CN115436427B - 基于Tikhonov正则化的涡流热成像缺陷重构方法 - Google Patents

基于Tikhonov正则化的涡流热成像缺陷重构方法 Download PDF

Info

Publication number
CN115436427B
CN115436427B CN202211005926.0A CN202211005926A CN115436427B CN 115436427 B CN115436427 B CN 115436427B CN 202211005926 A CN202211005926 A CN 202211005926A CN 115436427 B CN115436427 B CN 115436427B
Authority
CN
China
Prior art keywords
matrix
sigma
thermal image
conductivity
tikhonov regularization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211005926.0A
Other languages
English (en)
Other versions
CN115436427A (zh
Inventor
张旭
白利兵
张�杰
田露露
陈聪
周权
黄伟
丁尧禹
梁一平
任超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202211005926.0A priority Critical patent/CN115436427B/zh
Publication of CN115436427A publication Critical patent/CN115436427A/zh
Application granted granted Critical
Publication of CN115436427B publication Critical patent/CN115436427B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

本发明公开了基于Tikhonov正则化的涡流热成像缺陷重构方法,属于缺陷检测技术领域,先对被测材料进行激励,采集原始热图像序列,根据原始热图像序列中各像素点的温度变化率,构建参考热图像,基于此分别构建测量电流矩阵和磁势矩阵;基于迭代算法,分别计算电位矩阵、模型电流矩阵和雅可比矩阵,进而利用Tikhonov正则化方法计算并得到满足条件的电导率矩阵,作为重构图像,识别缺陷的真实形状。本发明利用Tikhonov正则化方法计算电导率矩阵,以消除测量噪声的影响,实现缺陷的重构与量化,不仅适用于薄金属板,还可适用于厚金属板的缺陷重构,有效拓宽应用范围。

Description

基于Tikhonov正则化的涡流热成像缺陷重构方法
技术领域
本发明属于缺陷检测技术领域,具体涉及基于Tikhonov正则化的涡流热成像缺陷重构方法。
背景技术
涡流热成像方法已经广泛应用于航空航天、石油管道、高速铁路、核电设备等领域的导电材料无损检测。航空飞机和航天器在高速飞行状态下,表面受到撞击或者高温时会产生缺陷,对飞行器造成严重的损伤,利用涡流热成像技术可以高效、快速、大面积地检测表面缺陷。核电设备在长期使用过程中,一些关键部件受到腐蚀产生缺陷,严重情况下会发生爆炸并污染环境,利用涡流热成像技术可以快速、高效的检测各种缺陷。
当前这一方法主要应用于检测并识别缺陷位置,难以对缺陷尺寸进行量化评估。缺陷尺寸的量化评估对于评估损伤程度具有非常重要的意义。申请号为CN202111004236.9的中国专利“一种基于电阻抗成像的涡流热成像缺陷重构方法”提出利用电阻抗成像进行缺陷重构的方法,但该方法主要应用于厚度小于0.5mm的薄金属板的通孔缺陷,应用范围较为单一。主要原因在于薄金属板的测量噪声较小,而厚金属板测量的热图像数据中存在大量的噪声和模糊效应,当前的重构方法很难消除这种噪声和模糊效应的影响,难以重构出准确的缺陷分布。在实际的工业应用中,厚度在0.5mm以上的厚金属板应用更为广泛,因此,消除测量噪声和模糊效应的影响,实现厚金属板的缺陷重构有重要的研究意义。
发明内容
本发明目的在于针对上述现有技术中的问题,提供基于Tikhonov正则化的涡流热成像缺陷重构方法,利用Tikhonov正则化方法计算电导率矩阵,以消除测量噪声的影响,避免过拟合,实现厚金属板的准确缺陷重构。
本发明所采用的技术方案如下:
基于Tikhonov正则化的涡流热成像缺陷重构方法,其特征在于,包括以下步骤:
S1、基于涡流热成像测试系统,对磁轭两极之间的被测材料进行激励,并利用红外热像仪采集被测材料随时间变化的原始热图像序列P,各帧图像大小为m×n;
S2、根据原始热图像序列P中各像素点的温度变化率,构建参考热图像;
S3、基于参考热图像,建立测量电流矩阵J∈Rm×n
其中,Jij,i=1,2,...,m,j=1,2,...,n为第i行第j列像素点的测量电流;
S4、计算参考热图像中各像素点的磁势Aij,i=1,2,...,m,j=1,2,...,n:
其中,代表旋度算子;μ为被测材料的磁导率;σ*为被测材料的电导率;ε为被测材料的介电常数;t为时间;
建立磁势矩阵A∈Rm×n
S5、令k=1,初始电导率矩阵σk为:
其中,为第i行第j列像素点第k次迭代时的电导率;
S6、计算第k次迭代时的电位矩阵
其中,Uk ij,i=1,2,...,m,j=1,2,...,n为第i行第j列像素点第k次迭代时的电位;
S7、计算第k次迭代时的模型电流矩阵
其中,为第i行第j列像素点第k次迭代时的模型电流,满足:
其中,ω为对被测材料进行激励时采用的交变电流的角频率;为/>在横轴x方向的分量;/>为/>在纵轴y方向的分量;σk i0=σk 0j=0;
S8、计算第k次迭代时的雅可比矩阵Sk∈Rmn×mn
S9、利用Tikhonov正则化方法计算第k次迭代后的电导率矩阵σk+1
σk+1=σk+δσk
其中,δσk为第k次迭代的电导率矩阵更新量;为Sk的转置;λ为正则化参数;I∈Rmn×mn为单位阵的正则化矩阵;IT为I的转置;
S10、判断σk+1与σk的差的无穷范数||σk+1k||是否小于预设阈值,若是,转至S11;否则,令k=k+1,转回S6;
S11、将电导率矩阵σk+1作为重构图像,识别缺陷的真实形状。
进一步地,S2中通过先对各像素点进行温度随时间的拟合曲线,再选取拟合曲线中第二个点的斜率作为温度变化率,进而构建参考热图像。
进一步地,S1中采集原始热图像序列P的帧率不低于200fps,对被测材料进行激励时采用的交变电流的频率范围为100~300KHz。
进一步地,m不超过120,n不超过640。
本发明的有益效果为:
本发明提出了基于Tikhonov正则化的涡流热成像缺陷重构方法,利用Tikhonov正则化方法计算电导率矩阵,以消除测量噪声的影响,实现缺陷的重构与量化,不仅适用于薄金属板,还可适用于厚金属板的缺陷重构,有效拓宽应用范围。
附图说明
图1为本发明实施例1提供的基于Tikhonov正则化的涡流热成像缺陷重构方法的流程图;
图2为本发明实施例1采用的涡流热成像测试系统;
图3为本发明实施例1采用的涡流热成像测试系统中磁轭的尺寸示意图;
图4为本发明实施例1中被测材料的缺陷示意图;
图5为本发明实施例1中被测材料的测量电流的幅度图;
图6为本发明实施例1中被测材料的缺陷重构图像。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图与实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
本实施例提供了基于Tikhonov正则化的涡流热成像缺陷重构方法,流程如图1所示,包括以下步骤:
S1、基于如图2所示的涡流热成像测试系统,将内径为6.35mm的线圈缠绕至铁氧体材料的磁轭上,加热源向线圈内通频率为140KHz、幅度为150A的交变电流,磁轭的尺寸如图3所示,高118mm,厚40mm,长120mm,宽37mm,两极间距60mm;被测材料采用奥氏体304不锈钢,尺寸为60mm*280mm*4mm;本实施例对位于磁轭两极之间的被测材料区域(即ROI区域)进行激励,ROI区域的尺寸为26mm*26mm,被测材料的缺陷位于ROI区域,如图4所示,尺寸为0.5mm*4mm*3mm;利用红外热像仪采集ROI区域被测材料随时间变化的原始热图像序列P,帧率为200fps,各帧图像大小为m×n;其中,m=n=60;
S2、在原始热图像序列P中,对各像素点进行温度随时间的拟合曲线,由于激励初期的加热时间短,热扩散效应可以忽略,故选取拟合曲线中第二个点的斜率作为温度变化率进而基于各像素点的/>构建参考热图像;
其中,Tij,i=1,2,...,m,j=1,2,...,n为第i行第j列像素点的温度;
S3、基于参考热图像,根据热传导公式计算各像素点的测量电流Jij,i=1,2,...,m,j=1,2,...,n:
其中,σ*=1.37×106S/m;ρ为被测材料的密度;C为被测材料的比热容,C=0.5KJ·kg-1K-1
进而建立测量电流矩阵J∈Rm×n
本实施例中被测材料的测量电流的幅度如图5所示,电流方向竖直向上,当电流遇到缺陷时,绕过缺陷向缺陷左右两端聚集,所以在图5中,缺陷左右两端电流较大,形成四个亮点,中间区域电流较小;
S4、计算参考热图像中各像素点的磁势Aij,i=1,2,...,m,j=1,2,...,n:
其中,μ=1;ε=1;
进而建立磁势矩阵A∈Rm×n
S5、令k=1,初始电导率矩阵σk为:
其中,为第i行第j列像素点第k次迭代时的电导率;
S6、计算第k次迭代时的电位矩阵
其中,Uk ij,i=1,2,...,m,j=1,2,...,n为第i行第j列像素点第k次迭代时的电位,满足:
ak ijUk ij+1+bk ijUk i-1j+ck ijUk ij-1+dk ijUk i+1j+ek ijUk ij=fk ij
其中,Uk 0j=Uk i0=0;参数ak ij、bk ij、ck ij、dk ij、ek ij、fk ij满足如下公式:
其中,ω=1.73×106rad/s;
将各像素点对应的电位满足公式联立,得到矩阵:
Gk·Uk=Ck
其中,电位向量Uk∈Rmn×1由各像素点对应的电位Uk ij按以Uk 11为起点,Uk mn为终点,从左到右,从上到下的顺序排列构成:
系数矩阵G∈Rmn×mn由各像素点对应的参数ak ij、bk ij、ck ij、dk ij、ek ij构成:
参数向量C∈Rmn×1由各像素点对应的参数fk ij构成:
由此求解出电位向量Uk
Uk=(Gk)-1·Ck
进而获得第k次迭代时的电位矩阵
S7、计算第k次迭代时的模型电流矩阵
其中,为第i行第j列像素点第k次迭代时的模型电流,满足:
其中,为/>在横轴x方向的分量;为/>在纵轴y方向的分量;/>
S8、计算第k次迭代时的雅可比矩阵Sk∈Rmn×mn
S9、利用Tikhonov正则化方法计算第k次迭代后的电导率矩阵σk+1
σk+1=σk+δσk
其中,δσk为第k次迭代的电导率矩阵更新量;为Sk的转置;λ=0.05;I∈Rmn×mn为单位阵的正则化矩阵;IT为I的转置;
S10、判断σk+1与σk的差的无穷范数||σk+1k||是否小于预设阈值0.1,若是,转至S11;否则,令k=k+1,转回S6;
S11、如图6所示,将电导率矩阵σk+1作为重构图像,可以识别出电导率相对较低的区域为缺陷的真实形状,虽然在重构图像中还存在一些噪声,但并不影响缺陷真实形状的识别。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (4)

1.基于Tikhonov正则化的涡流热成像缺陷重构方法,其特征在于,包括以下步骤:
S1、基于涡流热成像测试系统,对磁轭两极之间的被测材料进行激励,并利用红外热像仪采集被测材料随时间变化的原始热图像序列P,各帧图像大小为m×n;
S2、根据原始热图像序列P中各像素点的温度变化率,构建参考热图像;
S3、基于参考热图像,建立测量电流矩阵J∈Rm×n
其中,Jij,i=1,2,...,m,j=1,2,...,n为第i行第j列像素点的测量电流;
S4、计算参考热图像中各像素点的磁势Aij,i=1,2,...,m,j=1,2,...,n:
其中,代表旋度算子;μ为被测材料的磁导率;σ*为被测材料的电导率;ε为被测材料的介电常数;t为时间;
建立磁势矩阵A∈Rm×n
S5、令k=1,初始电导率矩阵σk为:
其中,为第i行第j列像素点第k次迭代时的电导率;
S6、计算第k次迭代时的电位矩阵
其中,Uk ij,i=1,2,...,m,j=1,2,...,n为第i行第j列像素点第k次迭代时的电位;
S7、计算第k次迭代时的模型电流矩阵
其中,为第i行第j列像素点第k次迭代时的模型电流,满足:
其中,ω为对被测材料进行激励时采用的交变电流的角频率;为/>在横轴x方向的分量;/>为/>在纵轴y方向的分量;σk i0=σk 0j=0;
S8、计算第k次迭代时的雅可比矩阵Sk∈Rmn×mn
S9、利用Tikhonov正则化方法计算第k次迭代后的电导率矩阵σk+1
σk+1=σk+δσk
其中,δσk为第k次迭代的电导率矩阵更新量;为Sk的转置;λ为正则化参数;I∈Rmn×mn为单位阵的正则化矩阵;IT为I的转置;
S10、判断σk+1与σk的差的无穷范数||σk+1k||是否小于预设阈值,若是,转至S11;否则,令k=k+1,转回S6;
S11、将电导率矩阵σk+1作为重构图像,识别缺陷的真实形状。
2.根据权利要求1所述基于Tikhonov正则化的涡流热成像缺陷重构方法,其特征在于,S2中通过先对各像素点进行温度随时间的拟合曲线,再选取拟合曲线中第二个点的斜率作为温度变化率,进而构建参考热图像。
3.根据权利要求1所述基于Tikhonov正则化的涡流热成像缺陷重构方法,其特征在于,S1中采集原始热图像序列P的帧率不低于200fps,对被测材料进行激励时采用的交变电流的频率范围为100~300KHz。
4.根据权利要求1所述基于Tikhonov正则化的涡流热成像缺陷重构方法,其特征在于,m不超过120,n不超过640。
CN202211005926.0A 2022-08-22 2022-08-22 基于Tikhonov正则化的涡流热成像缺陷重构方法 Active CN115436427B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211005926.0A CN115436427B (zh) 2022-08-22 2022-08-22 基于Tikhonov正则化的涡流热成像缺陷重构方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211005926.0A CN115436427B (zh) 2022-08-22 2022-08-22 基于Tikhonov正则化的涡流热成像缺陷重构方法

Publications (2)

Publication Number Publication Date
CN115436427A CN115436427A (zh) 2022-12-06
CN115436427B true CN115436427B (zh) 2023-10-17

Family

ID=84244399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211005926.0A Active CN115436427B (zh) 2022-08-22 2022-08-22 基于Tikhonov正则化的涡流热成像缺陷重构方法

Country Status (1)

Country Link
CN (1) CN115436427B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592333A (zh) * 2013-11-13 2014-02-19 电子科技大学 一种脉冲涡流热成像缺陷自动检测与识别方法
CN106468677A (zh) * 2016-09-06 2017-03-01 电子科技大学 一种脉冲涡流热成像中缺陷的自动分割方法
CN108431938A (zh) * 2016-01-01 2018-08-21 科磊股份有限公司 使用图像重建以用于缺陷检测的系统及方法
CN110286145A (zh) * 2019-08-14 2019-09-27 上海海事大学 一种金属裂纹电磁探伤成像仪
CN110992434A (zh) * 2019-10-09 2020-04-10 浙江工业大学 一种基于有限新息率的emt图像重构方法
CN113804727A (zh) * 2021-08-30 2021-12-17 电子科技大学 一种基于电阻抗成像的涡流热成像缺陷重构方法
CN114708350A (zh) * 2022-04-12 2022-07-05 河南师范大学 一种用于脑部电阻抗层析成像的电导率可视化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090285463A1 (en) * 2008-04-18 2009-11-19 Ricardo Otazo Superresolution parallel magnetic resonance imaging

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592333A (zh) * 2013-11-13 2014-02-19 电子科技大学 一种脉冲涡流热成像缺陷自动检测与识别方法
CN108431938A (zh) * 2016-01-01 2018-08-21 科磊股份有限公司 使用图像重建以用于缺陷检测的系统及方法
CN106468677A (zh) * 2016-09-06 2017-03-01 电子科技大学 一种脉冲涡流热成像中缺陷的自动分割方法
CN110286145A (zh) * 2019-08-14 2019-09-27 上海海事大学 一种金属裂纹电磁探伤成像仪
CN110992434A (zh) * 2019-10-09 2020-04-10 浙江工业大学 一种基于有限新息率的emt图像重构方法
CN113804727A (zh) * 2021-08-30 2021-12-17 电子科技大学 一种基于电阻抗成像的涡流热成像缺陷重构方法
CN114708350A (zh) * 2022-04-12 2022-07-05 河南师范大学 一种用于脑部电阻抗层析成像的电导率可视化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The Filtering Effect of the Tikhonov Regularization Application to eddy-current problems";Ribeiro, AL;《 2015 2ND IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE)》;第188-192页 *
"基于稀疏成像的金属材料缺陷检测研究";许大伟;《工业加热》;第48卷(第3期);第74-77页 *

Also Published As

Publication number Publication date
CN115436427A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
Ali et al. Review on system development in eddy current testing and technique for defect classification and characterization
He et al. Dynamic scanning electromagnetic infrared thermographic analysis based on blind source separation for industrial metallic damage evaluation
Takagi et al. Numerical evaluation of correlation between crack size and eddy current testing signal by a very fast simulator
Liu et al. Pixel-level classification of pollution severity on insulators using photothermal radiometry and multiclass semisupervised support vector machine
EP1817601B1 (en) Method and apparatus for measuring hydrogen concentration in zirconium alloy components in the fuel pool of a nuclear power plant
Le et al. Quantitative evaluation of corrosion in a thin small-bore piping system using bobbin-type magnetic camera
Chen et al. Characterization of image sequences of a defect using pulsed eddy current signals
Liu et al. Investigation of thermal imaging sampling frequency for eddy current pulsed thermography
CN113804727B (zh) 一种基于电阻抗成像的涡流热成像缺陷重构方法
Cai et al. Quantitative evaluation of electrical conductivity inside stress corrosion crack with electromagnetic NDE methods
CN115436427B (zh) 基于Tikhonov正则化的涡流热成像缺陷重构方法
CN109884180A (zh) 一种导电结构缺陷稀疏电涡流快速成像检测方法及系统
Carreon et al. On the role of material property gradients in noncontacting thermoelectric NDE
CN109816651A (zh) 基于变化率与温度差异的热图像缺陷特征提取方法
Ren et al. A thermal-imaging-based method for 2D electric current distribution measurement
Zhao et al. Application of electrical resistance tomography to damage detection in concrete
Zhang et al. Induced Current Thermo-Electrical Impedance Tomography for Nonferromagnetic Metal Material Surface Defect Profile Reconstruction
Doi et al. Defect recognition in conductive materials by local magnetic‐field measurement
US4133722A (en) Process for determining properties of materials
Ren et al. Measurement of current distribution using infrared thermography
Thomas et al. SQUID NDE: Detection of surface flaws by magnetic decoration
Sakagami et al. Thermographic NDT based on transient temperature field under Joule effect heating
Liu et al. Simulation on quantitative analysis of crack inspection by using eddy current stimulated thermography
Xing Rapid calculation of eddy current field Green's function using the matrix pencil method
Zhang et al. Research on defects recognition method based on impedance information

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant