CN113807576B - 基于多源数据关联的新能源汽车调度方法 - Google Patents

基于多源数据关联的新能源汽车调度方法 Download PDF

Info

Publication number
CN113807576B
CN113807576B CN202111001538.0A CN202111001538A CN113807576B CN 113807576 B CN113807576 B CN 113807576B CN 202111001538 A CN202111001538 A CN 202111001538A CN 113807576 B CN113807576 B CN 113807576B
Authority
CN
China
Prior art keywords
customer
new energy
automobile
client
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111001538.0A
Other languages
English (en)
Other versions
CN113807576A (zh
Inventor
詹志辉
邓壮杰
梁迪
张军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202111001538.0A priority Critical patent/CN113807576B/zh
Publication of CN113807576A publication Critical patent/CN113807576A/zh
Application granted granted Critical
Publication of CN113807576B publication Critical patent/CN113807576B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • G06Q50/40

Abstract

本发明公开了一种基于多源数据关联的新能源汽车调度方法,首先在新能源汽车服务场景的基础上建立调度模型,与传统面向出租车调度的模型不同的是,该调度模型关联了汽车电量和充电设施等多源交通数据。为了求解所提出的调度模型,应用一种高效的蚁群系统算法。该算法在蚁群系统的基础上,集成预选择策略和局部剪枝策略,以降低在分配过程中所考虑的汽车数量,从而提高客户满意度和计算效率。经过在不同调度场景下的实验结果证明,与先来先服务方法和其他现有调度方法相比,该新能源汽车调度优化方法可以获得更高的客户满意度,并可以有效降低计算时间,是解决新能源汽车调度问题的有效方法。

Description

基于多源数据关联的新能源汽车调度方法
技术领域
本发明涉及智能交通和智能计算技术领域,具体涉及一种基于多源数据关联的新能源汽车调度方法。
背景技术
随着日益增长的出行需要与移动互联网技术的发展,网上打车服务已在当今日常生活中变得十分流行。同时,环保政策促使新能源汽车的兴起,使得面向新能源汽车的网上预约服务成为一种新趋势。与传统的燃油汽车不同,新能源汽车特别是电动汽车,主要依赖充电桩提供能量,有不同的充电模式,比如快速充电和常规充电。在实际的交通规划中,需要考虑诸如充电设施和电池特性等要素,为面向传统燃油汽车的规划和设计方法带来了新的挑战。比如,由于充电功率的限制,无论是快速充电还是常规充电都需要考虑充电时间。然而,燃油汽车的加油时间非常短,在实际运营中可以忽略不计。
汽车调度通常由一个中心化的服务平台执行,以便于车辆资源的统一管理。这种全局的调度模式为客户提供安全性和高效率之外,也给调度中心带来了沉重的计算负担,需要一种可靠的全局化调度方法来支持日常服务请求的分配。现有文献中的汽车调度方法主要面向传统燃油出租车。在为订单执行汽车的调度时,仅仅考虑了汽车和客户的位置。一些过去的工作基于一种先来先服务的方法,当一个请求带来时,调度系统其分配一辆最近或者最短行程时间的出租车,而不考虑该分配是否会影响后续的请求。先来先服务方法可以减少响应时间,但不能保证在全局层面上获得所有请求的最佳分配方案。在一个特定调度域内,调度系统可以同时处理小时间窗(例如5秒)内到达的请求。
作为一种重要的进化优化算法,蚁群优化以其适应能力和全局搜索能力而著称。作为一种蚁群优化的变体,蚁群系统最初由Dorigo和Gambardella提出来解决一种经典的组合优化问题—旅行商问题。许多研究表明,蚁群系统算法可以有效地求解现实世界的组合优化问题,比如云资源调度、车辆路由问题、出租车调度等。由于新能源汽车调度可以被建模为类似于出租车调度(即出租车-乘客匹配)的组合优化问题,因此蚁群系统可以被应用于求解该问题。同时,由于其更为复杂的多源数据约束因素,新能源汽车调度相对传统的燃油出租车调度更具挑战性。因此,需要设计一种更为有效的蚁群系统算法。
发明内容
本发明的目的是为了解决现有技术中的上述缺陷,提供一种基于多源数据关联的新能源汽车调度方法,在新能源汽车服务场景的基础上建立调度模型,该调度模型关联了汽车电量和充电设施等多源交通数据。同时,将蚁群系统算法应用到新能源汽车调度上,并集成预选择策略和局部剪枝策略,以降低蚁群系统算法运行时间,提高新能源汽车调度优化方法性能。
本发明的目的可以通过采取如下技术方案达到:
一种基于多源数据关联的新能源汽车调度方法,所述调度优化方法包括以下步骤:
S1、构建新能源汽车调度模型,定义汽车vj满足客户ci电量约束的两个场景,其中,场景一:汽车本身有足够的电量将客户ci送至目的地,表示为
D(ej)≥d(ci,vj)+d(ci,ti) (1)
其中D(ej)是电量ej可支持的行驶距离,d(ci,vj)是客户ci和汽车vj之间的距离,d(ci,ti)是客户ci的出发地和目的地ti之间的距离;
场景二:在电量不足的情况下,去往目的地ti的途中存在充电桩,并且所需要的充电时间不超过客户可容忍的时间限制tl:
E(ti)=1 (2a)
Figure BDA0003235833390000031
其中,E(ti)=1表示去往的路上存在充电桩,k(cr)表示新能源汽车每单位时间的充电量可支持的行驶距离;
以最大化总体的客户满意度为优化目标,定义两个层级进行度量客户满意度,一是请求接受率,二是客户等待时间,同时需要满足一定的约束条件
Figure BDA0003235833390000032
Figure BDA0003235833390000033
s.t.
Figure BDA0003235833390000034
Figure BDA0003235833390000035
Figure BDA0003235833390000036
