CN113804727B - 一种基于电阻抗成像的涡流热成像缺陷重构方法 - Google Patents

一种基于电阻抗成像的涡流热成像缺陷重构方法 Download PDF

Info

Publication number
CN113804727B
CN113804727B CN202111004236.9A CN202111004236A CN113804727B CN 113804727 B CN113804727 B CN 113804727B CN 202111004236 A CN202111004236 A CN 202111004236A CN 113804727 B CN113804727 B CN 113804727B
Authority
CN
China
Prior art keywords
matrix
pixel point
conductivity
current
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111004236.9A
Other languages
English (en)
Other versions
CN113804727A (zh
Inventor
白利兵
张旭
任超
梁一平
张睿恒
段勇
邵晋梁
郑亚莉
程玉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202111004236.9A priority Critical patent/CN113804727B/zh
Publication of CN113804727A publication Critical patent/CN113804727A/zh
Application granted granted Critical
Publication of CN113804727B publication Critical patent/CN113804727B/zh
Priority to US17/897,248 priority patent/US20220412919A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明公开了一种基于电阻抗成像的涡流热成像缺陷重构方法,首先采集加热阶段的热图像序列,通过对热图像序列中的像素点进行曲线拟合,得到温度随时间变换的参考图像,然后从中提取出电流矩阵和磁势矩阵,并根据迭代公式求出满足条件的电导率分布,从而得到表征缺陷的重构图像,实现缺陷形状的识别。

Description

一种基于电阻抗成像的涡流热成像缺陷重构方法
技术领域
本发明属于缺陷检测技术领域,更为具体地讲,涉及一种基于电阻抗成像的涡流热成像缺陷重构方法。
背景技术
涡流热成像检测方法以其非接触、检测范围大、检测效率高等优点,广泛应用于金属材料的无损检测领域。带有高频交变电流的线圈在导体试件中感应涡流,用红外热像仪记录下试件表面的加热过程和冷却过程。在有缺陷的区域形成电流聚集,产生高温区,通过高温区检测缺陷所在的位置。
但是这种方法只能识别缺陷位置,难以对缺陷形状进行量化评估。在航空航天,高速铁路,建筑材料等领域,缺陷的量化评估具有重要意义,可以大大降低发生灾害和事故的概率。
传统方法通过热图像中的高温区识别缺陷。当涡流遇到缺陷时,会绕过缺陷在缺陷两端聚集,形成高温区。在加热阶段,缺陷两端温度上升快。在冷却阶段,缺陷两端温度下降快。通过温度变化的梯度也可以识别缺陷的位置。但是高温区只存在于缺陷的两端,难以得到缺陷的真实形状。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于电阻抗成像的涡流热成像缺陷重构方法,从采集的热图像序列重构金属材料的电导率分布,而缺陷区域的电导率远小于非缺陷区域,从而实现缺陷检测。
为实现上述发明目的,本发明一种基于电阻抗成像的涡流热成像缺陷重构方法,其特征在于,包括以下步骤:
(1)、对线圈上电,然后利用线圈对被测试件进行激励,同时利用红外热像仪采集被测试件在加热阶段的原始热图像序列S,每帧图像大小为m*n;
(2)、在原始热图像序列S中,对同一位置处的像素点进行温度随时间的拟合曲线,再选取拟合曲线中第二个点的斜率作为温度随时间的变化率
Figure BDA0003236600980000011
其中Tij表示第i行第j列像素点的温度值,最后根据求取的
Figure BDA0003236600980000021
按照像素点位置构建一幅参考图像;
(3)、建立电流矩阵;
(3.1)、在参考热图像中,根据热传导公式计算每个像素点的电流幅值Jij,i=1,2,…,m,j=1,2,…,n;
Figure BDA0003236600980000022
其中,σ*是被测试件电导率,ρ是被测试件密度,C是被测试件的比热容;
(3.2)、建立电流矩阵J;
Figure BDA0003236600980000023
(4)、建立磁势矩阵;
(4.1)、在参考热图像中,计算每个像素点的磁势Aij
Figure BDA0003236600980000024
其中,I为线圈中的电流,μ0为空气磁导率,C为线圈闭合路径,dl为线圈的矢量长度单元,Rij表示第i行第j列像素点到线圈的距离;
(4.2)、建立磁势矩阵A;
Figure BDA0003236600980000025
(5)、通过电阻抗成像方法迭代计算每个像素点的电导率σij
(5.1)、输入初始电导率矩阵σ0;设置角频率ω;设置阈值ε;;设置当前迭代次数k,初始化k=1;
(5.2)、依次遍历参考图像中的每一个像素点,计算第k次迭代的电位矩阵
Figure BDA0003236600980000031
其中,第i行第j列像素点的电位Uk i,j满足如下公式:
ai,jUk i,j+1+bi,jUk i-1,j+ci,jUk i,j-1+di,jUk i+1,j+ei,jUk i,j=fi,j
其中,参数ai,j、bi,j、ci,j、di,j、ei,j、fi,j满足如下公式:
Figure BDA0003236600980000032
ei,j=-(ai,j+bi,j+ci,j+di,j)
Figure BDA0003236600980000033
将每个像素点的公式联立,构建如下矩阵形式:
G·Uk=C
其中,电位向量Uk由第i行第j列像素点电位Uk i,j按从左到右,从上到下的顺序排列构成:
Figure BDA0003236600980000034
系数矩阵G由ai,j、bi,j、ci,j、di,j、ei,j构成:
Figure BDA0003236600980000035
参数向量C由fi,j构成:
Figure BDA0003236600980000041
由此求解出电位向量Uk
Uk=G-1·C
将电位向量中每个像素点的电位按从左到右,从上到下的顺序排列构成电位矩阵
Figure BDA0003236600980000042
Figure BDA0003236600980000043
(5.3)、计算第k次迭代的电场强度矩阵Ek,其中,第i行第j列个像素点的电场强度Ek ij满足如下公式:
Figure BDA0003236600980000044
Figure BDA0003236600980000045
Figure BDA0003236600980000046
其中,x,y代表坐标轴;
建立电场强度矩阵Ek
Figure BDA0003236600980000047
(5.4)、计算第k次迭代后的电导率矩阵σk+1,其中,第i行第j列个像素点的电导率迭代公式如下:
Figure BDA0003236600980000051
建立电导率矩阵σk+1
Figure BDA0003236600980000052
(5.5)、判断第k次迭代的电导率矩阵和第k-1次迭代的电导率矩阵的差的无穷范数||σk+1k||是否小于阈值ε,若不小于ε,则将当前迭代次数k加1,再返回步骤(5.2)继续迭代;否则,进入步骤(6);
(6)、输出电导率矩阵,并将该电导率矩阵作为重构图像,最后由低电导率区域识别出缺陷的真实形状。
本发明的发明目的是这样实现的:
本发明一种基于电阻抗成像的涡流热成像缺陷重构方法,首先采集加热阶段的热图像序列,通过对热图像序列中的像素点进行曲线拟合,得到温度随时间变换的参考图像,然后从中提取出电流矩阵和磁势矩阵,并根据迭代公式求出满足条件的电导率分布,从而得到表征缺陷的重构图像,实现缺陷形状的识别。
同时,本发明一种基于电阻抗成像的涡流热成像缺陷重构方法还具有以下有益效果:
(1)、通过从热图像序列中计算电流图像,进而重构电导率图像,实现了热图像到电导率图像的转换,实现了缺陷形状的重构,可以量化评估缺陷尺寸。
(2)、本发明与英国纽卡斯尔大学提出的基于盲源分离的涡流热成像方法相比,该方法不仅可以识别缺陷,还可以重构缺陷形状,对缺陷进行量化评估。
附图说明
图1是本发明一种基于电阻抗成像的涡流热成像缺陷重构方法流程图;
图2是被测试件图像示意图;
图3是被测区域的电流幅度图像;
图4是划分的网格中每个网格的示意图;
图5是重构的电导率图像。
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
实施例
图1是本发明一种基于电阻抗成像的涡流热成像缺陷重构方法流程图。
在本实施例中,如图1所示,本发明一种基于电阻抗成像的涡流热成像缺陷重构方法,包括以下步骤:
S1、使用线圈对被测试件进行激励,线圈选用内径6.35mm的高导电性空心铜管,通入频率275kHz和幅度150A的电流。被测试件是奥氏体304不锈钢,厚度是0.28mm,雕刻出不同形状的缺陷,如图2所示。线圈在被测试件表面水平放置,与被测试件的提离距离为1cm。当线圈中通入电流时,开始加热,加热时间为200ms。用红外热像仪记录被测试件表面在加热阶段的原始热图像序列S,帧率为200fps,每帧大小为m*n,其中m=100,n=100;
S2、在原始热图像序列S中,对同一位置处的像素点进行温度随时间的拟合曲线,再选取拟合曲线中第2个点的斜率作为温度随时间的变化率
Figure BDA0003236600980000061
其中Tij表示第i行第j列像素点的温度值,i=1,2,…,m,j=1,2,…,n;最后根据求取的
Figure BDA0003236600980000062
按照像素点位置构建一幅参考图像;
S3、建立电流矩阵;
S3.1、在参考热图像中,被测试件的每个像素点在加热阶段的温度随时间变化率满足热传导公式,那么我们可以根据热传导公式计算每个像素点的电流幅值Jij
Figure BDA0003236600980000063
其中,σ*是被测试件电导率,σ*=1.37×106S/m,ρ是被测试件密度,ρ=7.93g/cm3,C是被测试件的比热容,C=0.5KJ·kg-1K-1
S3.2、通过求解每个像素点的电流幅值后,我们可以建立如下的电流矩阵J,
Figure BDA0003236600980000071
电流矩阵形成的电流图像如图3所示,由于线圈水平放置,所以电流在试件表面水平方向流动,当电流遇到缺陷时,会绕过缺陷向缺陷上下两端汇聚,所以在电流图像中,缺陷上下两端电流较大,缺陷中间区域电流较小;
S4、建立磁势矩阵;
S4.1、在参考热图像中,计算每个像素点的磁势Aij
Figure BDA0003236600980000072
其中,I为线圈中的电流,μ0为空气磁导率,μ0=4π×10-7H/m,C为线圈闭合路径,dl为线圈的矢量长度单元,Rij表示第i行第j列像素点到线圈的距离;
S4.2、通过求解每个像素点的磁势,我们可以建立如下的磁势矩阵A;
Figure BDA0003236600980000073
S5、通过电阻抗成像方法迭代计算每个像素点的电导率σij
S5.1、设置初始电导率矩阵σ0,每个像素点的初始电导率都为1;设置角频率ω,ω=1.73×106rad/s;设置阈值ε=0.1;;设置当前迭代次数k,初始化k=1;
S5.2、依次遍历参考图像中的每一个像素点,计算第k次迭代的电位矩阵
Figure BDA0003236600980000074
在本实施例中,被测试件可以看成划分为m*n的二维网格,每个网格代表一个像素点,如图4所示,电位U定义在每个像素点上,那么,其中,第i行第j列像素点的电位Uk i,j满足如下公式:
ai,jUk i,j+1+bi,jUk i-1,j+ci,jUk i,j-1+di,jUk i+1,j+ei,jUk i,j=fi,j
其中,参数ai,j、bi,j、ci,j、di,j、ei,j、fi,j满足如下公式:
Figure BDA0003236600980000081
ei,j=-(ai,j+bi,j+ci,j+di,j)
Figure BDA0003236600980000082
将每个像素点的公式联立,构建如下矩阵形式:
G·Uk=C
其中,电位向量Uk由第i行第j列像素点电位Uk i,j按从左到右,从上到下的顺序排列构成:
Figure BDA0003236600980000083
系数矩阵G由ai,j、bi,j、ci,j、di,j、ei,j构成:
Figure BDA0003236600980000084
参数向量C由fi,j构成:
Figure BDA0003236600980000085
由此求解出电位向量Uk
Uk=G-1·C
将电位向量中每个像素点的电位按从左到右,从上到下的顺序排列构成电位矩阵
Figure BDA0003236600980000091
Figure BDA0003236600980000092
S5.3、计算第k次迭代的电场强度矩阵Ek,其中,第i行第j列个像素点的电场强度Ek ij满足如下公式:
Figure BDA0003236600980000093
Figure BDA0003236600980000094
Figure BDA0003236600980000095
建立电场强度矩阵Ek
Figure BDA0003236600980000096
S5.4、计算第k次迭代后的电导率矩阵σk+1,其中,第i行第j列个像素点的电导率迭代公式如下:
Figure BDA0003236600980000097
建立电导率矩阵σk+1
Figure BDA0003236600980000098
S5.5、判断第k次迭代的电导率矩阵和第k-1次迭代的电导率矩阵的差的无穷范数||σk+1k||是否小于阈值ε,若不小于ε,则将当前迭代次数k加1,再返回步骤S5.2继续迭代;否则,进入步骤S6;
S6、输出电导率矩阵,如图5所示,并将该电导率矩阵作为重构图像,从电导率图像中可以由低电导率区域识别出缺陷的真实形状,虽然在图像中还存在一些噪声,但并不影响缺陷形状的识别。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (1)

1.一种基于电阻抗成像的涡流热成像缺陷重构方法,其特征在于,包括以下步骤:
(1)、对线圈上电,然后利用线圈对被测试件进行激励,同时利用红外热像仪采集被测试件在加热阶段的原始热图像序列S,每帧图像大小为m*n;
(2)、在原始热图像序列S中,对同一位置处的像素点进行温度随时间的拟合曲线,在拟合曲线中选取开始加热阶段中的一个点的斜率作为温度随时间的变化率
Figure FDA0003613910970000011
其中Tij表示第i行第j列像素点的温度值,最后根据求取的
Figure FDA0003613910970000012
按照像素点位置构建一幅参考图像;
(3)、建立电流矩阵;
(3.1)、在参考热图像中,根据热传导公式计算每个像素点的电流幅值Jij,i=1,2,…,m,j=1,2,…,n;
Figure FDA0003613910970000013
其中,Tij表示第i行第j列像素点的温度值,σ*是被测试件电导率,ρ是被测试件密度,
Figure FDA0003613910970000017
是被测试件的比热容;
(3.2)、建立电流矩阵J;
Figure FDA0003613910970000014
(4)、建立磁势矩阵;
(4.1)、在参考热图像中,计算每个像素点的磁势Aij
Figure FDA0003613910970000015
其中,I为线圈中的电流,μ0为空气磁导率,
Figure FDA0003613910970000016
为线圈闭合路径,dl为线圈的矢量长度单元,Rij表示第i行第j列像素点到线圈的距离;
(4.2)、建立磁势矩阵A;
Figure FDA0003613910970000021
(5)、通过电阻抗成像方法迭代计算每个像素点的电导率σij
(5.1)、输入初始电导率矩阵σ0;设置角频率ω;设置阈值ε;设置当前迭代次数k,初始化k=1;
(5.2)、依次遍历参考图像中的每一个像素点,计算第k次迭代的电位矩阵
Figure FDA0003613910970000022
其中,第i行第j列像素点的电位Uk i,j满足如下公式:
Figure FDA0003613910970000023
其中,参数ai,j、bi,j、ci,j、di,j、ei,j、fi,j满足如下公式:
Figure FDA0003613910970000024
ei,j=-(ai,j+bi,j+ci,j+di,j)
Figure FDA0003613910970000025
将每个像素点的公式联立,构建如下矩阵形式:
G·Uk=C
其中,电位向量Uk由第i行第j列像素点电位Uk i,j按从左到右,从上到下的顺序排列构成:
Figure FDA0003613910970000026
系数矩阵G由ai,j、bi,j、ci,j、di,j、ei,j构成:
Figure FDA0003613910970000031
参数向量C由fi,j构成:
Figure FDA0003613910970000032
由此求解出电位向量Uk
Uk=G-1·C
将电位向量中每个像素点的电位按从左到右,从上到下的顺序排列构成电位矩阵
Figure FDA0003613910970000033
Figure FDA0003613910970000034
(5.3)、计算第k次迭代的电场强度矩阵Ek,其中,第i行第j列个像素点的电场强度Ek ij满足如下公式:
Figure FDA0003613910970000035
Figure FDA0003613910970000036
Figure FDA0003613910970000037
建立电场强度矩阵Ek
Figure FDA0003613910970000038
(5.4)、计算第k次迭代后的电导率矩阵σk+1,其中,第i行第j列个像素点的电导率迭代公式如下:
Figure FDA0003613910970000041
建立电导率矩阵σk+1
Figure FDA0003613910970000042
(5.5)、判断第k次迭代的电导率矩阵和第k-1次迭代的电导率矩阵的差的无穷范数||σk+1k||是否小于阈值ε,若不小于ε,则将当前迭代次数k加1,再返回步骤(5.2)继续迭代;否则,进入步骤(6);
(6)、输出电导率矩阵,并将该电导率矩阵作为重构图像,最后由低电导率区域识别出缺陷的真实形状。
CN202111004236.9A 2021-08-30 2021-08-30 一种基于电阻抗成像的涡流热成像缺陷重构方法 Active CN113804727B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111004236.9A CN113804727B (zh) 2021-08-30 2021-08-30 一种基于电阻抗成像的涡流热成像缺陷重构方法
US17/897,248 US20220412919A1 (en) 2021-08-30 2022-08-29 Method for eddy current thermography defect reconstruction baseed on electrical impedance tomography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111004236.9A CN113804727B (zh) 2021-08-30 2021-08-30 一种基于电阻抗成像的涡流热成像缺陷重构方法

Publications (2)

Publication Number Publication Date
CN113804727A CN113804727A (zh) 2021-12-17
CN113804727B true CN113804727B (zh) 2022-06-14

Family

ID=78942228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111004236.9A Active CN113804727B (zh) 2021-08-30 2021-08-30 一种基于电阻抗成像的涡流热成像缺陷重构方法

Country Status (2)

Country Link
US (1) US20220412919A1 (zh)
CN (1) CN113804727B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114544707B (zh) * 2022-01-20 2023-09-19 东南大学 基于热对比度增强时间插值的高帧率热成像检测方法
CN115436427B (zh) * 2022-08-22 2023-10-17 电子科技大学 基于Tikhonov正则化的涡流热成像缺陷重构方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145953A (ja) * 1983-02-10 1984-08-21 Nippon Steel Corp 熱間渦流探傷方法
DE102006013278A1 (de) * 2006-03-21 2007-09-27 Jürgen Rohmann Verfahren und Vorrichtung zur thermografischen Detektion von Fehlstellen eines Prüfkörpers aus ferromagnetischem Material
CN104698036A (zh) * 2015-04-01 2015-06-10 武汉理工大学 基于三维温度曲面相似性分析的涡流热成像缺陷识别方法
CN105973938A (zh) * 2016-07-01 2016-09-28 四川大学 用于钢轨无损探伤的脉冲涡流热成像高速检测装置
CN108682002A (zh) * 2018-04-03 2018-10-19 中国空气动力研究与发展中心超高速空气动力研究所 基于涡流脉冲热成像技术以增强压力容器缺陷特征的方法
CN110376249A (zh) * 2019-07-02 2019-10-25 福建师范大学福清分校 一种电涡流热成像检测方法及装置
CN113218998A (zh) * 2021-04-27 2021-08-06 电子科技大学 一种基于全局莫兰指数的涡流热成像缺陷识别方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145953A (ja) * 1983-02-10 1984-08-21 Nippon Steel Corp 熱間渦流探傷方法
DE102006013278A1 (de) * 2006-03-21 2007-09-27 Jürgen Rohmann Verfahren und Vorrichtung zur thermografischen Detektion von Fehlstellen eines Prüfkörpers aus ferromagnetischem Material
CN104698036A (zh) * 2015-04-01 2015-06-10 武汉理工大学 基于三维温度曲面相似性分析的涡流热成像缺陷识别方法
CN105973938A (zh) * 2016-07-01 2016-09-28 四川大学 用于钢轨无损探伤的脉冲涡流热成像高速检测装置
CN108682002A (zh) * 2018-04-03 2018-10-19 中国空气动力研究与发展中心超高速空气动力研究所 基于涡流脉冲热成像技术以增强压力容器缺陷特征的方法
CN110376249A (zh) * 2019-07-02 2019-10-25 福建师范大学福清分校 一种电涡流热成像检测方法及装置
CN113218998A (zh) * 2021-04-27 2021-08-06 电子科技大学 一种基于全局莫兰指数的涡流热成像缺陷识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Xu Zhang 等.Research on Defects Recognition Method Based on Impedance Information.《2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD)》.2020, *
仪向向等.基于涡流热成像的表面缺陷定量分析仿真.《无损检测》.2015,第第37卷卷(第04期),第24-27、75页. *

Also Published As

Publication number Publication date
US20220412919A1 (en) 2022-12-29
CN113804727A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
CN113804727B (zh) 一种基于电阻抗成像的涡流热成像缺陷重构方法
Liang et al. Low energy impact damage detection in CFRP using eddy current pulsed thermography
CN108830839B (zh) 一种基于行列变步长分割的压容器的热图像缺陷检测方法
Soleimani et al. A three-dimensional inverse finite-element method applied to experimental eddy-current imaging data
Yin et al. The design of a digital magnetic induction tomography (MIT) system for metallic object imaging based on half cycle demodulation
CN112699912B (zh) 一种通过改进gan增强红外热图像的方法
Heideklang et al. Multi-sensor image fusion at signal level for improved near-surface crack detection
Gao et al. Quantitative validation of eddy current stimulated thermal features on surface crack
CN110660021A (zh) 一种基于深度学习的脉冲涡流热成像高分辨率清晰化方法
CN109544546A (zh) 一种基于多目标优化的红外热图像缺陷特征提取方法
CN108717069A (zh) 一种基于行变步长分割的高压容器热成像缺陷检测方法
CN109636755B (zh) 一种通过加权估计实现红外热图像增强的方法
Xiao et al. Spatial-time-state fusion algorithm for defect detection through eddy current pulsed thermography
CN108765401B (zh) 一种基于行列变步长分割和区域生长法的热成像检测方法
CN110992434A (zh) 一种基于有限新息率的emt图像重构方法
Zhu et al. Local sparseness and image fusion for defect inspection in eddy current pulsed thermography
Chen et al. Characterization of image sequences of a defect using pulsed eddy current signals
Dong et al. Two-stage convolutional neural network for joint removal of sensor noise and background interference in lock-in thermography
Zhao et al. An end-to-end physics-informed neural network for defect identification and 3-D reconstruction using rotating alternating current field measurement
Bhavani et al. Real-time inspection in detection magnetic flux leakage by deep learning integrated with concentrating non-destructive principle and electromagnetic induction
CN109884180A (zh) 一种导电结构缺陷稀疏电涡流快速成像检测方法及系统
He et al. Methods for suppression of the effect of uneven surface emissivity of material in the moving mode of eddy current thermography
CN114544707B (zh) 基于热对比度增强时间插值的高帧率热成像检测方法
CN114166850B (zh) 一种基于差分张量分解的光激励红外热成像缺陷检测方法
CN111028196B (zh) 一种基于热图像时间序列特征的红外图像增强方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant