CN113773607B - 用于全钒液流电池的嵌段型聚醚醚酮阴离子交换膜及其制备方法 - Google Patents

用于全钒液流电池的嵌段型聚醚醚酮阴离子交换膜及其制备方法 Download PDF

Info

Publication number
CN113773607B
CN113773607B CN202111252891.6A CN202111252891A CN113773607B CN 113773607 B CN113773607 B CN 113773607B CN 202111252891 A CN202111252891 A CN 202111252891A CN 113773607 B CN113773607 B CN 113773607B
Authority
CN
China
Prior art keywords
ether
exchange membrane
anion exchange
polyether
ketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111252891.6A
Other languages
English (en)
Other versions
CN113773607A (zh
Inventor
林本才
李泾
徐斐
陈燕波
储富强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202111252891.6A priority Critical patent/CN113773607B/zh
Publication of CN113773607A publication Critical patent/CN113773607A/zh
Application granted granted Critical
Publication of CN113773607B publication Critical patent/CN113773607B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/16Condensation polymers of aldehydes or ketones with phenols only of ketones with phenols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)
  • Polyethers (AREA)

Abstract

本发明属于高分子材料领域,具体涉及一种用于全钒液流电池的嵌段型聚醚醚酮阴离子交换膜及其制备方法。先制备聚醚醚酮嵌段聚合物,再制备溴化聚醚醚酮嵌段聚合物,最后制得聚醚醚酮嵌段阴离子交换膜。本发明基于嵌段型聚醚醚酮阴离子交换膜其嵌段结构有利于离子交换膜内形成亲水疏水的微相分离结构,提高膜的电导率,可以有效抑制膜过度溶胀,提高膜的尺寸稳定性、抑制钒离子渗透,膜内部正电荷属性Donnan排斥效应进一步抑制钒离子渗漏,可以有效提高其在VRFB中性能。

Description

用于全钒液流电池的嵌段型聚醚醚酮阴离子交换膜及其制备 方法
技术领域
本发明属于高分子材料领域,涉及一种聚合物阴离子交换膜及其制备方法,尤其涉及一种用于全钒液流电池的嵌段型聚醚醚酮阴离子交换膜及其制备方法。
背景技术
随着可再生能源在总能源构成中所占比例越来越大,开发低成本、高效率的大型储能系统是解决可再生能源间歇性开发问题的关键。因此具有高效,长寿命等优点的全钒氧化还原液流电池(VRFB)近年来受到了非常广泛的关注。离子传导隔膜是VRFB的关键部件之一,不仅具有分隔出正极和负极、防止钒离子的交叉混合的作用,同时起到传导载流子形成电池回路的作用。理想的隔膜材料需具备高离子导电性、低吸水率、低溶胀比、低面电阻、低钒离子渗透性,高化学稳定性等性能。
在VRFB中常用的离子传导隔膜分为质子交换膜(PEM)和阴离子交换膜(AEM)两类,质子交换膜离子电导率高,但离子选择性较差,钒离子渗透严重。如应用较为广泛的Nafion膜,就具有十分严重的钒离子渗透率和高成本等问题。而阴离子交换膜中含有阳离子交换基团,这些基团的Donnan排斥作用可以有效的降低钒离子渗透,提高电池寿命。但阴离子交换膜通常离子电导率不高,导致电池能量转化效率较低。可以通过提高离子交换容量和对隔膜分子结构进行设计来提高阴离子交换膜的电导率;通过设计更简单的结构和方法来简化阴离子交换膜的制备并且提高其性能稳定性。
为获得具有更高离子传导率的AEMs,最初研宄者们开发新聚合物材料和高效功能化阳离子基团使膜获得更高的离子交换容量(IECs),但过高的IECs会导致膜吸水量增加,发生过度溶胀,最终影响膜的尺寸稳定性,导致钒离子渗透率提高,降低液流电池性能。此外高IECs意味着膜内阳离子基团浓度增加,这使磺酸根离子对聚合物主链和功能化阳离子基团的攻击机会增加,造成主链断裂阳离子的降解,进而导致膜机械强度下降。因此,使膜具有更高的离子传导率的同时保证其尺寸和酸性稳定性成为目前发展应用于全钒液流电池的用离子交换膜的研究重点之一。
发明内容
本发明通过缩聚反应,制备了一系列基于嵌段聚醚醚酮的阴离子交换膜,通过嵌段聚醚醚酮主链的构筑,提高了亲疏水相的有效聚集,从而促进了膜内的亲疏水离子域的微相分离结构的形成,提高了膜的离子传导率。引入亲水的阳离子基团,进一步促进了膜内亲水/疏水微相分离结构的形成,为磺酸根离子传导提供通道,抑制膜过度溶胀,整个制备过程简单、高效。
为达到上述发明目的,本发明提供了一种嵌段型聚醚醚酮,其重复单元如下所示:
Figure BDA0003322992530000021
其中,X、Y为聚合度,是整数且不为0;R为季铵、螺环季铵、咪唑鎓、哌啶鎓、吡啶鎓、吡咯鎓等阳离子。
本发明采用的技术方案为:一种基于嵌段型聚醚醚酮的阴离子交换膜的制备方法,具体包括以下步骤:
步骤(1):聚醚醚酮嵌段聚合物的制备。
分别以摩尔比1:1将4,4'-二氟二苯甲酮和甲基氢醌或双酚A加入三颈瓶中。以无水碳酸钾(K2CO3)为催化剂(K2CO3与甲基氢醌或双酚A的摩尔比为1:2、甲苯为带水剂、N-甲基吡咯烷酮(NMP)为溶剂,通N2除去体系中的溶解氧。在N2气氛下缓慢升温至140℃,回流脱水、搅拌溶解。随后除去甲苯,再缓慢升温至170℃继续预反应2-4h,停止反应。分别得到两种目标预聚体MPEEK和PEAK,其化学结构式如下式所示。
Figure BDA0003322992530000031
将两种预聚体快速混合,继续通N2气,反应温度保持在170℃,反应5-8h。待反应体系冷却后缓慢注入水中,沉淀析出,而后置于流动水中24h,洗涤至中性,再于80℃干燥24h后保存备用,最终得到目标聚醚醚酮嵌段聚合物。
步骤(2):溴化聚醚醚酮嵌段聚合物的制备
称取一定质量的聚醚醚酮嵌段聚合物放入圆底烧瓶中,加入氯苯作为溶剂,在室温下搅拌直至其完全溶解。再向烧瓶中加入N-溴代琥珀酰亚胺(NBS)作为溴化剂(聚醚醚酮嵌段聚合物中甲基氢醌的含量与NBS摩尔比为1:1)和过氧化苯甲酰(BPO)作为引发剂(其质量为聚醚醚酮嵌段聚合物质量的10wt%),并将温度提升至140℃反应5-8h。冷却至室温后将反应溶液缓慢倒入无水乙醇中将产物沉淀,并用无水乙醇洗涤5次得到目标溴化产物。
步骤(3):聚醚醚酮嵌段阴离子交换膜的制备。
将步骤(2)中制备的溴化聚醚醚酮嵌段聚合物溶解于N-甲基吡咯烷酮(NMP)中,加入等摩尔质量的三甲胺或N杂环(例如1,2-二甲基咪唑,N-甲基哌啶,N-甲基吡咯烷等)在60-80℃下搅拌反应24小时,进行季铵化。反应结束后将反应液倒入洁净的聚四氟乙烯模具内,80℃下真空干燥成膜,得到目标聚醚醚酮嵌段阴离子交换膜。
本发明所制备得到的聚醚醚酮嵌段型阴离子交换膜可应用于液流电池。
由于上述技术方案的应用,本发明与现有技术相比具有以下优势:
(1)基于嵌段型聚醚醚酮阴离子交换膜其嵌段结构有利于离子交换膜内形成亲水疏水的微相分离结构,提高膜的电导率。
(2)基于嵌段型聚醚醚酮阴离子交换膜其嵌段结构,可以有效抑制膜过度溶胀,提高膜的尺寸稳定性、抑制钒离子渗透。
(3)基于嵌段型聚醚醚酮阴离子交换膜,膜内部正电荷属性Donnan排斥效应进一步抑制钒离子渗漏,可以有效提高其在VRFB中性能。
附图说明:
图1为实施例1中所制备的聚醚醚酮嵌段型聚合物的1H NMR图谱;
图2为实施例1中所制备的溴化聚醚醚酮嵌段型聚合物的1H NMR图谱。
具体实施方式
下面结合具体实施案例对本发明做进一步说明。
实施例1:
将4,4'-二氟二苯甲酮(5.23g,24mmol)分别和甲基氢醌(3.0g,24mmol)或双酚A(5.47g,24mmol),140℃下加热搅拌溶解于NMP,然后加入K2CO3(6.63g,48mmol)。以甲苯(15ml)为带水剂,在N2气氛下回流脱水、反应3h。除去甲苯,再缓慢升温至170℃继续反应2h,停止反应。得到MPEEK和PEAK预聚体。将两种预聚体快速混合,继续通N2气,保持温度在170℃,反应5h后停止。将反应体系缓慢注入水中,沉淀析出,而后置于流动水中24h,再于80℃干燥24h得到聚醚醚酮嵌段聚合物。
将聚醚醚酮嵌段聚合物(3.0g,3.9mmol),NBS(0.69g,3.9mmol),BPO(0.31g,1.3mmol)溶解于50ml氯苯中,氮气保护下,140℃搅拌反应5h。冷却至室温后将反应溶液缓慢倒入无水乙醇中将产物沉淀,并用无水乙醇洗涤5次得到溴化聚醚醚酮嵌段聚合物,其结构式为
Figure BDA0003322992530000051
将该聚合物溶解于N-甲基吡咯烷酮中,形成5wt%的溶液,加入等摩尔质量的1,2-二甲基咪唑。80℃下搅拌反应12小时。将反应后的溶液倒入洁净的聚四氟乙烯模具内,在真空干燥箱内,80℃下干燥成膜,得到目标的阴离子交换膜,其结构式为。
Figure BDA0003322992530000052
所制备得到的阴离子交换膜在80℃下离子电导率为40.85mS cm-1,80℃下溶胀度仅为8.73%。将该膜浸泡于1.5M VO2+/3M H2SO4溶液中30天,电导率仅损失7.53%,其钒离子渗透率为0.49×10-9cm2 s-1,展现出优异的化学稳定性和阻钒性能。组装液流电池,电池库伦效率可达97.2%。
实施例2:
本例与实施例一相似,所不同的是最后的季铵化过程,选用的是N-甲基哌啶,制备得到阴离子交换膜的结构为:
Figure BDA0003322992530000061
所制备得到的阴离子交换膜在80℃下离子电导率为39.24mS cm-1,80℃下溶胀度仅为7.48%。将该膜浸泡于将该膜浸泡于1.5M VO2+/3M H2SO4溶液中30天,电导率仅损失8%,其钒离子渗透率为0.55×10-9cm2 s-1,展现出优异的化学稳定性和阻钒性能。组装液流电池,电池库伦效率可达97.8%。
实施例3:
本例与实施例一相似,所不同的是最后的季铵化过程,选用的是三甲胺,最终制备得到的阴离子交换膜的结构为:
Figure BDA0003322992530000062
所制备得到的阴离子交换膜在80℃下离子电导率为38.24mS cm-1,80℃下溶胀度仅为8.18%。将该膜浸泡于1.5M VO2+/3M H2SO4溶液中30天,电导率仅损失10%,其钒离子渗透率为0.53×10-9cm2 s-1,展现出优异的化学稳定性和阻钒性能。组装液流电池,电池库伦效率可达96.7%。
实施例4:
本例与实施例一相似,所不同的是最后的季铵化过程,选用的是N-甲基吡咯烷,最终制备得到的阴离子交换膜的结构为:
Figure BDA0003322992530000063
所制备得到的阴离子交换膜在80℃下离子电导率为38.24mS cm-1,80℃下溶胀度仅为8.18%。将该膜浸泡于1.5M VO2+/3M H2SO4溶液中30天,电导率仅损失10%,其钒离子渗透率为0.47×10-9cm2 s-1,展现出优异的化学稳定性和阻钒性能。组装液流电池,电池库伦效率可达97.2%。
实施例5:
本例与实施例一相似,所不同的是最后的季铵化过程,选用的是吡啶,制备得到阴离子交换膜的结构为:
Figure BDA0003322992530000071
所制备得到的阴离子交换膜在80℃下离子电导率为38.24mS cm-1,80℃下溶胀度仅为8.18%。将该膜浸泡于1.5M VO2+/3M H2SO4溶液中30天,电导率仅损失10%,其钒离子渗透率为0.52×10-9cm2 s-1,展现出优异的化学稳定性和阻钒性能。组装液流电池,电池库伦效率可达98.1%。
对照例1
将4,4'-二氟二苯甲酮(5.23g,24mmol)和甲基氢醌(1.5g,12mmol)、双酚A(2.73g,12mmol)三种反应物混合在一起,140℃下加热搅拌溶解于NMP,然后加入K2CO3(6.63g,48mmol)。以甲苯(15ml)为带水剂,在N2气氛下回流脱水、反应3h。除去甲苯,再缓慢升温至170℃继续反应7h,停止反应。将反应体系缓慢注入水中,沉淀析出,而后置于流动水中24h,再于80℃干燥24h得到聚醚醚酮无规共聚物。
将该无规共聚物溶解于N-甲基吡咯烷酮中,形成5wt%的溶液,加入等摩尔质量的1,2-二甲基咪唑。80℃下搅拌反应12小时。将反应后的溶液倒入洁净的聚四氟乙烯模具内,在真空干燥箱内,80℃下干燥成膜,得到目标的阴离子交换膜。
所制备得到的基于无规共聚物的阴离子交换膜在80℃下离子电导率为14.69mScm-1,80℃下溶胀度为19.37%。将该膜浸泡于1.5M VO2+/3M H2SO4溶液中30天,电导率损失10.42%,其钒离子渗透率为3.47×10-9cm2 s-1,展现出较好的化学稳定性和阻钒性能。组装液流电池,电池库伦效率可达89.7%。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种嵌段型聚醚醚酮阴离子交换膜,其特征在于,所述阴离子交换膜重复单元如下所示:
Figure DEST_PATH_IMAGE001
其中,X、Y为聚合度,是整数且不为0;R为季铵、螺环季铵、咪唑鎓、哌啶鎓、吡啶鎓或吡咯鎓阳离子;
嵌段型聚醚醚酮阴离子交换膜的制备方法步骤如下:
(1)制备聚醚醚酮嵌段聚合物
将 4,4'-二氟二苯甲酮分别和甲基氢醌或双酚A加入三颈瓶中,以无水碳酸钾(K2CO3)为催化剂、甲苯为带水剂、N-甲基吡咯烷酮(NMP)为溶剂,通N2除去体系中的溶解氧,在N2气氛下缓慢升温至140℃,回流脱水、搅拌溶解,随后除去甲苯,再缓慢升温至170℃继续预反应2-4h停止反应,分别得到两种目标预聚体;将两种预聚体快速混合,继续通N2气,反应温度保持在170℃,反应5-8h,待反应体系冷却后缓慢注入水中,沉淀析出,而后置于流动水中24h,洗涤至中性,再于80℃干燥24 h后得到目标聚醚醚酮嵌段聚合物,保存备用最终;
(2)制备溴化聚醚醚酮嵌段聚合物
称取聚醚醚酮嵌段聚合物放入圆底烧瓶中,加入氯苯作为溶剂,在室温下搅拌直至其完全溶解,再向烧瓶中加入N-溴代琥珀酰亚胺(NBS)作为溴化剂和过氧化苯甲酰(BPO)作为引发剂,并将温度提升至140℃反应5-8h,冷却至室温后将反应溶液缓慢倒入无水乙醇中将产物沉淀,并用无水乙醇洗涤5次得到目标溴化产物;
(3)制备聚醚醚酮嵌段阴离子交换膜
将步骤(2)中制备的溴化聚醚醚酮嵌段聚合物溶解于N-甲基吡咯烷酮(NMP)中,加入等摩尔质量的三甲胺或N杂环在60~80℃下搅拌反应24小时,进行季铵化,反应结束后将反应液倒入洁净的聚四氟乙烯模具内,80℃下真空干燥成膜,得到目标聚醚醚酮嵌段阴离子交换膜。
2.根据权利要求1所述的嵌段型聚醚醚酮阴离子交换膜,其特征在于,步骤(1)所述4,4'-二氟二苯甲酮和甲基氢醌或双酚A的摩尔比为1:1,K2CO3催化剂与甲基氢醌或双酚A的摩尔比为1:2。
3.根据权利要求1所述的嵌段型聚醚醚酮阴离子交换膜,其特征在于,步骤(2)所述N-溴代琥珀酰亚胺(NBS)作为溴化剂,其与聚醚醚酮嵌段聚合物的摩尔比为1:1;过氧化苯甲酰(BPO)作为引发剂,其质量为聚醚醚酮嵌段聚合物质量的 10wt %。
4.根据权利要求1所述的嵌段型聚醚醚酮阴离子交换膜,其特征在于,步骤(3)所述N杂环为:1,2-二甲基咪唑,N-甲基哌啶,N-甲基吡咯烷。
5.根据权利要求1所述的嵌段型聚醚醚酮阴离子交换膜的应用,其特征在于,所述阴离子交换膜用于全钒液流电池的阴离子交换膜。
CN202111252891.6A 2021-10-27 2021-10-27 用于全钒液流电池的嵌段型聚醚醚酮阴离子交换膜及其制备方法 Active CN113773607B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111252891.6A CN113773607B (zh) 2021-10-27 2021-10-27 用于全钒液流电池的嵌段型聚醚醚酮阴离子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111252891.6A CN113773607B (zh) 2021-10-27 2021-10-27 用于全钒液流电池的嵌段型聚醚醚酮阴离子交换膜及其制备方法

Publications (2)

Publication Number Publication Date
CN113773607A CN113773607A (zh) 2021-12-10
CN113773607B true CN113773607B (zh) 2023-01-17

Family

ID=78956777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111252891.6A Active CN113773607B (zh) 2021-10-27 2021-10-27 用于全钒液流电池的嵌段型聚醚醚酮阴离子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113773607B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102451620A (zh) * 2010-10-29 2012-05-16 中国科学院大连化学物理研究所 一种阴离子交换膜及其制备和应用
CN108110290A (zh) * 2017-12-19 2018-06-01 长春工业大学 燃料电池用交联咪唑型聚醚醚酮阴离子交换膜及其制备方法
CN108659243A (zh) * 2018-05-30 2018-10-16 大连理工大学 一种支化型聚醚醚酮阴离子交换膜及其制备方法
CN111342096A (zh) * 2020-03-09 2020-06-26 长春工业大学 燃料电池用吡啶化交联型阴离子交换膜及其制备方法
CN113429561A (zh) * 2021-05-08 2021-09-24 南昌航空大学 一种燃料电池用交联型聚醚醚酮类阴离子交换膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636068B (zh) * 2016-07-28 2018-09-21 財團法人工業技術研究院 聚合物、及包含其之離子交換膜與結構增強膜材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102451620A (zh) * 2010-10-29 2012-05-16 中国科学院大连化学物理研究所 一种阴离子交换膜及其制备和应用
CN108110290A (zh) * 2017-12-19 2018-06-01 长春工业大学 燃料电池用交联咪唑型聚醚醚酮阴离子交换膜及其制备方法
CN108659243A (zh) * 2018-05-30 2018-10-16 大连理工大学 一种支化型聚醚醚酮阴离子交换膜及其制备方法
CN111342096A (zh) * 2020-03-09 2020-06-26 长春工业大学 燃料电池用吡啶化交联型阴离子交换膜及其制备方法
CN113429561A (zh) * 2021-05-08 2021-09-24 南昌航空大学 一种燃料电池用交联型聚醚醚酮类阴离子交换膜及其制备方法

Also Published As

Publication number Publication date
CN113773607A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
Ren et al. Quaternary ammonium groups grafted polybenzimidazole membranes for vanadium redox flow battery applications
CN110336052B (zh) 一种混合基质型阳离子交换膜及其制备方法
Ding et al. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications
CN110224166B (zh) 一种磷酸掺杂交联型聚苯并咪唑高温质子交换膜及其制备方法
Yang et al. New anhydrous proton exchange membranes based on fluoropolymers blend imidazolium poly (aromatic ether ketone) s for high temperature polymer electrolyte fuel cells
Zeng et al. Anion exchange membranes based on quaternized polystyrene-block-poly (ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells
US9975995B2 (en) Ion conducting polymer comprising partially branched block copolymer and use thereof
CN102181069B (zh) 两性离子交换膜的制备方法
Liao et al. Fluoro-methyl sulfonated poly (arylene ether ketone-co-benzimidazole) amphoteric ion-exchange membranes for vanadiumáredox flow battery
Du et al. The synergistic effect of protonated imidazole-hydroxyl-quaternary ammonium on improving performances of anion exchange membrane assembled flow batteries
Kumar et al. Cross-linked amphoteric membrane: Sulphonated poly (ether ether ketone) grafted with 2, 4, 6-tris (dimethylaminomethyl) phenol using functionalized side chain spacers for vanadium redox flow battery
CN107394240B (zh) 一种磺化聚芳醚酮离子交换膜制备方法及应用
Gan et al. Facile fabrication of amphoteric semi-interpenetrating network membranes for vanadium flow battery applications
Song et al. Polybenzimidazole membranes embedded with ionic liquids for use in high proton selectivity vanadium redox flow batteries
CN105131289B (zh) 一种新型磺化聚苯并咪唑共聚物、交联膜、制备方法及其应用
Che et al. Anion exchange membranes based on long side-chain quaternary ammonium-functionalized poly (arylene piperidinium) s for vanadium redox flow batteries
Lin et al. Thermoplastic interpenetrating polymer networks based on polybenzimidazole and poly (1, 2-dimethy-3-allylimidazolium) for anion exchange membranes
Dong et al. Hydrophilic/hydrophobic-bi-comb-shaped amphoteric membrane for vanadium redox flow battery
Mu et al. Novel ether-free membranes based on poly (p-terphenylene methylimidazole) for vanadium redox flow battery applications
Roh et al. Investigation on physico-chemical and electrochemical performance of poly (phenylene oxide)-based anion exchange membrane for vanadium redox flow battery systems
CN108649255A (zh) 聚苯并咪唑质子交换膜及制备方法和应用
CN112133946A (zh) 一种含羧基磺化聚芳醚酮砜/负载磷钨酸-离子液体金属有机框架复合膜及其制备方法
Qian et al. Dense 1, 2, 4, 5-tetramethylimidazolium-functionlized anion exchange membranes based on poly (aryl ether sulfone) s with high alkaline stability for water electrolysis
CN113067022A (zh) 一种含氨基磺化聚芳醚酮砜共混金属有机框架复合膜及其制备方法
CN105789667B (zh) 一类侧链含多磺酸结构聚芳醚砜酮质子交换膜材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant