CN113792984A - 基于云模型的防空反导指挥控制模型能力评估方法 - Google Patents

基于云模型的防空反导指挥控制模型能力评估方法 Download PDF

Info

Publication number
CN113792984A
CN113792984A CN202110964858.XA CN202110964858A CN113792984A CN 113792984 A CN113792984 A CN 113792984A CN 202110964858 A CN202110964858 A CN 202110964858A CN 113792984 A CN113792984 A CN 113792984A
Authority
CN
China
Prior art keywords
evaluation
cloud
index
model
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110964858.XA
Other languages
English (en)
Other versions
CN113792984B (zh
Inventor
李松
宋亚飞
路艳丽
王莹莹
郭新鹏
王艺菲
林驰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Force Engineering University of PLA
Original Assignee
Air Force Engineering University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Force Engineering University of PLA filed Critical Air Force Engineering University of PLA
Priority to CN202110964858.XA priority Critical patent/CN113792984B/zh
Publication of CN113792984A publication Critical patent/CN113792984A/zh
Application granted granted Critical
Publication of CN113792984B publication Critical patent/CN113792984B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Data Mining & Analysis (AREA)
  • Economics (AREA)
  • Mathematical Physics (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Engineering & Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • General Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Software Systems (AREA)
  • Primary Health Care (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)

Abstract

本发明公开了一种基于云模型的防空反导指挥控制模型能力评估方法,包括以下步骤:步骤1:模型能力评估指标体系有m个评估指标,计算评估指标主客观综合权重;步骤2:根据m个评估指标的评估值确定样本矩阵Xi(xi1,xi2,…,xim),其中i=1,2,…n,通过逆向云发生器获得m个评估指标云的数字特征,即(Ex1,Ex2,…,Exm;En1,En2,…,Enm;He1,He2,…,Hem);步骤3:结合步骤1计算得到的主客观综合权重及各能力指标评估云,得到综合评估云C(Ex,En,He)。本发明采用基于AHP和RAGA‑PPC的主客观综合赋权方法,使评价更加客观真实,避免评价结果的主观随意性,同时通过通过引入云模型实现定性指标的定量化处理。

Description

基于云模型的防空反导指挥控制模型能力评估方法
技术领域
本发明属军事指挥控制技术领域,具体涉及一种基于云模型的防空反导指挥控制模型能力评估方法。
背景技术
防空反导指挥控制模型作为防空反导一体化作战体系的核心,一直以来是研究的热点,在信息化、网络化和赛博理念的驱动下,国内外很多学者取得创新性突破,而随着该领域新型防空反导武器装备的研制成功,同时为应对多层次打击、隐身作战及先进干扰手段的挑战,对防空反导及信息火力一体化、多型号武器装备协同作战能力提出新的要求,因此需要加快防空反导指挥控制模型升级跨代和创新设计的步伐。而防空反导指挥控制模型嵌入于其系统中,更需高度重视防空反导指挥控制模型的设计,良好的指挥控制模型可以有效地整合各节点及协调各方资源从而保证相应作战能力的实现。
当前防空反导指挥控制模型评估主要对模型自身的功能性能评估,即对模型在一定环境下是否具备完成特定任务的能力以及完成程度的度量,而指挥控制模型功能性能的评估可以帮助研究人员确认模型执行任务的能力,找出影响能力发挥的环节和因素,从而对其进行优化改善。通常模型评估是基于评估基本准则,根据模型的属性、结构、功能及任务等建立一套科学合理的指标体系,利用定性与定量相结合的评估方法对模型进行评估。
在模型能力评估中,习惯结合功能、性能和效能对其能力进行描述,而能力不是三种属性的简单叠加,其中功能主要是表达模型的某项“技能”,即具备做某项任务的能力,而性能是指模型在执行功能时所体现的能力,比如精确度、敏捷性等,效能则是从概率角度描述在规定条件和时间内满足作战需求的程度,能力强调的是更加全面去反映模型功能、性能和效能。由此可见国内在基于能力视角的作战系统和武器装备评估已经取得一定的研究成果,但是基本集中在体系结构评估,对于模型能力评估研究较少且缺乏统一的标准。主要在在指标权重确定方面,当前对于指标的赋权主要采用AHP等主观赋权方法,导致评估结果过分强调决策者意志,而缺乏对客观赋权方法的研究,评估结果容易出现较强的主观随意性。
发明内容
针对上述存在的不足,本发明提出一种基于云模型的防空反导指挥控制模型能力评估方法。
本发明采用的技术方案是:
基于云模型的防空反导指挥控制模型能力评估方法,包括以下步骤:
步骤1:模型能力评估指标体系有m个评估指标,计算评估指标主客观综合权重;
步骤2:根据m个评估指标的评估值确定样本矩阵Xi(xi1,xi2,…,xim),其中i=1,2,…n,通过逆向云发生器获得m个评估指标云的数字特征,即(Ex1,Ex2,…,Exm;En1,En2,…,Enm;He1,He2,…,Hem);
步骤3:结合步骤1计算得到的主客观综合权重及各能力指标评估云,得到综合评估云C(Ex,En,He);
步骤4:通过相似度计算得出综合评估云与各个标准云之间的相似程度,并通过其大小的排序可以得到最终评估结果。
优选的,在步骤1中,计算评估指标主客观综合权重的过程包括计算主观权重、计算客观权重和计算综合权重。
优选的,主观权重的计算过程如下:
步骤101:根据能力评估指标体系建立层次结构模型;
步骤102:构建判断矩阵A,即
Figure BDA0003223343820000031
其中,aij>0,表示第i个指标元素相对第j个指标元素对主准则层相关的指标的重要程度,确定判断矩阵中指标元素重要性程度值采用Saaty的1~9标度法;
步骤103:根据得到的判断矩阵求解初始权重向量以及最大特征值,得到相应的层次单排序权向量Ks=[k1,k2,L kn]T,kn表示第n个指标元素的权重;
步骤104:根据得到最大特征值对矩阵A进行一致性检验;
步骤105:计算总排序权向量q。
优选的,在步骤103中,首先利用近似算法对判断矩阵的最大特征值和正交特征向量进行求解,从而得到相应的层次单排序权向量,具体步骤如下:
(1)对矩阵A进行归一化处理得到矩阵B,其中,
Figure BDA0003223343820000032
(2)令B=[B1,B2L Bn],其中Bi=[b1i,b2iL bni]T,然后对指标初始权重进行计算,具体公式如下:
Figure BDA0003223343820000033
(3)根据得到的指标初始权重向量计算判断矩阵A的最大特征值λmax
Figure BDA0003223343820000034
则最大特征值为
Figure BDA0003223343820000041
其中cn表示为A·Ks的第n个分量。
优选的,客观权重的计算步骤如下:
步骤111:建立初始模型能力评估矩阵,假设模型能力评估指标体系有m个评估指标,由n个领域专家对模型无子叶指标进行打分,从而得到矩阵X={xij}n×m,其中xij表示第j个指标的第i个评估值,并根据评估值的需要确定是否对量纲和变化范围进行归一化处理,具体如下:
对越大越优型指标采用:
Figure BDA0003223343820000042
对越小越优型指标采用:
Figure BDA0003223343820000043
通过归一化处理得到标准评估判断矩阵:Y={yij}n×m;
步骤112:构造投影指标函数,首先依据投影寻踪原理对m维评估指标数据{yij|j=1,2,3,...,m}进行降维处理,得到投影方向{aj|j=1,2,3,...,m},然后计算m维评估指标数据在一维空间上的投影值,具体如下:
Figure BDA0003223343820000044
为满足指标数据小范围内投影点的聚集,采用以下投影指数函数:
Q(a)=S(z)D(z)
其中,S(z)用标准差度量数据的扩散程度;D(z)表示投影点局部密度,具体如下:
Figure BDA0003223343820000045
Figure BDA0003223343820000046
式中,
Figure BDA0003223343820000051
z(i)为第i个评估数据在一维空间的投影,R为局部宽度参数,可取R=0.1S(z),且rij=|z(i)-z(j)|,u(t)为单位阶跃函数,表现为
Figure BDA0003223343820000052
步骤113:对投影指标函数进行优化,主要是对目标函数进行最大化处理并对投影方向进行限制,从而求取最佳投影方向,具体优化如下:
maxQ(a)=S(z)D(z)
Figure BDA0003223343820000053
进行RAGA的迭代处理,从而得到最佳投影方向{aj,j=1,2,L,m},最佳投影方向代表各能力评估指标对模型整体能力的贡献,同时最佳投影方向是单位向量,满足平方和为1,故可得到各模型能力评估指标权重为:ω=(a1 2,a2 2,...,am 2)。
优选的,综合权重的计算过程如下:
由主客观赋权法得到的综合权重向量表示为:w=αq+βω;式中,α,β为主客观赋权法联系的待定系数,关于α,β的确定,下面主要是采用差异系数法,计算如下:
Figure BDA0003223343820000054
β=1-α
(α与β的关系为:α+β=1,α>0,β>0)
其中,T为主观权重q的各分量的差异系数,具体计算如下:
Figure BDA0003223343820000055
其中,q1,q2L qm是主观权重向量中各分量从小到大的重新排列。
优选的,在步骤2中,评估指标云生成的具体步骤如下:
步骤201:计算m个模型能力评估指标的评估值均值,具体如下:
Figure BDA0003223343820000056
步骤202:计算期望值,如下:
Figure BDA0003223343820000061
步骤203:计算评估值的一阶中心矩,具体如下:
Figure BDA0003223343820000062
步骤204:计算熵值,如下:
Figure BDA0003223343820000063
步骤205:计算评估值方法,具体如下:
Figure BDA0003223343820000064
步骤206:计算超熵,如下:
Figure BDA0003223343820000065
优选的,在步骤3中,结合计算得到的主观综合权重及各能力指标评估云,可以计算得到综合评估云,具体如下:
Figure BDA0003223343820000066
优选的,相似度计算步骤如下:
步骤401:假设存在两个云图C1(Ex1,En1,He1)和C2(Ex2,En2,He2),利用C1中的En1
Figure BDA0003223343820000067
通过NORM(En,He2)公式计算正态随机数
Figure BDA0003223343820000068
步骤402:利用云图C1中的Ex1和En′i,通过NORM(Ex,En′i)公式计算正态随机数xi
步骤403:计算云滴(xii)在云图C2中的隶属度μ′i,具体如下:
Figure BDA0003223343820000071
步骤404:重复步骤402~403,直到生成n个μ′i
步骤405:计算相似度两个云图之间的相似度δ,具体如下:
Figure BDA0003223343820000072
本发明的有益效果:本发明采用基于AHP和RAGA-PPC的主客观综合赋权方法,使评价更加客观真实,避免评价结果的主观随意性,同时通过通过引入云模型实现定性指标的定量化处理,解决了在实际的防空反导指挥控制模型能力评估中评估指标模糊性和随机性较大的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的基于云模型的防空反导指挥控制模型能力评估方法的流程图;
图2为标准云评估标尺图;
图3为某型目标分配模型能力评估指标体系;
图4为主观权重分布图;
图5为客观权重分布图;
图6为综合权重分布图;
图7为综合评估云。
图8为模型能力评估云图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明具体提供了一种基于云模型的防空反导指挥控制模型能力评估方法,如图1所示,包括以下步骤:
步骤1:模型能力评估指标体系有m个评估指标,计算评估指标主客观综合权重;
步骤2:根据m个评估指标的评估值确定样本矩阵Xi(xi1,xi2,…,xim),其中i=1,2,…n,通过逆向云发生器获得m个评估指标云的数字特征(包括期望Ex、熵En和超熵He),即(Ex1,Ex2,…,Exm;En1,En2,…,Enm;He1,He2,…,Hem);
步骤3:结合步骤1计算得到的主客观综合权重及各能力指标评估云,得到综合评估云C(Ex,En,He);
步骤4:通过相似度计算得出综合评估云与各个标准云之间的相似程度,并通过其大小的排序可以得到最终评估结果。
在步骤1中,计算评估指标主客观综合权重的过程包括计算主观权重、计算客观权重和计算综合权重。
计算主观权重
主观权重的确定主要是采用层次分析法,这种方法是社会经济系统评估中经常采用的工具,能够有效结合定性与定量的优势,面对评估对象结构复杂和数据缺乏的问题时,层次分析法能通过决策者经验进行量化描述,将其主观判断和推理联系起来,实现向评估对象赋予权重并进行优劣排序,具有较强的实用性。层次分析法的基本思想是通过对评估对象的分析将复杂的评估问题分解成递阶的若干个层次,一般取目标层、主准则层、次准则层和次次准则层,通过层与层元素之间相互比较的方式确定其间的权重关系,具体步骤如下:
步骤101:根据能力评估指标体系建立层次结构模型;
步骤102:构建判断矩阵A,假设主准则层中的某个指标与下一层次的n个元素有关,从而得到一个判断矩阵即
Figure BDA0003223343820000091
其中,aij>0,表示第i个指标元素相对第j个指标元素对主准则层相关的指标的重要程度,确定判断矩阵中指标元素重要性程度值采用Saaty的1~9标度法;
步骤103:根据得到的判断矩阵求解初始权重向量以及最大特征值,首先利用近似算法对判断矩阵的最大特征值和正交特征向量进行求解,从而得到相应的层次单排序权向量,具体步骤如下:
(1)对矩阵A进行归一化处理得到矩阵B,其中,
Figure BDA0003223343820000092
(2)令B=[B1,B2L Bn],其中Bi=[b1i,b2iL bni]T,然后对指标初始权重进行计算,具体公式如下:
Figure BDA0003223343820000093
(3)根据得到的指标初始权重向量计算判断矩阵A的最大特征值λmax
Figure BDA0003223343820000101
则最大特征值为
Figure BDA0003223343820000102
kn表示第n个指标元素的权重。
步骤104:根据得到最大特征值对矩阵A进行一致性检验;
(1)首先根据公式
Figure BDA0003223343820000103
计算一致性指标;
(2)再计算一致性比例
Figure BDA0003223343820000104
其中RI是平均随机一致性指标,主要由n决定,具体数值求取如表1所示;
(3)一般可以根据得到的CR判断矩阵是否满足一致性要求,当其数值小于等于0.01时则满足,否则需求对其进行必要的修改。
表1平均随机一致性指标
n 1 2 3 4 5 6 7 8 9
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45
步骤105:计算总排序权向量q,前面步骤只是得到单排序权向量Ks=[k1,k2,L kn]T,而对于总排序权向量q的计算,假设主准则层P具有m个指标P1,P2,L Pm,根据次准则层对主准则层权向量的计算方法可得主准则层对目标层的权向量p=[p1,p2L pm],与Pj对应的次准则层Q共有n个元素Q1,Q2L Qn,由层次单排序权向量计算可得相对于Pj的单排序向量为(d1j,d2j…dnj),当次准则层元素Qi与上层元素Pj无关时,dij=0。再根据次准则层对主准则层的权重及主准则层对目标层的权重确定次准则层对目标层的权向量,同理也可得到次次准则层对目标层的权向量,即主观权重。
计算客观权重
客观权重的确定主要采用加速遗传算法—投影寻踪模型(RAGA-PPC),具体的计算步骤如下:
步骤111:建立初始模型能力评估矩阵,假设模型能力评估指标体系有m个评估指标,由n个领域专家对模型无子叶指标进行打分,从而得到矩阵X={xij}n×m,其中xij表示第j个指标的第i个评估值,并根据评估值的需要确定是否对量纲和变化范围进行归一化处理,具体如下:
对越大越优型指标采用:
Figure BDA0003223343820000111
对越小越优型指标采用:
Figure BDA0003223343820000112
通过归一化处理得到标准评估判断矩阵:Y={yij}n×m;
步骤112:构造投影指标函数,首先依据投影寻踪原理对m维评估指标数据{yij|j=1,2,3,...,m}进行降维处理,得到投影方向{aj|j=1,2,3,...,m},然后计算m维评估指标数据在一维空间上的投影值,具体如下:
Figure BDA0003223343820000113
为满足指标数据小范围内投影点的聚集,采用以下投影指数函数:
Q(a)=S(z)D(z)
其中,S(z)用标准差度量数据的扩散程度;D(z)表示投影点局部密度,具体如下:
Figure BDA0003223343820000114
Figure BDA0003223343820000115
式中,
Figure BDA0003223343820000116
z(i)为第i个评估数据在一维空间的投影,R为局部宽度参数,可取R=0.1S(z),且rij=|z(i)-z(j)|,u(t)为单位阶跃函数,表现为
Figure BDA0003223343820000121
步骤113:利用RAGA算法对投影指标函数进行优化,主要是对目标函数进行最大化处理并对投影方向进行限制,从而求取最佳投影方向,具体优化如下:
maxQ(a)=S(z)D(z)
Figure BDA0003223343820000122
主要是在Matlab R2010b软件平台上进行RAGA算法程序的编写和运行,通过对高维数据的降维处理,并进行进行RAGA的迭代处理,从而得到最佳投影方向{aj,j=1,2,L,m},最佳投影方向代表各能力评估指标对模型整体能力的贡献,同时最佳投影方向是单位向量,满足平方和为1,故可得到各模型能力评估指标权重为:ω=(a1 2,a2 2,...,am 2)。
计算综合权重
由主客观赋权法得到的综合权重向量表示为:w=αq+βω;式中,α,β为主客观赋权法联系的待定系数,关于α,β的确定,下面主要是采用差异系数法,计算如下:
Figure BDA0003223343820000123
β=1-α
(α与β的关系为:α+β=1,α>0,β>0)
其中,T为主观权重q的各分量的差异系数,具体计算如下:
Figure BDA0003223343820000124
其中,q1,q2L qm是主观权重向量中各分量从小到大的重新排列。
在步骤2中,评估指标云生成的具体步骤如下:
步骤201:计算m个模型能力评估指标的评估值均值,具体如下:
Figure BDA0003223343820000125
步骤202:计算期望值,如下:
Figure BDA0003223343820000131
步骤203:计算评估值的一阶中心矩,具体如下:
Figure BDA0003223343820000132
步骤204:计算熵值,如下:
Figure BDA0003223343820000133
步骤205:计算评估值方法,具体如下:
Figure BDA0003223343820000134
步骤206:计算超熵,如下:
Figure BDA0003223343820000135
在步骤3中,结合计算得到的主观综合权重及各能力指标评估云,可以计算得到综合评估云,具体如下:
Figure BDA0003223343820000136
在步骤4中,相似度计算步骤如下:
步骤401:假设存在两个云图C1(Ex1,En1,He1)和C2(Ex2,En2,He2),利用C1中的En1
Figure BDA0003223343820000137
通过NORM(En,He2)公式计算正态随机数
Figure BDA0003223343820000138
步骤402:利用云图C1中的Ex1和En′i,通过NORM(Ex,En′i)公式计算正态随机数xi
步骤403:计算云滴(xii)在云图C2中的隶属度μ′i,具体如下:
Figure BDA0003223343820000141
步骤404:重复步骤402~403,直到生成n个μ′i
步骤405:计算相似度两个云图之间的相似度δ,具体如下:
Figure BDA0003223343820000142
在步骤401中,云图相当于云模型评估方法中衡量的标准,可以简称为评估标尺,通常是利用定性语言对应区间范围的双边约束值并按照特定的云运算规则求解得到其云数字特征,例如:假定区间为[Fmin,Fmax],依据正向云发生器原理生成云图,具体如下:
Figure BDA0003223343820000143
He=k
式中,当Fmin=0时,Ex=Fmin,当Fmax=1时,Ex=Fmax,其中k值就是超熵,主要用于衡量评估值的随机性,它越大代表随机性越强,结合实际情况取k值为0.005。按照以上算法求解得到标准云模型为:C较低(0.2,0.067,0.005),C(0.5,0.033,0.005),C一般(0.7,0.033,0.005),C(0.85,0.017,0.005),C较高(0.95,0.017,0.005),并在Matlab R2010b上进行正向云发生器程序仿真得到相应的标准云评估标尺图如图2所示。
实例分析
某型目标分配模型能力评估指标体系如图3所示,由于该型目标分配模型能力评估指标较多,在数据分析中容易出现错误,为方便接下来对模型评估指标的打分及模型能力的计算,首先对模型能力评估指标进行适当编号,具体如表2所示。同时结合该型目标分配模型的特点及能力评估指标的层次结构,结合相关模型设计的资料及模型需求的收集与分析的详细信息邀请领域内10名专家学者对无子叶指标进行分析并给出相应的分值,评分分值主要限定在[0,1]区间内,具体的模型能力指标评估结果,即该型目标分配模型能力评估指标的评估值如表3所示。
表2模型能力评估指标集
Figure BDA0003223343820000151
表3各指标评估值
Figure BDA0003223343820000161
该实验是在Microsoft Windows7操作系统下运行,运用Matlab R2010b进行相关数据计算和仿真。
指标权重的确定
主观权重的确定
通过5位相关领域专家学者对各个评估指标的重要程度进行评价,得到相应的判断矩阵,再按照主观权重的计算公式逐步求解,最终得到模型能力评估指标主观权重的分布情况如图4所示,具体数值如表4所示。
根据主观权重的分布及图4的直观显示,可以看出在主观权重判断中,专家学者普遍认为目标分配流程符合性、目标函数匹配度、任务类型复杂度、任务调整适应速度、时间适应能力、目标要素容变范围及分配要素容变范围是主要影响模型能力发挥的关键评估指标,其中目标函数匹配度、任务调整适应速度及时间适应能力占的比重最大,同时可以看到目前领域内专家对于模型设计中的智能化设计的关注度不高,主要侧重在空防对战中实时性和具体作战流程设计合理性的分析。
表4主观权重分布
Figure BDA0003223343820000171
Figure BDA0003223343820000181
客观权重的确定
首先对表3指标评估值进行归一化处理,然后计算获得投影指标函数,选定初始种群规模为500,交叉概率为0.8,变异概率为0.8,加速次数为20,通过Matlab R2010b编写的加速遗传算法程序对数据进行处理从而求得各能力评估指标的客观权重为:
ω=(0.046,0.011,0.044,0.016,0.068,0.003,0.086,0.013,0.039,0.044,0.028,0.086,0.065,0.043,0.059,0.045,0.039,0.065,0.008,0.018,0.008,0.051,0.071,0.044),具体的客观权重分布如图5所示,可以直观看出在客观权重中,算法智能化程度、目标要素匹配度、作战条例复杂度、作战条例适用度、分配规则适用度、时间适应能力及逻辑节点容变范围所占比重比较大,侧面反映当前防空反导指挥控制模型研制中对于模型智能化设计及贴近实践中作战条例规则和空防对抗作战中高实时性需求的重视。
综合权重的确定
对前面求得的主客观权重进行综合,从而获取模型能力评估指标的最终权重为:
w=(0.059,0.015,0.039,,0.016,0.044,0.006,0.068,0.016,0.073,0.051,0.066,0.054,0.041,0.031,0.040,0.035,0.041,0.088,0.032,0.038,0.026,0.041,0.050,0.030),具体分布如图6所示。在经过主客观权重的综合分析后,由图可以直观地看出影响模型能力指标的权重分布相对均衡。
评估指标云的计算
根据表3提供的模型能力评估指标评价初始值,利用评估指标云生成方法在Matlab R2010b进行仿真计算得到各能力评估指标的云数字特征,从而得到所有无子叶指标的评估指标云,对得到的评估云云数字特征进行分析并生成相应的云图,可以比较直观地展示评估云的分布情况,具体数据如表5所示。
表5各能力评估指标云
Figure BDA0003223343820000191
综合评估云的计算
根据前面得到的综合权重和各个评估指标云,按照
Figure BDA0003223343820000201
将两者进行综合最终得到综合评估云为(0.737,0.140,0.036),通过正向云发生器获得该综合评估云的云图如图7所示。
相似度计算
计算综合评估云与各标准云之间的相似度,根据相似度判断该型目标分配模型能力的高低,一般相似度最接近的标准云即代表最终的评估结果,具体的计算结果如下表所示,同时通过正向云发生器可以得到云图如图8所示。
表6综合评估云与标准云的相似度
标准云 较低 一般 较高
相似度 0.002106 0.053362 0.221911 0.083115 0.035506
根据相似度计算结果可以得到该型目标分配模型的能力综合评估结果为一般,即基本上可以满足实际作战需求,但是在面对特殊的空情态势时可能会出现能力不足的情况。同时,从综合权重分析结果可以得出需求匹配能力中的目标分配流程符合性、目标要素匹配度和目标函数匹配度。提高评估的客观性和真实性。
在上述实例分析验证本发明设计的基于云模型的防空反导指挥控制模型能力评估方法具有可行性和有效性,且评估客观准确。
以上所述,仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其它修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.基于云模型的防空反导指挥控制模型能力评估方法,其特征在于,包括以下步骤:
步骤1:模型能力评估指标体系有m个评估指标,计算评估指标主客观综合权重;
步骤2:根据m个评估指标的评估值确定样本矩阵Xi(xi1,xi2,…,xim),其中i=1,2,…n,通过逆向云发生器获得m个评估指标云的数字特征,即
(Ex1,Ex2,…,Exm;En1,En2,…,Enm;He1,He2,…,Hem);
步骤3:结合步骤1计算得到的主客观综合权重及各能力指标评估云,得到综合评估云C(Ex,En,He);
步骤4:通过相似度计算得出综合评估云与各个标准云之间的相似程度,并通过其大小的排序可以得到最终评估结果。
2.根据权利要求1所述的基于云模型的防空反导指挥控制模型能力评估方法,其特征在于,在步骤1中,计算评估指标主客观综合权重的过程包括计算主观权重、计算客观权重和计算综合权重。
3.根据权利要求2所述的基于云模型的防空反导指挥控制模型能力评估方法,其特征在于,主观权重的计算过程如下:
步骤101:根据能力评估指标体系建立层次结构模型;
步骤102:构建判断矩阵A,即
Figure FDA0003223343810000011
其中,aij>0,表示第i个指标元素相对第j个指标元素对主准则层相关的指标的重要程度,确定判断矩阵中指标元素重要性程度值采用Saaty的1~9标度法;
步骤103:根据得到的判断矩阵求解初始权重向量以及最大特征值,得到相应的层次单排序权向量Ks=[k1,k2,L kn]T,kn表示第n个指标元素的权重;
步骤104:根据得到最大特征值对矩阵A进行一致性检验;
步骤105:计算总排序权向量q。
4.根据权利要求3所述的基于云模型的防空反导指挥控制模型能力评估方法,其特征在于,在步骤103中,首先利用近似算法对判断矩阵的最大特征值和正交特征向量进行求解,从而得到相应的层次单排序权向量,具体步骤如下:
(1)对矩阵A进行归一化处理得到矩阵B,其中,
Figure FDA0003223343810000021
(2)令B=[B1,B2L Bn],其中Bi=[b1i,b2iL bni]T,然后对指标初始权重进行计算,具体公式如下:
Figure FDA0003223343810000022
(3)根据得到的指标初始权重向量计算判断矩阵A的最大特征值λmax
Figure FDA0003223343810000023
则最大特征值为
Figure FDA0003223343810000031
其中cn表示为A·Ks的第n个分量。
5.根据权利要求2所述的基于云模型的防空反导指挥控制模型能力评估方法,其特征在于,客观权重的计算步骤如下:
步骤111:建立初始模型能力评估矩阵,假设模型能力评估指标体系有m个评估指标,由n个领域专家对模型无子叶指标进行打分,从而得到矩阵X={xij}n×m,其中xij表示第j个指标的第i个评估值,并根据评估值的需要确定是否对量纲和变化范围进行归一化处理,具体如下:
对越大越优型指标采用:
Figure FDA0003223343810000032
对越小越优型指标采用:
Figure FDA0003223343810000033
通过归一化处理得到标准评估判断矩阵:Y={yij}n×m;
步骤112:构造投影指标函数,首先依据投影寻踪原理对m维评估指标数据{yij|j=1,2,3,...,m}进行降维处理,得到投影方向
{aj|j=1,2,3,...,m},然后计算m维评估指标数据在一维空间上的投影值,具体如下:
Figure FDA0003223343810000034
为满足指标数据小范围内投影点的聚集,采用以下投影指数函数:
Q(a)=S(z)D(z)
其中,S(z)用标准差度量数据的扩散程度;D(z)表示投影点局部密度,具体如下:
Figure FDA0003223343810000041
Figure FDA0003223343810000042
式中,
Figure FDA0003223343810000043
z(i)为第i个评估数据在一维空间的投影,R为局部宽度参数,可取R=0.1S(z),且rij=|z(i)-z(j)|,u(t)为单位阶跃函数,表现为
Figure FDA0003223343810000044
步骤113:对投影指标函数进行优化,主要是对目标函数进行最大化处理并对投影方向进行限制,从而求取最佳投影方向,具体优化如下:
maxQ(a)=S(z)D(z)
Figure FDA0003223343810000045
进行RAGA的迭代处理,从而得到最佳投影方向{aj,j=1,2,L,m},最佳投影方向代表各能力评估指标对模型整体能力的贡献,同时最佳投影方向是单位向量,满足平方和为1,故可得到各模型能力评估指标权重为:ω=(a1 2,a2 2,...,am 2)。
6.根据权利要求2所述的基于云模型的防空反导指挥控制模型能力评估方法,其特征在于,综合权重的计算过程如下:
由主客观赋权法得到的综合权重向量表示为:w=αq+βω;式中,α,β为主客观赋权法联系的待定系数,关于α,β的确定,下面主要是采用差异系数法,计算如下:
Figure FDA0003223343810000051
β=1-α
(α与β的关系为:α+β=1,α>0,β>0)
其中,T为主观权重q的各分量的差异系数,具体计算如下:
Figure FDA0003223343810000052
其中,q1,q2L qm是主观权重向量中各分量从小到大的重新排列。
7.根据权利要求1所述的基于云模型的防空反导指挥控制模型能力评估方法,其特征在于,在步骤2中,评估指标云生成的具体步骤如下:
步骤201:计算m个模型能力评估指标的评估值均值,具体如下:
Figure FDA0003223343810000053
步骤202:计算期望值,如下:
Figure FDA0003223343810000054
步骤203:计算评估值的一阶中心矩,具体如下:
Figure FDA0003223343810000055
步骤204:计算熵值,如下:
Figure FDA0003223343810000056
步骤205:计算评估值方法,具体如下:
Figure FDA0003223343810000057
步骤206:计算超熵,如下:
Figure FDA0003223343810000058
8.根据权利要求1所述的基于云模型的防空反导指挥控制模型能力评估方法,其特征在于,在步骤3中,结合计算得到的主观综合权重及各能力指标评估云,可以计算得到综合评估云,具体如下:
Figure FDA0003223343810000061
9.根据权利要求8所述的基于云模型的防空反导指挥控制模型能力评估方法,其特征在于,在步骤4中,相似度计算步骤如下:
步骤401:假设存在两个云图C1(Ex1,En1,He1)和C2(Ex2,En2,He2),利用C1中的En1
Figure FDA0003223343810000062
通过NORM(En,He2)公式计算正态随机数
Figure FDA0003223343810000063
步骤402:利用云图C1中的Ex1和En′i,通过NORM(Ex,En′i)公式计算正态随机数xi
步骤403:计算云滴(xii)在云图C2中的隶属度μ′i,具体如下:
Figure FDA0003223343810000064
步骤404:重复步骤402~403,直到生成n个μ′i
步骤405:计算相似度两个云图之间的相似度δ,具体如下:
Figure FDA0003223343810000065
CN202110964858.XA 2021-08-21 2021-08-21 基于云模型的防空反导指挥控制模型能力评估方法 Active CN113792984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110964858.XA CN113792984B (zh) 2021-08-21 2021-08-21 基于云模型的防空反导指挥控制模型能力评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110964858.XA CN113792984B (zh) 2021-08-21 2021-08-21 基于云模型的防空反导指挥控制模型能力评估方法

Publications (2)

Publication Number Publication Date
CN113792984A true CN113792984A (zh) 2021-12-14
CN113792984B CN113792984B (zh) 2023-05-26

Family

ID=79182085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110964858.XA Active CN113792984B (zh) 2021-08-21 2021-08-21 基于云模型的防空反导指挥控制模型能力评估方法

Country Status (1)

Country Link
CN (1) CN113792984B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114595948A (zh) * 2022-02-23 2022-06-07 南京化科天创科技有限公司 基于人工智能的多风险参数企业风险评估方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615122A (zh) * 2018-05-11 2018-10-02 北京航空航天大学 一种防空反导体系作战能力评估方法
CN110490422A (zh) * 2019-07-22 2019-11-22 中北大学 一种基于博弈云模型的目标作战效能态势评估方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615122A (zh) * 2018-05-11 2018-10-02 北京航空航天大学 一种防空反导体系作战能力评估方法
CN110490422A (zh) * 2019-07-22 2019-11-22 中北大学 一种基于博弈云模型的目标作战效能态势评估方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIAODAN WANG, ETC.: "One-dimension hierarchical local receptive fields based extreme learning machine for radar target HRRP recognition", 《ELSEVIER》 *
林驰等: "基于主客观综合赋权的防空反导指控系统敏捷性评价", 《空军工程大学学报(自然科学版)》 *
林驰等: "防空反导作战指控模型校核验证及评估", 《火力与指挥控制》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114595948A (zh) * 2022-02-23 2022-06-07 南京化科天创科技有限公司 基于人工智能的多风险参数企业风险评估方法及系统

Also Published As

Publication number Publication date
CN113792984B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
CN107045458B (zh) 基于多目标量子粒子群算法的无人机协同任务分配方法
CN110119904A (zh) 一种舰船装备维修保障能力评估方法和系统
CN109374986B (zh) 一种基于聚类分析与网格搜索的雷电定位方法及系统
CN114841055B (zh) 一种基于生成对抗网络的无人机集群任务预分配方法
CN115420294A (zh) 一种基于改进人工蜂群算法的无人机路径规划方法及系统
CN113792984A (zh) 基于云模型的防空反导指挥控制模型能力评估方法
CN115829097A (zh) 一种基于vmd和kelm的空调超短期负荷预测方法
CN113094971A (zh) 基于熵权-灰色层次分析的建模仿真即服务可信度评估方法及系统
CN114912741A (zh) 一种作战体系结构效能评估方法、装置以及存储介质
CN113177583B (zh) 一种空中目标聚类分群方法
CN114219228A (zh) 一种基于em聚类算法的体育场疏散评价方法
CN113408895A (zh) 基于像元尺度的生态质量指数构建方法及系统
CN117370766A (zh) 一种基于深度学习的卫星任务规划方案评估方法
CN117094435A (zh) 一种云制造自适应鲁棒服务组合与优化选择新方法
CN111008440A (zh) 一种基于理想解法的五性与性能综合权衡方法
CN106897837A (zh) 一种电力巡检用无人直升机系统效能评估方法
CN106600100A (zh) 一种基于加权的多种群粒子群优化的危险源原因分析方法
CN113408137B (zh) 一种基于任务完成度和损失比的体系作战效能分析方法
CN114565027A (zh) 基于空中飞行目标雷达数据的威胁度评估方法
CN112241811B (zh) “互联网+”环境下定制产品的分层混合性能预测方法
CN103020452B (zh) 一种雷达辐射源威胁等级判断方法
CN115936512A (zh) 基于目标需求的武器装备设计方案的评估方法及系统
CN112926198A (zh) 一种MSaaS仿真架构的可信度评估方法及系统
CN113435780A (zh) 一种基于神经网络的应急通信感知装备体系效能评估方法
CN113052451A (zh) 一种基于改进层次分析法的性能评估方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant