CN113797972A - 一种负载型杂多酸离子液体-Zr(Ⅳ)复合材料的制备方法和应用 - Google Patents

一种负载型杂多酸离子液体-Zr(Ⅳ)复合材料的制备方法和应用 Download PDF

Info

Publication number
CN113797972A
CN113797972A CN202110985044.4A CN202110985044A CN113797972A CN 113797972 A CN113797972 A CN 113797972A CN 202110985044 A CN202110985044 A CN 202110985044A CN 113797972 A CN113797972 A CN 113797972A
Authority
CN
China
Prior art keywords
ionic liquid
silica gel
heteropoly acid
composite material
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110985044.4A
Other languages
English (en)
Other versions
CN113797972B (zh
Inventor
邱挺
齐兆洋
叶长燊
陈杰
杨臣
黄智贤
王红星
李玲
王晓达
王清莲
葛雪惠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingyuan Innovation Laboratory
Fuzhou University
Original Assignee
Qingyuan Innovation Laboratory
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingyuan Innovation Laboratory, Fuzhou University filed Critical Qingyuan Innovation Laboratory
Priority to CN202110985044.4A priority Critical patent/CN113797972B/zh
Publication of CN113797972A publication Critical patent/CN113797972A/zh
Application granted granted Critical
Publication of CN113797972B publication Critical patent/CN113797972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0298Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature the ionic liquids being characterised by the counter-anions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • B01J31/0295Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate by covalent attachment to the substrate, e.g. silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • B01J31/1625Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/12Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen with oxygen-generating compounds, e.g. per-compounds, chromic acid, chromates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种负载型杂多酸离子液体‑Zr(Ⅳ)复合材料的制备方法和应用,以羧基功能化离子液体阳离子为连接子将杂多酸与Zr(Ⅳ)进行有效连接,并通过层层组装的方式将杂多酸与Zr(Ⅳ)固载到硅胶上,制备含有杂多酸和Zr(Ⅳ)两种活性位点的大颗粒催化剂,使用该方法制备的复合材料催化剂不仅具有活性位点固载稳定、固载量大的特点,而且活性位点之间距离较近,能够极大的发挥活性位点间的协同催化效应。本发明制备的负载型杂多酸离子液体‑Zr(Ⅳ)复合材料用于催化氧化脱除燃油中惰性的噻吩类硫化物,具有良好活性和稳定性。

Description

一种负载型杂多酸离子液体-Zr(Ⅳ)复合材料的制备方法和 应用
技术领域
本发明属于复合材料合成技术领域,具体涉及一种负载型杂多酸离子液体-Zr(Ⅳ)复合材料催化剂的方法,以及其在燃油脱硫中的应用。
背景技术
石油作为最主要的燃料是“加速”社会进程的主要能源,然而,在燃料燃烧过程中其所含有的硫化合物会生成SOx气体,SOx会与大气中的水蒸汽反应形成腐蚀性和有毒的酸雨,严重影响人们的生存坏境,因此,对燃料尤其是燃油中的含硫化合物的深度脱除是当前迫切需要解决的问题。催化氧化脱硫技术是一种极具潜力的油品深度脱硫方法,在此脱硫工艺中,H2O2是公认的适宜氧化剂,因为其质量单位活性氧含量高、氧化效果好,此外,它的副产物只有水,无污染且不会对反应设备造成腐蚀。然而,H2O2本身无法直接氧化目标硫化物,需要催化剂将其分解或与催化剂直接结合形成具有强氧化性的直接氧化物质。目前,常用的氧化脱硫催化剂有有机羧酸、Lewis酸和杂多酸等,然而直接以只含有前述活性中心的材料为催化剂时,需要消耗大量的氧化剂和较长的反应时间才能达到痕量脱硫。因此,设计和制备新型高效的催化剂是实现痕量脱硫的关键。在我们之前的研究中(CN201911228127-一种Zr基MOFs原位桥连封装杂多酸离子液体的方法),发现杂多酸与Zr(Ⅳ)之间存在着较强的协同催化氧化脱硫作用,当两者同时存在时,可以在较为温和的条件下,实现痕量脱硫,然而以羧基功能化离子液体为部分配体合成含有杂多酸的Zr基MOFs时,需要在水热合成釜中进行长时间晶化(一般24 h以上),且需要大量的溶剂DMF,难以实现大规模生产,限制了其工业化应用。此外,由于Zr基MOFs的颗粒直径仅为300 nm左右,只适用于间歇脱硫过程,无法应用于连续萃取-催化氧化脱硫工艺中。考虑到羧基功能化离子液体与杂多酸和Zr(Ⅳ)均有着较强的作用力,因此直接以羧基功能化离子液体为连接子将杂多酸与Zr(Ⅳ)两种活性中心进行简单有效的复合并将其负载于大颗粒载体上,开发一种含有杂多酸与Zr(Ⅳ)两种活性中心的大颗粒氧化脱硫催化剂具有很好的研究价值和应用前景。
发明内容
为了克服现有氧化脱硫催化剂的缺点和不足,本发明的主要目的在于提供一种负载型杂多酸离子液体-Zr(Ⅳ)复合材料的方法及该复合材料在燃油脱硫中的应用。
为实现上述发明目的,本发明采用以下技术方案:
一种负载型杂多酸离子液体-Zr(Ⅳ)复合材料的制备方法:利用杂多酸阴离子与含N杂环阳离子结合生成离子液体,以及羧基化合物与Zr(Ⅳ)可进行配位结合的特性,以羧基功能化离子液体为连接子,将杂多酸与Zr(Ⅳ)进行有效连接,并通过层层组装的方式将杂多酸离子液体和Zr(Ⅳ)固载到硅胶上,制备含有杂多酸和Zr(Ⅳ)两种活性位点的大颗粒催化剂。
一种负载型杂多酸离子液体-Zr(Ⅳ)复合材料的制备方法,包括以下具体步骤:
(1)将杂多酸与羧基功能化含N杂环离子液体分别溶解在去离子水中,然后将两种溶液混合,搅拌一定的时间,得到羧基功能化杂多酸离子液体;
(2)将戊二酸酐和负载有聚乙烯亚胺的硅胶按一定的比例分散于乙醇中,并在37℃水浴条件下搅拌10 h,反应完成后将样品离心分离,乙醇洗涤,真空干燥后,得到羧基功能化硅胶;
(3)采用层层组装法制备负载型杂多酸离子液体-Zr(Ⅳ)复合材料,合成过程主要分为两个步骤,步骤A:将上述所得的羧基功能化硅胶分散在一定浓度的ZrCl4乙腈溶液中,30 ℃条件下搅拌30 min,反应完成后将样品离心分离,并用乙腈洗涤三次;步骤B:将步骤A生成的颗粒样品均匀分散在浓度为2 mmol/L前述所得的羧基功能化杂多酸离子液体乙腈溶液中,30 ℃条件下搅拌30 min,反应完成后将样品离心分离,并用乙腈洗涤三次;将步骤B得到的样品替换步骤A中的羧基功能化硅胶后重复步骤A和B多次,得到表面覆盖有多层杂多酸离子液体和Zr(Ⅳ)的复合材料。
上述步骤(1)中的杂多酸为磷钨酸或磷钼酸。
上述步骤(1)中的羧基功能化含N杂环离子液体为1-羧丙基-3-甲基咪唑氯盐、1-羧丁基-3-甲基咪唑氯盐、1-羧丙基-3-甲基咪唑溴盐、1-羧丁基-3-甲基咪唑溴盐中的一种。
上述步骤(2)中的负载有聚乙烯亚胺的硅胶是指在硅胶孔道内填充了聚乙烯亚胺或聚乙烯亚胺包覆在硅胶表面的复合材料,聚乙烯亚胺在硅胶中的负载量介于0.2~0.6 g/g(硅胶)之间。
上述步骤(2)中的戊二酸酐和负载有聚乙烯亚胺硅胶的质量比介于0.5~2之间。
上述步骤(3)中的羧基功能化硅胶和ZrCl4的质量比介于3~6之间。
上述步骤(3)中的重复次数为8~20次。
一种负载型杂多酸离子液体-Zr(Ⅳ)复合材料催化剂。
应用:负载型杂多酸离子液体-Zr(Ⅳ)复合材料催化剂在催化氧化脱除油品中噻吩类硫化物中的应用。
本发明的有益效果在于:
本发明通过利用杂多酸阴离子可与含N杂环阳离子结合生成离子液体,以及去质子化的羧基化合物与Zr(Ⅳ)可进行配位结合的特性,以羧基功能化离子液体阳离子为连接子通过简单的室温搅拌法将杂多酸与Zr(Ⅳ)进行连接,制备含有杂多酸和Zr(Ⅳ)的配位化合物,并通过层层组装的方式将得到的配位化合物固载到硅胶上,制备含有杂多酸离子液体和Zr(Ⅳ)两种活性位点的大颗粒催化剂(颗粒直径大约在300~600 μm左右),使用该方法制备的复合材料催化剂不仅具有活性位点固载稳定、固载量大的特点,而且活性位点之间距离较近,能够极大的发挥活性位点间的协同催化效应,并且,杂多酸离子液体-Zr(Ⅳ)复合材料通过配位键合的方式负载在硅胶表面,结合更加牢固,催化剂在使用过程中也更加稳定,循环稳定性好,具有良好的工业化应用前景。本发明制备的负载型杂多酸离子液体-Zr(Ⅳ)复合材料用于催化氧化脱除油品中的惰性噻吩类硫化物,具有良好活性和稳定性。
附图说明
图1是本发明实施例1所制复合材料的制备机理及结构图;
图2是本发明实施例1所制复合材料的扫描电镜图;
图3是本发明实施例1所制复合材料的X射线能谱分析图;
图4是本发明实施例1所制复合材料的N2吸附-脱附等温线和孔径分布图;
图5本发明应用实施例4中负载型磷钨酸离子液体-Zr(Ⅳ)复合材料的连续催化氧化脱硫性能。
具体实施方法
通过以下具体的实施例对本发明作进一步的阐述。但本发明的保护范围并不限于下列实施例。
实施例1
(1)羧基功能化磷钨酸离子液体的制备
将0.01 mol的4-氯丁酸甲酯和0.01 mol的1-甲基咪唑添加到25 mL的圆底烧瓶中,在80 ℃下恒温搅拌48 h。将获得的淡黄色黏性物质用乙醚洗涤,并在80 ℃下分散在质量分数为37%的盐酸中,反应2 h。在除去过量的HCl和水之后,通过乙酸乙酯(3×60 mL)洗涤,干燥结晶即得1-羧丙基-3-甲基咪唑氯盐。将0.003 mol的1-羧丙基-3-甲基咪唑氯盐与0.001 mol磷钨酸分别溶解在40 mL的去离子水中。然后将1-羧丙基-3-甲基咪唑氯盐溶液逐滴滴加到磷钨酸的水溶液中,在25 ℃下搅拌12 h。通过离心分离收集白色固体,使用去离子水洗涤多次,在100 ℃的真空条件下干燥12 h即得羧基功能化磷钨酸离子液体。
(2)硅胶负载聚乙烯亚胺表面的羧基化
准确称取0.5 g聚乙烯亚胺溶解在9.5 g甲醇中,制成聚乙烯亚胺浓度为5%的溶液,之后加入1 g介孔硅胶于室温下搅拌24 h,反应完成后将固体取出,并用甲醇洗涤三次,真空干燥后获得负载有聚乙烯亚胺的硅胶,通过元素分析可得聚乙烯亚胺的负载量在0.25g/g(硅胶)。
准确称取0.2 g戊二酸酐和0.4 g 负载有聚乙烯亚胺的硅胶分散于20 mL乙醇中。并在37 ℃水浴条件下搅拌10 h。反应完成后将样品离心分离,并用乙醇超声洗涤三次,将得到的黄色颗粒置于真空干燥箱中,于60 ℃条件下干燥10 h,得到羧基功能化硅胶。
(3)负载型磷钨酸离子液体-Zr(Ⅳ)复合材料的制备
负载型磷钨酸离子液体-Zr(Ⅳ)复合材料的合成过程主要分为两个步骤,步骤A:将0.4 g羧基功能化硅胶分散在50 mL浓度为2 mmol/L的ZrCl4乙腈溶液中,30 ℃条件下搅拌30 min,反应完成后将样品离心分离,并用乙腈洗涤三次。步骤B:将步骤A 生成的颗粒样品均匀分散在50 mL浓度为2 mmol/L的羧基功能化磷钨酸离子液体乙腈溶液中,30 ℃条件下搅拌30 min,反应完成后将样品离心分离,并用乙腈洗涤三次。将步骤B得到的样品替换步骤A中的羧基功能化硅胶后重复步骤A和B 10次,得到硅胶表面覆盖有羧基功能化磷钨酸离子液体和Zr离子配合物的复合材料,磷钨酸离子液体负载量约为复合材料总质量的1.72%,Zr(Ⅳ)在硅胶上的负载量约为复合材料总质量的0.38%。
图1是本实施例所制复合材料的制备机理及结构图。
图2是本实施例所制复合材料的扫描电镜图。其中a1和a2为载体硅胶,b和c分别为层层组装3次和10次后的复合材料的微观形貌图,从图可知,硅胶的颗粒直径大约在300~600 μm左右且表面较为光滑平整。当在硅胶的表面层层组装羧基功能化磷钨酸离子液体和Zr(Ⅳ)3次和10次后,可以发现随着层层组装次数的增加,硅胶表面的颗粒粒径逐渐增大,颗粒物形态也越来越明显。
图3是本实施例所制复合材料的X射线能谱分析。分别选择了硅胶上无颗粒物和有颗粒物的两个区域进行了X射线能谱分析,如图所示,在无颗粒物的区域表面Si含量较高,也有少量的Zr和W元素存在,这是由于硅胶表面负载了少量的Zr(Ⅳ)和羧基功能化磷钨酸离子液体所致,而对硅胶表面的颗粒物进行X射线能谱分析发现Zr,W和P元素的数量较多,证明了负载型磷钨酸离子液体-Zr(Ⅳ)复合材料的成功制备。此外,对羧基功能化磷钨酸离子液体和Zr(Ⅳ) 层层组装 10次后的复合材料进行了元素分析,磷钨酸离子液体负载量约为复合材料总质量的1.72%,Zr(Ⅳ)在硅胶上的负载量约为复合材料总质量的0.38%。
图4是本实施例所用硅胶和所制负载有磷钨酸离子液体和Zr离子配合物的硅胶的N2吸附-脱附等温线和孔径分布图。如图所示,硅胶具有较大的比表面积和较多的介孔,是一种合适的颗粒载体。相比于硅胶,负载有磷钨酸离子液体和Zr(Ⅳ)配合物硅胶的比表面积有着明显的下降,主要是因为磷钨酸离子液体和Zr(Ⅳ)配合物为少孔结构且密度较大,负载在硅胶的表面和孔道后,其会占据颗粒的一部分质量,致使单位质量复合材料中硅胶变少。另外从孔径分布图也可看出,负载配合物后,孔径在6~9 nm范围内的孔容明显减小,这是由于在层层组装过程中,配合物会占据部分硅胶的孔道,引起孔容和比表面积的减小。
应用实施例1
以二苯并噻吩为目标硫化物,将其溶解于正辛烷中,配置成浓度为1000 ppmS的模拟汽油。以本发明合成的负载型磷钨酸离子液体-Zr(Ⅳ)复合材料为催化剂考察其在间歇氧化脱硫反应中的催化性能,在适宜的反应条件下催化剂用量20 g/L,O/S摩尔比4:1,反应温度50 ℃,反应60 min时二苯并噻吩的脱除率可达100%。
应用实施例2
将苯并噻吩为目标硫化物,将其溶解于正辛烷中,配置成浓度为1000 ppmS的模拟汽油。以本发明合成的负载型磷钨酸离子液体-Zr(Ⅳ)复合材料为催化剂考察其在间歇氧化脱硫反应中的催化性能,在适宜的反应条件下催化剂用量20 g/L,O/S摩尔比5:1,反应温度60 ℃,反应100 min时苯并噻吩的脱除率可达93.8%。
应用实施例3
以应用实施例1中的氧化脱除模拟油中二苯并噻吩作为探针反应,考察负载型磷钨酸离子液体-Zr(Ⅳ)复合材料催化剂的重复使用性能,重复使用5次,二苯并噻吩的脱除率如表1所示:
表1 负载型磷钨酸离子液体-Zr(Ⅳ)复合材料在催化氧化脱硫反应中的重复使用性能。
Figure DEST_PATH_IMAGE002
表1结果表明:层层组装制备的负载型磷钨酸离子液体-Zr(Ⅳ)复合材料催化剂经五次重复使用,活性只有轻微降低,展现了其优良的催化稳定性。
应用实施例4
以二苯并噻吩为目标硫化物,将其溶解于正辛烷中,配置成浓度为1000 ppmS的模拟汽油。以负载型磷钨酸离子液体-Zr(Ⅳ)复合材料为催化剂进行连续催化氧化脱硫实验,反应条件为:乙腈, 45 mL,催化剂,1.5 g;模拟油加入量,0.25 mL/min;乙腈与H2O2混合溶液的加入量,0.217 mL/min,其中H2O2的含量为2.5%;反应温度,70 ℃。结果如图5所示,负载型磷钨酸离子液体-Zr(Ⅳ)复合材料展现了较高的活性和稳定性,反应装置连续运转16 h,二苯并噻吩的脱除率仍能保持在95%以上。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (9)

1.一种负载型杂多酸离子液体-Zr(Ⅳ)复合材料的制备方法,其特征在于:包括以下具体步骤:
(1)将杂多酸与羧基功能化含N杂环离子液体分别溶解在去离子水中,然后将两种溶液混合,搅拌一定的时间,得到羧基功能化杂多酸离子液体;
(2)将戊二酸酐和负载有聚乙烯亚胺的硅胶按一定的比例分散于乙醇中,并在37 ℃水浴条件下搅拌10 h,反应完成后将样品离心分离,乙醇洗涤,真空干燥后,得到羧基功能化硅胶;
(3)采用层层组装法制备负载型杂多酸离子液体-Zr(Ⅳ)复合材料,合成过程主要分为两个步骤,步骤A:将上述所得的羧基功能化硅胶分散在ZrCl4乙腈溶液中,30 ℃条件下搅拌30 min,反应完成后将样品离心分离,并用乙腈洗涤三次;步骤B:将步骤A 生成的颗粒样品均匀分散在浓度为2 mmol/L前述所得的羧基功能化杂多酸离子液体乙腈溶液中,30 ℃条件下搅拌30 min,反应完成后将样品离心分离,并用乙腈洗涤三次;将步骤B得到的样品替换步骤A中的羧基功能化硅胶后重复步骤A和B多次,得到表面覆盖有多层杂多酸离子液体和Zr(Ⅳ)的复合材料。
2.根据权利要求1所述的方法,其特征在于:所述步骤(1)中的杂多酸为磷钨酸或磷钼酸。
3.根据权利要求1所述的方法,其特征在于:所述步骤(1)中的羧基功能化含N杂环离子液体为1-羧丙基-3-甲基咪唑氯盐、1-羧丁基-3-甲基咪唑氯盐、1-羧丙基-3-甲基咪唑溴盐、1-羧丁基-3-甲基咪唑溴盐中的一种。
4.根据权利要求1所述的方法,其特征在于:所述步骤(2)中的负载有聚乙烯亚胺的硅胶是指在硅胶孔道内填充了聚乙烯亚胺或聚乙烯亚胺包覆在硅胶表面的复合材料,聚乙烯亚胺在硅胶中的负载量介于0.2~0.6 g/g之间。
5.根据权利要求1所述的方法,其特征在于:所述步骤(2)中的戊二酸酐和负载有聚乙烯亚胺的硅胶的质量比介于0.5~2之间。
6.根据权利要求1所述的方法,其特征在于:所述步骤(3)中的羧基功能化硅胶和ZrCl4的质量比介于3~6之间。
7.根据权利要求1所述的方法,其特征在于:所述步骤(3)中的重复次数为8~20次。
8.一种如权利要求1-7任一所述方法制备获得的负载型杂多酸离子液体-Zr(Ⅳ)复合材料催化剂。
9.如权利要求8所述的负载型杂多酸离子液体-Zr(Ⅳ)复合材料催化剂在催化氧化脱除油品中噻吩类硫化物中的应用。
CN202110985044.4A 2021-08-26 2021-08-26 一种负载型杂多酸离子液体-Zr(Ⅳ)复合材料的制备方法和应用 Active CN113797972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110985044.4A CN113797972B (zh) 2021-08-26 2021-08-26 一种负载型杂多酸离子液体-Zr(Ⅳ)复合材料的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110985044.4A CN113797972B (zh) 2021-08-26 2021-08-26 一种负载型杂多酸离子液体-Zr(Ⅳ)复合材料的制备方法和应用

Publications (2)

Publication Number Publication Date
CN113797972A true CN113797972A (zh) 2021-12-17
CN113797972B CN113797972B (zh) 2023-11-17

Family

ID=78894096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110985044.4A Active CN113797972B (zh) 2021-08-26 2021-08-26 一种负载型杂多酸离子液体-Zr(Ⅳ)复合材料的制备方法和应用

Country Status (1)

Country Link
CN (1) CN113797972B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060052240A1 (en) * 2002-12-20 2006-03-09 Masaaki Sakai Heteropolyacid and or its salt supported catalyst, production process of the catalyst and production process of compound using the catalyst
CN106622373A (zh) * 2016-12-23 2017-05-10 山东大学 一种二氧化硅负载固体杂多酸氧化脱硫催化剂及其制备方法
KR20190051277A (ko) * 2017-11-06 2019-05-15 한국과학기술연구원 감마발레로락톤 제조용 촉매, 이의 제조방법과 상기 촉매를 이용한 감마발레로락톤의 제조방법
CN110252407A (zh) * 2019-07-09 2019-09-20 福州大学 一种羧基功能化离子液体制备核-壳结构催化剂的方法
CN110841718A (zh) * 2019-12-04 2020-02-28 福州大学 一种Zr基MOFs原位桥连封装杂多酸离子液体的方法
CN112371186A (zh) * 2020-12-15 2021-02-19 福州大学 一种多胺-杂多酸非均相复合催化剂的制备方法及其在氧化脱硫中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060052240A1 (en) * 2002-12-20 2006-03-09 Masaaki Sakai Heteropolyacid and or its salt supported catalyst, production process of the catalyst and production process of compound using the catalyst
CN106622373A (zh) * 2016-12-23 2017-05-10 山东大学 一种二氧化硅负载固体杂多酸氧化脱硫催化剂及其制备方法
KR20190051277A (ko) * 2017-11-06 2019-05-15 한국과학기술연구원 감마발레로락톤 제조용 촉매, 이의 제조방법과 상기 촉매를 이용한 감마발레로락톤의 제조방법
CN110252407A (zh) * 2019-07-09 2019-09-20 福州大学 一种羧基功能化离子液体制备核-壳结构催化剂的方法
CN110841718A (zh) * 2019-12-04 2020-02-28 福州大学 一种Zr基MOFs原位桥连封装杂多酸离子液体的方法
CN112371186A (zh) * 2020-12-15 2021-02-19 福州大学 一种多胺-杂多酸非均相复合催化剂的制备方法及其在氧化脱硫中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIUYUN ZHANG 等: "Synthesis and catalytic properties of nickel salts of Keggin-type heteropolyacids embedded metal-organic framework hybrid nanocatalyst", GREEN PROCESS SYNTH *

Also Published As

Publication number Publication date
CN113797972B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
Zhou et al. Desulfurization through photocatalytic oxidation: a critical review
Qi et al. In situ bridging encapsulation of a carboxyl-functionalized phosphotungstic acid ionic liquid in UiO-66: A remarkable catalyst for oxidative desulfurization
Li et al. Electrochemical behavior of metal–organic framework MIL-101 modified carbon paste electrode: an excellent candidate for electroanalysis
Wang et al. Transition metal and nitrogen Co‐doped carbon‐based electrocatalysts for the oxygen reduction reaction: from active site insights to the rational design of precursors and structures
CN100469692C (zh) 含氮有序介孔碳及其合成方法
Pournara et al. Chemically modified electrodes with MOFs for the determination of inorganic and organic analytes via voltammetric techniques: a critical review
Zhu et al. Nitrogen-doped porous carbons from bipyridine-based metal-organic frameworks: Electrocatalysis for oxygen reduction reaction and Pt-catalyst support for methanol electrooxidation
CN108927185B (zh) 一种杂原子掺杂碳纳米管负载磷化铁纳米粒子的氧还原催化剂及其制备方法
Chen et al. Amine modified nano-sized hierarchical hollow system for highly effective and stable oxidative-adsorptive desulfurization
CN110420655A (zh) 一种石墨碳包裹铁-氮-碳固相芬顿催化剂的制备方法及其应用
CN113522317B (zh) 由MOFs衍生的钴基双金属硫/碳催化剂的制备方法和应用
Mao et al. Imidazolium‐Functionalized Cationic Covalent Triazine Frameworks Stabilized Copper Nanoparticles for Enhanced CO2 Electroreduction
CN107970894A (zh) 一种cof/go吸附剂的制备方法及应用
Gao et al. Construction of heterostructured g-C3N4@ TiATA/Pt composites for efficacious photocatalytic hydrogen evolution
Bagheri et al. Quasi-metal organic frameworks: Preparation, applications and future perspectives
CN111916769A (zh) 一种用于锌空电池的Cu掺杂中空六边形ZIF-8材料的制备方法
Zhang et al. Effects of different defective linkers on the photocatalytic properties of Cu-BTC for overall water decomposition
Li et al. Covalent–Organic Framework (COF)‐Core–Shell Composites: Classification, Synthesis, Properties, and Applications
Xu et al. Research progress of POMs constructed by 1, 3, 5-benzene-tricarboxylic acid: From synthesis to application
He et al. Development of g-C3N4 activated hollow carbon spheres with good performance for oxygen reduction and selective capture of acid gases
Yang et al. The development and application of metal-organic frameworks in the field of photocatalysis
Rani et al. MOF-inorganic nanocomposites: Bridging a gap with inorganic materials
CN109796430A (zh) 一种生物质基呋喃二甲酸-金属杂化材料及其制备方法与应用
Liu et al. Polyoxometalate‐Based Metal Organic Frameworks: Recent Advances and Challenges
Cruz et al. Heterogeneous oxidative desulfurization catalysed by titanium grafted mesoporous silica nanoparticles containing tethered hydrophobic ionic liquid: A dual activation mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant