyer指数与负熵选择的频带的中心频率和带宽分别为2600Hz和400Hz,平滑指数的倒数选择的频带的中心频率和带宽分别为2800Hz和800Hz,基尼指数选择的频带的中心频率和带宽分别为2000Hz和800Hz;
根据图9中点线所指示的轴承外圈故障特征频率及其前两次谐波的谱线位置可知,与图7中点线所指示的位置一致且幅值更加明显,因此证明本方法提供的一种基于窄带增强包络谱的滚动轴承故障诊断方法可识别出包含轴承故障信息的谱频带并可以确定滚动轴承存在外圈故障,验证了本发明诊断的有效性。
本发明实施例2中,对外圈故障的滚动轴承进行故障诊断,选择窗口长度为64个采样点的汉宁窗(Hanning),并设置谱频带分解层数为4,并选择最大循环频率为300Hz;
滚动体故障滚动轴承的原始信号及其处理结果,如图10所示,其中轴承振动信号的采样频率为12.8kHz,分析的信号长度为8192个采样点,基于本发明提供的一种基于窄带增强包络谱的滚动轴承故障诊断方法分别采用峭度、L2和L1的范数比、Hoyer指数、平滑指数的倒数、基尼指数和负熵为评价标准对轴承外圈故障信号进行处理,得到如图11所示的稀疏指标图,以及如图12所示的最优窄带增强包络谱;
如图11可知,峭度、L2和L1的范数比、Hoyer指数、平滑指数的倒数、基尼指数和负熵均选择了中心频率和带宽分别为4800Hz和3200Hz的频带;
根据图12中点线分别指示的轴承外圈故障特征频率及其前两次谐波的谱线位置可知,与图10中点线所指示的位置一致且幅值更加明显,因此证明本方法提供的一种基于窄带增强包络谱的滚动轴承故障诊断方法可识别出包含轴承故障信息的谱频带并可以确定滚动轴承存在滚动体故障,验证了本发明诊断的有效性。
如图13所示,本发明提供的一种基于窄带增强包络谱的滚动轴承故障系统,包括:
信号采集模块,用于采集滚动轴承的振动加速度信号;
谱相干函数构建模块,用于根据振动加速度信号构建谱相干函数;
频带划分模块,用于采用二叉树频带划分策略划分谱相干函数,构建窄带增强包络谱;
稀疏化选择模块,用于采用最大稀疏化指标准则根据窄带增强包络谱选择最优窄带增强包络谱;
故障诊断模块,用于根据滚动轴承的故障特征频率对比各轴承元件的最优窄带增强包络谱,判断滚动轴承故障类型。
本发明实施例提供的一种基于窄带增强包络谱的滚动轴承故障诊断系统具有上述一种基于窄带增强包络谱的滚动轴承故障诊断方法的有益效果。
如图14所示,本发明还提供的一种基于窄带增强包络谱的滚动轴承故障诊断设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现上述的一种基于窄带增强包络谱的滚动轴承故障诊断方法的步骤。
本发明实施例提供的一种基于窄带增强包络谱的滚动轴承故障诊断设备具有上述一种基于窄带增强包络谱的滚动轴承故障诊断方法的有益效果。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (10)

1.一种基于窄带增强包络谱的滚动轴承故障诊断方法,其特征在于,包括以下步骤:
S1、采集滚动轴承的振动加速度信号;
S2、根据步骤S1中振动加速度信号构建谱相干函数;
S3、采用二叉树频带划分策略划分步骤S2中谱相干函数,并构建窄带增强包络谱;
S4、采用最大稀疏化指标准则从步骤S3中窄带增强包络谱中选择最优窄带增强包络谱;
S5、根据滚动轴承的故障特征频率对比步骤S4中最优窄带增强包络谱的谱频率,判断滚动轴承故障类型。
2.根据权利要求1所述的基于窄带增强包络谱的滚动轴承故障诊断方法,其特征在于,所述步骤S2包括以下分步骤:
S21、根据步骤S1中振动加速度信号构建瞬时自相关函数,表示为:
Figure FDA0003270892270000011
其中,Rx(tnm)为瞬时自相关函数,
Figure FDA0003270892270000012
是期望算子,tn为采样时间,τm为时间延长,*表示复数共轭;
S22、对步骤S21中瞬时自相关函数进行二维离散傅里叶变换,得到谱相关函数;
Figure FDA0003270892270000013
其中,Sx(α,f)为谱相关函数,α为谱频率,f为循环频率,N为信号长度,Fs为采样频率;
S23、根据步骤S22中谱相关函数计算谱相干函数。
3.根据权利要求2所述的基于窄带增强包络谱的滚动轴承故障诊断方法,其特征在于,所述步骤S23中根据谱相关函数计算谱相干函数的计算方式为:
Figure FDA0003270892270000021
其中,γx(α,f)为谱相干函数。
4.根据权利要求1所述的基于窄带增强包络谱的滚动轴承故障诊断方法,其特征在于,所述步骤S3具体包括以下分步骤:
S31、采用二叉树频带划分策略划分步骤S2中谱相干函数的整个谱频带,得到多个窄谱频带;
S32、根据步骤S31中多个窄谱频带构建窄带增强包络谱。
5.根据权利要求4所述的基于窄带增强包络谱的滚动轴承故障诊断方法,其特征在于,所述步骤S31具体为:
预设分解层数,将谱相干函数的整个谱频带划分为多个具有相同带宽、不同的中心频率的窄谱频带。
6.根据权利要求4所述的基于窄带增强包络谱的滚动轴承故障诊断方法,所述步骤S32中根据窄谱频带构建窄带增强包络谱的计算方式为:
Figure FDA0003270892270000022
其中,EESk,b(α)为第k分解层中第b个窄谱频带构造的窄带增强包络谱。
7.根据权利要求1所述的基于窄带增强包络谱的滚动轴承故障诊断方法,其特征在于,所述步骤S4具体包括以下分步骤:
S41、对步骤S3中窄带增强包络谱进行离散化;
S42、根据步骤S41中离散化窄带增强包络谱计算稀疏化指标参数;
S43、根据最大稀疏化指标准则选择步骤S42中最大稀疏化指标参数对应的窄带增强包络谱为最优窄带增强包络谱。
8.根据权利要求1所述的基于窄带增强包络谱的滚动轴承故障诊断方法,其特征在于,所述步骤S5具体包括以下分步骤:
S51、计算滚动轴承各元件的故障特征频率;
S52、对比步骤S4中最优窄带增强包络谱的谱频率与步骤S51中故障特征频率,并根据对比结果判别存在的滚动轴承故障类型。
9.一种基于窄带增强包络谱的滚动轴承故障诊断系统,其特征在于,包括:
信号采集模块,用于采集滚动轴承的振动加速度信号;
谱相干函数构建模块,用于根据振动加速度信号构建谱相干函数;
频带划分模块,用于采用二叉树频带划分策略划分谱相干函数,构建窄带增强包络谱;
稀疏化选择模块,用于采用最大稀疏化指标准则根据窄带增强包络谱选择最优窄带增强包络谱;
故障诊断模块,用于根据滚动轴承的故障特征频率对比各轴承元件的最优窄带增强包络谱,判断滚动轴承故障类型。
10.一种基于窄带增强包络谱的滚动轴承故障诊断设备,其特征在于,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如权利要求1至8任一项所述的基于窄带增强包络谱的滚动轴承故障诊断方法的步骤。
CN202111101709.7A 2021-09-18 2021-09-18 一种基于窄带增强包络谱的滚动轴承故障诊断方法及系统 Pending CN113822193A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111101709.7A CN113822193A (zh) 2021-09-18 2021-09-18 一种基于窄带增强包络谱的滚动轴承故障诊断方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111101709.7A CN113822193A (zh) 2021-09-18 2021-09-18 一种基于窄带增强包络谱的滚动轴承故障诊断方法及系统

Publications (1)

Publication Number Publication Date
CN113822193A true CN113822193A (zh) 2021-12-21

Family

ID=78922644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111101709.7A Pending CN113822193A (zh) 2021-09-18 2021-09-18 一种基于窄带增强包络谱的滚动轴承故障诊断方法及系统

Country Status (1)

Country Link
CN (1) CN113822193A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116558828A (zh) * 2023-07-10 2023-08-08 昆明理工大学 基于自相关系数稀疏度特征的滚动轴承健康状态评估方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111222289A (zh) * 2020-01-10 2020-06-02 燕山大学 基于数据-模型驱动的k-svd的滚动轴承冲击性故障诊断方法
AU2020103681A4 (en) * 2020-11-26 2021-02-04 Anhui University Of Technology Rolling Bearing Fault Diagnosis Method Based on Fourier Decomposition and Multi-scale Arrangement Entropy Partial Mean Value
CN112487882A (zh) * 2020-11-13 2021-03-12 西南交通大学 一种基于谱相干生成非稀疏指标指导的增强包络谱的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111222289A (zh) * 2020-01-10 2020-06-02 燕山大学 基于数据-模型驱动的k-svd的滚动轴承冲击性故障诊断方法
CN112487882A (zh) * 2020-11-13 2021-03-12 西南交通大学 一种基于谱相干生成非稀疏指标指导的增强包络谱的方法
AU2020103681A4 (en) * 2020-11-26 2021-02-04 Anhui University Of Technology Rolling Bearing Fault Diagnosis Method Based on Fourier Decomposition and Multi-scale Arrangement Entropy Partial Mean Value

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONG WANG 等: "A simple and fast guideline for generating enhanced/squared envelope spectra from spectral coherence for bearing fault diagnosis", 《MECHANICAL SYSTEMS AND SIGNAL PROCESSING》, vol. 122, pages 754 - 768, XP085582198, DOI: 10.1016/j.ymssp.2018.12.055 *
代绍铖 等: "基于谱相干滤波冲击增强的轴承故障诊断", 《电子测量与仪器学报》, vol. 35, no. 5, pages 55 - 61 *
陈丙炎 等: "最优解调频带识别及其在滚动轴承故障诊断中的应用", 《机车电传动》, no. 270, pages 137 - 142 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116558828A (zh) * 2023-07-10 2023-08-08 昆明理工大学 基于自相关系数稀疏度特征的滚动轴承健康状态评估方法
CN116558828B (zh) * 2023-07-10 2023-09-15 昆明理工大学 基于自相关系数稀疏度特征的滚动轴承健康状态评估方法

Similar Documents

Publication Publication Date Title
Li et al. Application of bandwidth EMD and adaptive multiscale morphology analysis for incipient fault diagnosis of rolling bearings
Smith et al. Optimal demodulation-band selection for envelope-based diagnostics: A comparative study of traditional and novel tools
Sharma et al. Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed
Cong et al. Short-time matrix series based singular value decomposition for rolling bearing fault diagnosis
He et al. Optimized minimum generalized Lp/Lq deconvolution for recovering repetitive impacts from a vibration mixture
CN112001314A (zh) 变速提升机的早期故障检测方法
Klausen et al. Multi-band identification for enhancing bearing fault detection in variable speed conditions
CN206504869U (zh) 一种滚动轴承故障诊断装置
Barbini et al. Phase editing as a signal pre-processing step for automated bearing fault detection
CN108760316A (zh) 变分模态分解的变参信息融合方法
CN108572075A (zh) 基于小波包能量谱和调制双谱分析的滚动轴承故障诊断方法
CN109029999B (zh) 基于增强调制双谱分析的滚动轴承故障诊断方法
CN111122161B (zh) 一种基于fast kurtogram和深度残差学习的变工况轴承故障诊断方法
Liu et al. An online bearing fault diagnosis technique via improved demodulation spectrum analysis under variable speed conditions
CN108444715A (zh) 轴承状态诊断方法、装置、存储介质及电子设备
Zhang et al. Improved local cepstrum and its applications for gearbox and rolling bearing fault detection
CN112067297B (zh) 一种轴承故障特征提取方法
CN110163190A (zh) 一种滚动轴承故障诊断方法及装置
CN113125135A (zh) 旋转机械的故障诊断方法、存储介质及电子设备
Shi et al. The VMD-scale space based hoyergram and its application in rolling bearing fault diagnosis
CN113822193A (zh) 一种基于窄带增强包络谱的滚动轴承故障诊断方法及系统
Sousa et al. Robust cepstral-based features for anomaly detection in ball bearings
Sun et al. Application of a novel improved adaptive CYCBD method in gearbox compound fault diagnosis
Gowid et al. Robustness analysis of the FFT-based segmentation, feature selection and machine fault identification algorithm
Wang et al. A novel time-frequency analysis method for fault diagnosis based on generalized S-transform and synchroextracting transform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination