CN113813382A - 氧化石墨烯基氮三乙酸-铈配合物的制备方法及其应用 - Google Patents

氧化石墨烯基氮三乙酸-铈配合物的制备方法及其应用 Download PDF

Info

Publication number
CN113813382A
CN113813382A CN202111090894.4A CN202111090894A CN113813382A CN 113813382 A CN113813382 A CN 113813382A CN 202111090894 A CN202111090894 A CN 202111090894A CN 113813382 A CN113813382 A CN 113813382A
Authority
CN
China
Prior art keywords
graphene oxide
nitrilotriacetic acid
nta
cerium complex
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111090894.4A
Other languages
English (en)
Inventor
冀海伟
康晓霞
胡浩璐
吴丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202111090894.4A priority Critical patent/CN113813382A/zh
Publication of CN113813382A publication Critical patent/CN113813382A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/244Lanthanides; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/44Elemental carbon, e.g. charcoal, carbon black
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Abstract

本发明公开了一种氧化石墨烯基氮三乙酸‑铈配合物的制备方法及其应用。首先,采用将氧化石墨烯(GO)与氮三乙酸(NTA)反应使其羧基化,并结合上铈离子(Ce4+)形成氧化石墨烯与铈的纳米复合物(GO‑NTA‑Ce)。GO‑NTA‑Ce是具有类DNase活性人工酶,对细菌被膜胞外基质中重要组分eDNA表现出高的剪切能力。当位于细菌相关感染位点时,GO‑NTA‑Ce能够长时间抑制生物被膜的形成,并且可有效分散不同年龄的已形成的生物膜。除了Ce介导的类DNase活性作用外,近红外光照射GO‑NTA‑Ce可产生局部高热杀死受被膜保护的细菌。石墨烯本身通过物理损伤和化学损伤发挥其抗菌作用。本发明能通过类DNase酶特性、光热治疗和石墨烯广谱抗菌的三重作用,有效地根除耐药细菌生物被膜感染,具有治疗MDR细菌生物被膜感染的巨大潜力。

Description

氧化石墨烯基氮三乙酸-铈配合物的制备方法及其应用
技术领域
本发明属于纳米生物医学领域,具体涉及一种氧化石墨烯基氮三乙酸-铈配合物(GO-NTA-Ce)的纳米酶抗细菌生物被膜感染平台。
背景技术
在过去几十年以来,细菌感染性疾病已经成为世界上最大的健康问题之一,引起了人们持续而广泛的关注。与细菌的战斗中,医疗水平不断提高的同时,细菌耐药性的问题也呈现扩大化。值得注意的是,与浮游细菌相比,细菌生物膜的形成,已成为更普遍的耐药性感染的原因。其中,细胞外DNA(eDNA)参与生物膜的形成发挥了关键作用。增加细胞聚集的强度和参与生物膜的形成,结构稳定及其过程中细胞运动的协调,对抗生素的耐药性发展以及遗传性状的传播。因此,锚定eDNA这一关键靶点,并受到天然DNase的解离机制和分子结构的启发,化学家们最近努力构建了大量具有高催化转化率和稳定性的廉价的酶模拟物。可长时间地有效防止生物膜的形成,并良好地显示出分散了已成熟的顽固生物膜基质,比单一的天然酶具有更好的治疗能力。
GO-NTA-Ce纳米酶平台能够通过类DNase酶特性、光热治疗和石墨烯广谱抗菌的三重作用,有效地根除耐药细菌生物被膜感染,具有治疗MDR细菌生物被膜感染的良好前景。
发明内容
发明目的:本发明提供一种氧化石墨烯基氮三乙酸-铈配合物的纳米酶抗细菌生物被膜感染平台,采用较为先进的方法制备氧化石墨烯。然后,进一步将氧化石墨烯与氮三乙酸反应使其羧基化,并结合上含铈的化合物,通过简易的层层递进的方法即可形成覆盖多个Ce配合物的GO(氧化石墨烯)纳米酶平台。当位于细菌相关感染位点时,GO-NTA-Ce能够长时间抑制生物被膜的形成,并且可有效分散不同年龄的已形成的生物膜。除了Ce介导的类DNase活性作用外,近红外激光照射GO-NTA-Ce可产生局部高热杀死受被膜保护的细菌。此外,石墨烯本身也是一种新型的绿色广谱抗菌材料,可通过物理损伤(如用其尖锐的边缘与细菌膜直接接触和脂质分子的破坏性提取)和化学损伤(由氧化应激引起的活性氧产生和电荷转移)发挥其抗菌作用。
技术方案:本发明解决其技术问题所采用的技术方案是:一种氧化石墨烯基氮三乙酸-铈配合物的纳米酶抗细菌生物被膜感染平台,包含有如下步骤:
(1)GO-NTA-Ce纳米酶的制备;将30-50mg氧化石墨烯纳米片分散在10-20mL去离子水中,然后超声处理1-2h,形成均匀的悬浮液。取0.5-1mL悬浮液与50-100mg EDC置于10-30mM的MES缓冲液中反应10-20min,为了更稳定,我们加入NHS反应1-3h来固化羧基。然后,加入2-8mg NTA(氮三乙酸)反应至24-36h后,离心收集沉淀物。用去离子水清洗1-3次后,产品被冷冻干燥使用。最后,为了在透射电子显微镜下观察其形貌以及与细菌的相互作用,取1-10μL浓度为10-200μg·mL-1的GO-NTA-Ce纳米酶制作样品。
(2)对成熟生物被膜较好的降解能力;将20-200μL浓度为20-100μg·mL-1的GO-NTA-Ce纳米酶与生物被膜共孵育在24孔板上;在37℃孵育6-12h后,NIR处理组进一步暴露于808nm(2-8W·cm-2)激光下6-10min。最后,采用活/死染色法与结晶紫染色法检测对成熟生物被膜的降解程度。
(3)动物体内感染性被膜的清除;将感染小鼠局部接种50-100μL含有50-200μg·mL-1的GO-NTA-Ce纳米酶,接种5-10h后近红外光照射(808nm,2-8W·cm-2,6-10min)。使用红外热成像仪监测感染部位脓肿的温度。治疗后第6-18天,对脓肿进行活检并拍照。
有益效果:本发明的具体优势如下:
(1)本发明采用的GO-NTA-Ce的制备方法简单,成本低,功能多样,具有类DNase酶特性、光热治疗和石墨烯广谱抗菌的三重能力;
(2)本发明中GO-NTA-Ce能够长时间抑制生物被膜的形成,并且可有效分散不同年龄的已成熟的生物被膜;
(3)本发明中将物理破坏、光热治疗和化学降解相结合,细菌生物被膜破坏完全;
(4)本发明材料低毒,生物相容性较好;
(5)本发明使用操作简单,可使用性强。
附图说明
图1是本发明的GO-NTA-Ce纳米酶的TEM图;
图2是本发明的GO-NTA-Ce纳米酶包裹/破坏细菌细胞膜的TEM图;
图3是本发明的GO-NTA-Ce纳米酶对成熟生物被膜的降解程度示意图;紫色为结晶紫染色的残留细菌被膜;
图4是本发明的GO-NTA-Ce纳米酶降解成熟生物被膜效果的活/死细菌荧光显微镜图片;绿色和红色分别代表活菌和死菌;
图5是本发明应用实例1中使用红外热成像仪监测感染部位脓肿的温度的效果示意图;
图6是本发明应用实例2中对脓肿进行活检并拍照的示意图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,以使本领域的技术人员能够更好的理解本发明的优点和特征,从而对本发明的保护范围做出更为清楚的界定。本发明所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
具体实施例1
(1)GO-NTA-Ce纳米酶的制备;将30mg氧化石墨烯纳米片分散在10mL去离子水中,然后超声处理1h,形成均匀的悬浮液。取0.8mL悬浮液与50mg EDC置于10mM的MES缓冲液中反应10min,为了更稳定,我们加入NHS反应1h来固化羧基。然后,加入2mg NTA反应至24h后,离心收集沉淀物。用去离子水清洗1次后,产品被冷冻干燥使用。最后,为了在透射电子显微镜下观察其形貌以及与细菌的相互作用,取2μL浓度为10μg·mL-1的GO-NTA-Ce纳米酶制作样品。
(2)对成熟生物被膜较好的降解能力;将100μL浓度为50μg·mL-1的GO-NTA-Ce纳米酶与生物被膜共孵育在24孔板上;在37℃孵育6h后,NIR处理组进一步暴露于808nm(6W·cm-2)激光下10min。最后,采用活/死染色法与结晶紫染色法检测对成熟生物被膜的降解程度。
(3)动物体内感染性被膜的清除;将感染小鼠局部接种50μL含有50μg·mL-1的GO-NTA-Ce纳米酶,接种8h后近红外光照射(808nm,2W·cm-2,6min)。使用红外热成像仪监测感染部位脓肿的温度。治疗后第6天,对脓肿进行活检并拍照。
具体实施例2
(1)GO-NTA-Ce纳米酶的制备;合出氧化石墨烯纳米片后,将40mg氧化石墨烯纳米片分散在15mL去离子水中,然后超声处理2h,形成均匀的悬浮液。取1mL悬浮液与80mg EDC置于15mM的MES缓冲液中反应15min,为了更稳定,我们加入NHS反应2h来固化羧基。然后,加入3mg NTA反应至26h后,离心收集沉淀物。用去离子水清洗2次后,产品被冷冻干燥使用。最后,为了在透射电子显微镜下观察其形貌以及与细菌的相互作用,取5μL浓度为100μg·mL-1的GO-NTA-Ce纳米酶制作样品。
(2)对成熟生物被膜较好的降解能力;将150μL浓度为100μg·mL-1的GO-NTA-Ce纳米酶与生物被膜共孵育在24孔板上;在37℃孵育10h后,NIR处理组进一步暴露于808nm(4W·cm-2)激光下8min。最后,采用活/死染色法与结晶紫染色法检测对成熟生物被膜的降解程度。
(3)动物体内感染性被膜的清除;将感染小鼠局部接种80μL含有100μg·mL-1的GO-NTA-Ce纳米酶,接种10h后近红外光照射(808nm,4W·cm-2,8min)。使用红外热成像仪监测感染部位脓肿的温度。治疗后第10天,对脓肿进行活检并拍照。
显然,上述实施例仅仅是为了清楚地说明所做的举例,而非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此引出的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (8)

1.一种氧化石墨烯基氮三乙酸-铈配合物的制备方法,其特征在于,将氧化石墨烯与氮三乙酸反应使其羧基化,并结合上铈离子形成GO与Ce的纳米复合物-氧化石墨烯基氮三乙酸-铈配合物。
2.根据权利要求1所述的一种氧化石墨烯基氮三乙酸-铈配合物的制备方法,其特征在于,包括如下步骤:
步骤1:将30-50mg氧化石墨烯纳米片分散在10-20mL去离子水中,然后超声处理1-2h,形成均匀的悬浮液;
步骤2:取0.5-1mL悬浮液与50-100mg EDC置于10-30mM的MES缓冲液中反应10-20min;
步骤3:加入2-8mg NTA反应至24-36h后,离心收集沉淀物;
步骤4:用去离子水清洗1-3次后,冷冻干燥得到氧化石墨烯基氮三乙酸-铈配合物。
3.根据权利要求1所述的一种氧化石墨烯基氮三乙酸-铈配合物的制备方法,其特征在于,步骤2得到的反应物中加入NHS反应1-3h来固化羧基。
4.利用权利要求1-3任一所述的氧化石墨烯基氮三乙酸-铈配合物降解成熟生物被膜的方法,其特征在于,将氧化石墨烯基氮三乙酸-铈配合物与生物被膜共孵育在24孔板上;在37℃孵育6-12h后,用近红外激光照射6-10min。
5.根据权利要求4所述的方法,其特征在于,所述氧化石墨烯基氮三乙酸-铈配合物的浓度为20-100μg·mL-1,体积为20-200μL。
6.根据权利要求4所述的方法,其特征在于,所述近红外激光的波长为808nm,功率密度为2-8W·cm-2
7.利用权利要求1-3任一所述的氧化石墨烯基氮三乙酸-铈配合物清除动物体内感染性被膜的方法,其特征在于,将感染动物局部接种氧化石墨烯基氮三乙酸-铈配合物,接种5-10h后近红外光照射。
8.根据权利要求7所述的方法,其特征在于,所述氧化石墨烯基氮三乙酸-铈配合物的浓度为50-200μg·mL-1,体积为50-100μL。
CN202111090894.4A 2021-09-17 2021-09-17 氧化石墨烯基氮三乙酸-铈配合物的制备方法及其应用 Pending CN113813382A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111090894.4A CN113813382A (zh) 2021-09-17 2021-09-17 氧化石墨烯基氮三乙酸-铈配合物的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111090894.4A CN113813382A (zh) 2021-09-17 2021-09-17 氧化石墨烯基氮三乙酸-铈配合物的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN113813382A true CN113813382A (zh) 2021-12-21

Family

ID=78922269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111090894.4A Pending CN113813382A (zh) 2021-09-17 2021-09-17 氧化石墨烯基氮三乙酸-铈配合物的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113813382A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111214489A (zh) * 2020-03-13 2020-06-02 中国科学院大学温州研究院(温州生物材料与工程研究所) 一种抗菌络合物及其在抑制细菌生物被膜方面的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111214489A (zh) * 2020-03-13 2020-06-02 中国科学院大学温州研究院(温州生物材料与工程研究所) 一种抗菌络合物及其在抑制细菌生物被膜方面的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKMAL S. GABALLA等: "Spectroscopic, Thermal Studies and Antimicrobial Activity of Nitrilotriacetates, (NTA)–Ce(III) and –Ce(VI) Complexes" *
HAOLU HU等: "A DNase-mimetic artificial enzyme for the eradication of drug-resistant bacterial biofilm infections" *
TANNAZ SADEGHI RAD等: "Chromium and cerium co-doped magnetite/reduced graphene oxide nanocomposite as a potent antibacterial agent against S. aureus" *

Similar Documents

Publication Publication Date Title
Ji et al. Enhanced eradication of bacterial/fungi biofilms by glucose oxidase-modified magnetic nanoparticles as a potential treatment for persistent endodontic infections
Shi et al. An acidity-responsive polyoxometalate with inflammatory retention for NIR-II photothermal-enhanced chemodynamic antibacterial therapy
CN104857551B (zh) 一种含银抗菌敷料及制备方法
WO2019169873A1 (zh) 一种治疗伤口感染及促愈合的纳米抗菌凝胶及其制备方法
Hu et al. A DNase-mimetic artificial enzyme for the eradication of drug-resistant bacterial biofilm infections
CN108822838B (zh) 铜掺杂碳量子点的制备方法及应用
CN111202868B (zh) 用于制备角蛋白凝胶敷料的组合物及其制备方法和应用
CN112156171A (zh) 光响应性释放万古霉素的锌有机框架复合材料的制备方法及其应用
CN106362202A (zh) 一种具有微电流和药物缓释作用的水凝胶及制备方法与应用
Zong et al. Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication
JP2020517735A (ja) ざ瘡を治療するためのプロピオニバクテリウムアクネス(Propionibacterium acnes)バクテリオファージを含む組成物
Liu et al. NIR-II-enhanced single-atom-nanozyme for sustainable accelerating bacteria-infected wound healing
CN110974961B (zh) 一种基于酶降解增强光热清除细菌生物膜的纳米复合材料及其制备方法与应用
Gao et al. Ionic liquids enable the preparation of a copper-loaded gel with transdermal delivery function for wound dressings
Ku et al. Lattice strain engineering of Ti3C2 narrows band gap for realizing extraordinary sonocatalytic bacterial killing
Wang et al. Bacteria-triggered radical anions amplifier of pillar [5] arene/perylene diimide nanosheets with highly selective antibacterial activity
Yu et al. Ultrasound-induced abiotic and biotic interfacial electron transfer for efficient treatment of bacterial infection
He et al. Polymetallic Hybrid Nanoplatform with Hyperthermia‐Amplified Dual Enzyme‐Like Activities for Efficient Speeded‐Up Bacterially Infected Wound Healing
Weng et al. Traditional Herb (Moxa) Modified Zinc Oxide Nanosheets for Quick, Efficient and High Tissue Penetration Therapy of Fungal Infection
Lu et al. Multifunctional carbon quantum dots decorated self-healing hydrogel for highly effective treatment of superbug infected wounds
CN115770195B (zh) 一种稳定的祛痘组合物及其制备方法
CN113813382A (zh) 氧化石墨烯基氮三乙酸-铈配合物的制备方法及其应用
Li et al. Construction of mPt/ICG-αA nanoparticles with enhanced phototherapeutic activities for multidrug-resistant bacterial eradication and wound healing
Xu et al. Two-dimensional NbS2 nanosheets with hyperthermia for killing bacteria to promote infected wound healing
Li et al. Enhanced cavitation dose and reactive oxygen species production in microbubble-mediated sonodynamic therapy for inhibition of Escherichia coli and biofilm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211221