其中N和M分别表示客户数和新能源汽车数,xij表示是否将汽车vj分配给客户ci,wt(ci,vj)是客户的等待时间,约束条件(6)和(7)保证最多只可以将一个请求分配给一个汽车和一个汽车分配给一个请求,客户的等待时间包括汽车vj到达客户ci位置的行驶时间以及可能的充电时间,由以下公式计算
Figure BDA0003235833390000041
其中“NA”表示对于不满足电量约束条件的客户-汽车对,不将该汽车视为候选车辆,无需计算等待时间;
定义客户与新能源汽车之间的“逻辑距离”,“逻辑距离”的计算公式为
Figure BDA0003235833390000042
公式(9)表示,如果汽车vj满足客户ci的电量约束,则逻辑距离取决于客户的等待时间wt(ci,vj)和车速s,否则,将逻辑距离设置为一个较大的惩罚值;
S2、初始化设置,使用先来先服务方法构造调度结果πFCFS,然后设置初始信息素τ0
τ0=(M·Lnn)-1 (10)
Figure BDA0003235833390000043
其中N和M分别为客户请求数和新能源汽车数,xij表示是否将客户ci分配给汽车vj,ld(ci,vj)是客户ci和汽车vj之间的逻辑距离,min(N,M)表示N和M间的较小值,f1评估解可以满足的请求数,l是调度域的边长;
S3、执行预选择策略,从初始的M辆新能源汽车中预选择出K×N辆,其中K是系数;
S4、解构造之前,随机打乱客户的分配顺序,在构造的每一步中,应用局部剪枝策略,先计算出每个客户对应的候选汽车集,以及候选汽车分配给该客户的概率,然后,蚁群系统算法根据状态转移规则为相应的客户在其附近选择一辆合适的汽车;
S5、对每个解中已分配的客户-汽车对执行局部信息素更新规则;
S6、适应值评估,评估蚁群系统算法中每只蚂蚁的适应值并记录最优解,综合考虑请求接受率和客户等待时间的优化目标,提出两层级的适应值函数:
Figure BDA0003235833390000051
Figure BDA0003235833390000052
其中,N和M分别表示客户数和新能源汽车数,xij表示是否将汽车vj分配给客户ci,wt(ci,vj)是客户的等待时间,f1(S)是调度结果S中被满足的请求数,新能源汽车调度的首要任务就是最大化客户-汽车之间的匹配成功率,f2(S)是所有被接受请求的总体等待时间,在评估两个调度结果时,首先比较两个调度结果的f1(S),值较大的解更好;如果两个调度结果具有相同的f1(S)值,则比较两个调度结果的f2(S),并且f2(S)值较大的解更好;
S7、找出历史最优解,并执行全局信息素更新规则。
S8、结束条件:当运行达到最大代数G时,蚁群系统算法终止;否则,转到步骤S4并继续进行优化。
进一步地,所述预选择策略的执行过程如下:对于第一个客户或请求,选择距其逻辑距离最短的K辆汽车,然后,从其余M–K辆汽车中选择与第二个客户的距离最短的其他K辆汽车,以此类推,最终选择K×N辆汽车。
进一步地,所述局部剪枝策略的执行过程中,在为客户ci分配汽车时,只考虑在距离客户ci逻辑距离最短的T辆汽车,用Ti表示客户ci对应的候选汽车集,在应用预选择策略和局部剪枝策略之后,蚁群系统算法中蚂蚁在为客户ci分配汽车时,其候选汽车集为
Figure BDA0003235833390000061
同时[D(ej)≥d(ci,vj)+d(ci,ti)或者
Figure BDA0003235833390000062
同时j∈Ti,1≤j≤K·N}
其中
Figure BDA0003235833390000063
表示汽车vj未被分配,ej表示vj的剩余电量,D(ej)是剩余电量ej可以支持的行驶距离,d(ci,vj)是客户ci和汽车vj之间的距离,d(ci,ti)是客户ci的出发地和目的地ti之间的距离,E(ti)=1表示去往的路上存在充电桩,k(cr)表示每单位时间充电量可支持的行驶距离,tl表示客户可以容忍的时间限制。
本发明相对于现有技术具有如下的优点及效果:
(1)使用蚁群系统算法关联多源数据求解调度模型:由于新能源汽车调度模型是一个NP难的离散组合优化问题,需要综合考虑汽车电量和充电设施等多源交通数据,考虑使用蚁群系统算法进行求解。蚂蚁寻路的每一步,对应为每个客户寻找一辆合适的新能源汽车。具体过程为首先计算出每个客户对应的候选汽车集,以及候选汽车分配给该客户的概率。然后,蚂蚁根据状态转移规则选择一辆汽车。
(2)预选择策略:由于现实场景通常会出现可用的汽车数大于客户请求数的情况,为了缩短响应时间,可以在蚁群系统算法运行之前,对可用的汽车进行预选择,即筛选出距离客户比较近并且剩余电量相对较多的汽车。在后续的蚁群系统算法过程中,只有被预选择出来的汽车才会参与匹配。
(3)局部剪枝策略:为了进一步降低蚂蚁构造可行解过程的时间,可以在每一步为客户挑选汽车时,只考虑该客户附近的汽车,而不需要考虑所有的可用汽车。以此降低候选汽车集的空间大小,减少计算时间。
附图说明
图1是本发明实施例中新能源汽车调度示例图;
图2是本发明实施例中基于多源数据关联的新能源汽车调度方法的流程图;
图3是本发明实施例中预选择策略示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
本实施例公开了一种基于多源数据关联的新能源汽车调度方法,主要包括以下几个步骤:
(1)构建新能源汽车调度模型
考虑一个现实场景,在某个地理区域内分布着多个新能源汽车和充电桩。每个桩的位置是固定的,另外可以通过GPS卫星实时跟踪新能源汽车的位置。当一些客户在一个给定时间窗内请求新能源汽车服务时,这些带有当前位置和目的地信息的请求通过无线通信网络发送到调度中心。调度中心的任务是将新能源汽车分配给所有客户请求,以最大程度地提高总体的客户满意度。图1中描述了一个新能源汽车分配方案的示例,其中每个客户都与最近的新能源汽车匹配。
由于新能源汽车的能量供应主要来源于电力,因此在调度过程中有必要考虑汽车的剩余电量是否可以将客户送到目的地。为了详细说明电量约束,定义了汽车vj满足客户ci电量约束的两个场景。
1)汽车本身有足够的电量将客户ci送至目的地,表示为
D(ej)≥d(ci,vj)+d(ci,ti) (1)
其中D(ej)是电量ej可支持的行驶距离,d(ci,vj)是客户ci和汽车vj之间的距离,d(ci,ti)是客户ci的出发地和目的地ti之间的距离。
2)在电量不足的情况下,去往目的地ti(即客户ci的目的地)的途中存在充电桩,并且所需要的充电时间不超过客户可容忍的时间限制tl:
E(ti)=1 (2a)
Figure BDA0003235833390000081
其中,E(ti)=1表示去往的路上存在充电桩,k(cr)表示新能源汽车每单位时间的充电量可支持的行驶距离。
在本实施例中,要优化的目标是最大化总体的客户满意度,可以从两个层级进行度量。一是请求接受率,即被接受的请求数越多,客户的满意度越高;二是客户等待时间,即越短的等待时间意味着越高的客户满意度。
同时需要满足一定的约束条件
Figure BDA0003235833390000082
Figure BDA0003235833390000083
s.t.
Figure BDA0003235833390000084
Figure BDA0003235833390000085
Figure BDA0003235833390000086
其中N和M分别表示客户数和新能源汽车数,xij表示是否将汽车vj分配给客户ci,wt(ci,vj)是客户的等待时间,约束条件(6)和(7)保证最多只可以将一个请求分配给一个汽车和一个汽车分配给一个请求。客户的等待时间包括汽车vj到达客户ci位置的行驶时间以及可能的充电时间,由以下公式计算
Figure BDA0003235833390000091
其中“NA”表示对于不满足电量约束条件的客户-汽车对,不将该汽车视为候选车辆,因此无需计算等待时间。
为了更加直观地表示满意度的度量,定义客户与新能源汽车之间的“逻辑距离”,它结合了客户和新能源汽车之间的地理距离以及充电时间。逻辑距离的计算为
Figure BDA0003235833390000092
公式(9)表示,如果汽车vj满足客户ci的电量约束,则它们之间的逻辑距离取决于客户的等待时间wt(ci,vj)和车速s。否则,将逻辑距离设置为一个较大的惩罚值。
(2)基于多源数据关联的新能源汽车调度方法
图2给出了本发明算法的整体流程图。下面就流程图的内容分步描述整个算法的具体实施方式:
1)初始化设置
使用先来先服务方法构造调度结果πFCFS,然后设置初始信息素τ0
τ0=(M·Lnn)-1 (10)
Figure BDA0003235833390000101
其中N和M分别为客户请求数和新能源汽车数,xij表示是否将客户ci分配给汽车vj,ld(ci,vj)是客户ci和汽车vj之间的逻辑距离,min(N,M)表示N和M间的较小值,f1评估解可以满足的请求数,l是调度域的边长。
2)执行预选择策略,从初始的M辆新能源汽车中预选择出K×N辆,其中K是系数。
在构建解之前,对初始的新能源汽车执行预选择策略,以减少参与分配的新能源汽车的数量。其过程如下:对于第一个客户或请求,选择距其逻辑距离最短的K辆汽车,然后,从其余M–K辆汽车中选择与第二个客户的距离最短的其他K辆汽车,以此类推。通过这种方式,最终有K×N辆汽车被选择出来,它们具有更多的剩余电量并且在地理上更靠近这些客户。
图3显示了预选择策略的一个示例。为了方便说明,图3中只显示新能源汽车和客户,而忽略充电桩。另外,图3中离客户较近的汽车表示它们之间的逻辑距离较短。在蚁群系统算法进行调度优化过程之前,一些“靠近”(指逻辑距离较短)这些客户的汽车被挑选出来。该过程遵循请求到达调度中心的顺序,对于第一个客户(请求),选择距其逻辑距离最短的K辆汽车,然后,从其余M–K辆汽车中选择与第二个客户的距离最短的其他K辆汽车,以此类推。通过这种方式,最终有K×N辆汽车被选择出来,它们具有更多的剩余电量并且在地理上更靠近这些客户。在后续的蚂蚁搜索过程中,只有这些被预选择的汽车才会参与分配。
3)解构造之前,随机打乱客户的分配顺序。在构造的每一步中,应用局部剪枝策略,先计算出每个客户对应的候选汽车集,以及候选汽车分配给该客户的概率。然后,蚁群系统算法根据状态转移规则为相应的客户在其附近选择一辆合适的汽车。
4)对每个解中已分配的客户-汽车对执行局部信息素更新规则。
5)适应值评估,评估蚁群系统算法中每只蚂蚁的适应值并记录最优解。综合考虑请求接受率和客户等待时间的优化目标,提出两层级的适应值函数:
Figure BDA0003235833390000111
Figure BDA0003235833390000112
其中,N和M分别表示客户数和新能源汽车数,xij表示是否将汽车vj分配给客户ci,wt(ci,vj)是客户的等待时间,f1(S)是调度结果S中被满足的请求数,新能源汽车调度的首要任务就是最大化客户-汽车之间的匹配成功率。f2(S)是所有被接受请求的总体等待时间。在评估两个调度结果时,首先比较两个调度结果的f1(S),值较大的解更好。如果两个调度结果具有相同的f1(S)值,则比较两个调度结果的f2(S),并且f2(S)值较大的解更好。
6)找出历史最优解,并执行全局信息素更新规则。
7)结束条件:当运行达到最大代数G时,蚁群系统算法终止。否则,转到第3)步并继续进行优化。
此外,为了减少蚂蚁在搜索过程中的时间,采用局部剪枝策略。在为客户ci分配汽车时,只考虑在距离客户ci逻辑距离最短的T辆汽车,用Ti表示客户ci对应的候选汽车集。
在应用预选择和局部剪枝策略之后,蚂蚁在为客户ci分配汽车时,其候选汽车集为
Figure BDA0003235833390000121
同时[D(ej)≥d(ci,vj)+d(ci,ti)或者
Figure BDA0003235833390000122
同时j∈Ti,1≤j≤K·N}
其中
Figure BDA0003235833390000123
表示汽车vj未被分配,ej表示vj的剩余电量,D(ej)是剩余电量ej可以支持的行驶距离,d(ci,vj)是客户ci和汽车vj之间的距离,d(ci,ti)是客户ci的出发地和目的地ti之间的距离,E(ti)=1表示去往的路上存在充电桩,k(cr)表示每单位时间充电量可支持的行驶距离,tl表示客户可以容忍的时间限制。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (3)

1.一种基于多源数据关联的新能源汽车调度方法,其特征在于,所述调度方法包括以下步骤:
S1、构建新能源汽车调度模型,定义汽车vj满足客户ci电量约束的两个场景,其中,场景一:汽车本身有足够的电量将客户ci送至目的地,表示为
D(ej)≥d(ci,vj)+d(ci,ti) (1)
其中D(ej)是电量ej可支持的行驶距离,d(ci,vj)是客户ci和汽车vj之间的距离,d(ci,ti)是客户ci的出发地和目的地ti之间的距离;
场景二:在电量不足的情况下,去往目的地ti的途中存在充电桩,并且所需要的充电时间不超过客户可容忍的时间限制tl:
E(ti)=1 (2a)
Figure QLYQS_1
其中,E(ti)=1表示去往的路上存在充电桩,k(cr)表示新能源汽车每单位时间的充电量可支持的行驶距离;
以最大化总体的客户满意度为优化目标,定义两个层级进行度量客户满意度,一是请求接受率,二是客户等待时间,同时需要满足一定的约束条件
Figure QLYQS_2
Figure QLYQS_3
s.t.
Figure QLYQS_4
Figure QLYQS_5
Figure QLYQS_6
其中N和M分别表示客户数和新能源汽车数,xij表示是否将汽车vj分配给客户ci,wt(ci,vj)是客户的等待时间,约束条件(6)和(7)保证最多只可以将一个请求分配给一个汽车和一个汽车分配给一个请求,客户的等待时间包括汽车vj到达客户ci位置的行驶时间以及可能的充电时间,由以下公式计算
Figure QLYQS_7
其中“NA”表示对于不满足电量约束条件的客户-汽车对,不将该汽车视为候选车辆,无需计算等待时间;
定义客户与新能源汽车之间的“逻辑距离”,“逻辑距离”的计算公式为
Figure QLYQS_8
公式(9)表示,如果汽车vj满足客户ci的电量约束,则逻辑距离取决于客户的等待时间wt(ci,vj)和车速s,否则,将逻辑距离设置为一个较大的惩罚值;
S2、初始化设置,使用先来先服务方法构造调度结果πFCFS,然后设置初始信息素τ0
τ0=(M·Lnn)-1 (10)
Figure QLYQS_9
其中N和M分别为客户请求数和新能源汽车数,xij表示是否将客户ci分配给汽车vj,ld(ci,vj)是客户ci和汽车vj之间的逻辑距离,min(N,M)表示N和M间的较小值,f1评估解可以满足的请求数,l是调度域的边长;
S3、执行预选择策略,从初始的M辆新能源汽车中预选择出K×N辆,其中K是系数;
S4、解构造之前,随机打乱客户的分配顺序,在构造的每一步中,应用局部剪枝策略,先计算出每个客户对应的候选汽车集,以及候选汽车分配给该客户的概率,然后,蚁群系统算法根据状态转移规则为相应的客户在其附近选择一辆合适的汽车;
S5、对每个解中已分配的客户-汽车对执行局部信息素更新规则;
S6、适应值评估,评估蚁群系统算法中每只蚂蚁的适应值并记录最优解,综合考虑请求接受率和客户等待时间的优化目标,提出两层级的适应值函数:
Figure QLYQS_10
Figure QLYQS_11
其中,N和M分别表示客户数和新能源汽车数,xij表示是否将汽车vj分配给客户ci,wt(ci,vj)是客户的等待时间,f1(S)是调度结果S中被满足的请求数,新能源汽车调度的首要任务就是最大化客户-汽车之间的匹配成功率,f2(S)是所有被接受请求的总体等待时间,在评估两个调度结果时,首先比较两个调度结果的f1(S),值较大的解更好;如果两个调度结果具有相同的f1(S)值,则比较两个调度结果的f2(S),并且f2(S)值较大的解更好;
S7、找出历史最优解,并执行全局信息素更新规则;
S8、结束条件:当运行达到最大代数G时,蚁群系统算法终止;否则,转到步骤S4并继续进行优化。
2.根据权利要求1所述的基于多源数据关联的新能源汽车调度方法,其特征在于,所述预选择策略的执行过程如下:对于第一个客户或请求,选择距其逻辑距离最短的K辆汽车,然后,从其余M-K辆汽车中选择与第二个客户的距离最短的其他K辆汽车,以此类推,最终选择K×N辆汽车。
3.根据权利要求2所述的基于多源数据关联的新能源汽车调度方法,其特征在于,所述局部剪枝策略的执行过程中,在为客户ci分配汽车时,只考虑在距离客户ci逻辑距离最短的T辆汽车,用Ti表示客户ci对应的候选汽车集,在应用预选择策略和局部剪枝策略之后,蚁群系统算法中蚂蚁在为客户ci分配汽车时,其候选汽车集为
Figure QLYQS_12
同时
Figure QLYQS_13
同时j∈Ti,1≤j≤K·N}
其中
Figure QLYQS_14
表示汽车vj未被分配,ej表示vj的剩余电量,D(ej)是剩余电量ej可以支持的行驶距离,d(ci,vj)是客户ci和汽车vj之间的距离,d(ci,ti)是客户ci的出发地和目的地ti之间的距离,E(ti)=1表示去往的路上存在充电桩,k(cr)表示每单位时间充电量可支持的行驶距离,tl表示客户可以容忍的时间限制。
CN202111001538.0A 2021-08-30 2021-08-30 基于多源数据关联的新能源汽车调度方法 Active CN113807576B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111001538.0A CN113807576B (zh) 2021-08-30 2021-08-30 基于多源数据关联的新能源汽车调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111001538.0A CN113807576B (zh) 2021-08-30 2021-08-30 基于多源数据关联的新能源汽车调度方法

Publications (2)

Publication Number Publication Date
CN113807576A CN113807576A (zh) 2021-12-17
CN113807576B true CN113807576B (zh) 2023-06-20

Family

ID=78894322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111001538.0A Active CN113807576B (zh) 2021-08-30 2021-08-30 基于多源数据关联的新能源汽车调度方法

Country Status (1)

Country Link
CN (1) CN113807576B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578199A (zh) * 2017-08-21 2018-01-12 南京航空航天大学 一种求解二维装载约束物流车辆调度问题的方法
CN108510128A (zh) * 2018-04-11 2018-09-07 华南理工大学广州学院 一种区域电动汽车充电负荷时空分布预测方法
CN109784558A (zh) * 2019-01-11 2019-05-21 浙江工业大学 一种基于蚁群算法的电动汽车充电调度优化方法
CN111178948A (zh) * 2019-12-18 2020-05-19 同济大学 一种共享汽车动态借车实现方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578199A (zh) * 2017-08-21 2018-01-12 南京航空航天大学 一种求解二维装载约束物流车辆调度问题的方法
CN108510128A (zh) * 2018-04-11 2018-09-07 华南理工大学广州学院 一种区域电动汽车充电负荷时空分布预测方法
CN109784558A (zh) * 2019-01-11 2019-05-21 浙江工业大学 一种基于蚁群算法的电动汽车充电调度优化方法
CN111178948A (zh) * 2019-12-18 2020-05-19 同济大学 一种共享汽车动态借车实现方法

Also Published As

Publication number Publication date
CN113807576A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
CN108764777B (zh) 带时间窗的电动物流车调度方法和系统
US10825344B2 (en) System and method for forming a fleet and positioning vehicles in the fleet
CN110533901B (zh) 一种无人驾驶车辆群组的充电调度方法和云管理服务器
Lin et al. An edge computing based public vehicle system for smart transportation
JP7008802B2 (ja) 配車管理装置及び配車管理方法
CN109784523B (zh) 一种基于多目标优化的网约车智能分配订单方法
Seyedyazdi et al. A combined driver-station interactive algorithm for a maximum mutual interest in charging market
JP2020009060A (ja) 車両管理システム及び車両管理方法
CN109670674A (zh) 一种考虑交通网-配电网耦合的电动汽车时空分布充电调度方法
Yu et al. Optimal operations planning of electric autonomous vehicles via asynchronous learning in ride-hailing systems
Dong et al. Dynamic vehicle allocation policies for shared autonomous electric fleets
Asghari et al. Disruption management for the electric vehicle routing problem in a geographically flexible network
CN113807576B (zh) 基于多源数据关联的新能源汽车调度方法
Coninx et al. Anticipatory coordination of electric vehicle allocation to fast charging infrastructure
Zhang et al. Reservation enhanced autonomous valet parking concerning practicality issues
CN111709663A (zh) 一种基于大数据的电动汽车充电场站选址方法
CN110598985A (zh) 一种车辆路径规划方法
Vandael et al. A decentralized approach for public fast charging of electric vehicles using delegate multi-agent systems
CN113222248B (zh) 一种自动驾驶出租车充电桩选择方法
Mariyasagayam et al. Electric vehicle route assistance using forecast on charging station
ELKHALIDI et al. Survey of reservation techniques in smart parking
Perera et al. A hybrid methodology for optimal fleet management in an electric vehicle based flexible bus service
EP4268164A1 (en) Route-based digital service management
CN111709662A (zh) 一种基于大数据的电动汽车充电场站定容方法
McKenna et al. Floating buses: Dynamic route planning and passenger allocation based on real-time demand

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant