CN113764902A - Antenna reflection boundary and antenna - Google Patents

Antenna reflection boundary and antenna Download PDF

Info

Publication number
CN113764902A
CN113764902A CN202111136617.2A CN202111136617A CN113764902A CN 113764902 A CN113764902 A CN 113764902A CN 202111136617 A CN202111136617 A CN 202111136617A CN 113764902 A CN113764902 A CN 113764902A
Authority
CN
China
Prior art keywords
antenna
length
free
bending
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111136617.2A
Other languages
Chinese (zh)
Inventor
马明叁
杨明威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CICT Mobile Communication Technology Co Ltd
Original Assignee
CICT Mobile Communication Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CICT Mobile Communication Technology Co Ltd filed Critical CICT Mobile Communication Technology Co Ltd
Priority to CN202111136617.2A priority Critical patent/CN113764902A/en
Publication of CN113764902A publication Critical patent/CN113764902A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

The invention provides an antenna reflection boundary and an antenna, wherein the antenna reflection boundary comprises: a contact portion, a bent portion, a connecting portion, and a free portion; the bending part is formed by bending and extending from the abutting part, the connecting part is formed by bending and extending from the bending part, and the free part is formed by extending from the connecting part; the length of the abutting part, the length of the bent part and the length of the free part are equal, and the length of the connecting part is greater than that of the free part. Under the condition that the antenna reflection boundary is used for the antenna, the wave width, the front-to-back ratio and the isolation of the radiation unit can be improved, the directional diagram of the antenna is optimized, and the coverage range of the antenna is widened.

Description

Antenna reflection boundary and antenna
Technical Field
The invention relates to the technical field of wireless communication, in particular to an antenna reflection boundary and an antenna.
Background
With the rapid development of mobile communication systems, 5G networks are rapidly developed, and the number of 4G +5G base stations is rapidly increasing. At present, in order to accelerate deployment of 4G +5G, 5G antenna equipment is added to an original 4G site, so as to solve the site resource problem, and become a main deployment scheme, that is, a multi-frequency base station antenna gradually becomes mainstream.
The antenna comprises a 4G +5G fusion base station antenna, wherein 5G is an active antenna and is mostly in a frequency band of 2600Mhz or 3500 Mhz; 4G is a passive antenna, and the frequency band is mostly 690Mhz-960Mhz and 1710Mhz-2170 Mhz. The 4G +5G fusion base station antenna in the prior art is difficult to realize the electrical index requirement.
Disclosure of Invention
The invention provides an antenna reflection boundary and an antenna, which are used for solving the problem that the electrical index of a 4G +5G fusion base station antenna in the prior art is difficult to meet the requirement.
In a first aspect, the present invention provides an antenna reflection boundary, comprising: a contact portion, a bent portion, a connecting portion, and a free portion;
the bending part is formed by bending and extending from the abutting part, the connecting part is formed by bending and extending from the bending part, and the free part is formed by extending from the connecting part;
the length of the abutting part, the length of the bent part and the length of the free part are equal, and the length of the connecting part is greater than that of the free part.
According to the antenna reflection boundary provided by the invention, the height of the connecting part is 2.5-3.5 mm.
According to the antenna reflection boundary provided by the invention, the height of the free part is 5.5-6.5 mm.
In a second aspect, the present invention also provides an antenna, comprising: the reflecting plate, the radiating unit and the antenna reflecting boundary;
two opposite sides of the reflecting plate are respectively bent and extended to form two side edges, the two side edges are arranged oppositely, two antenna reflecting boundaries are arranged on the reflecting plate, and the two antenna reflecting boundaries are arranged oppositely;
the two antenna reflection boundaries and the two side edges enclose to form an accommodating space, and the radiation unit is arranged on the reflection plate and is positioned in the accommodating space.
According to the antenna provided by the invention, two ends of the connecting part are respectively arranged on the two side edges, and one end of the abutting part, which is far away from the bending part, abuts against the reflecting plate.
According to the antenna provided by the invention, the two side edges are respectively provided with the guide tracks, the two guide tracks are respectively provided with the positioning grooves, and the two ends of the connecting part are respectively in limit fit with the two positioning grooves.
According to the antenna provided by the invention, the height H of the antenna reflection boundary is 0.7H;
wherein h is the height of the radiating element.
According to the antenna provided by the invention, the length of the abutting part, the length of the bending part and the length L of the free part are 0.4-0.8 lambda;
wherein λ is a wavelength of the radiation unit.
According to the antenna provided by the invention, the included angle between the abutting part and the reflecting plate is 25-35 degrees, and the included angle between the bent part and the reflecting plate is 55-65 degrees.
According to the antenna provided by the invention, the included angle between the connecting part and the free part and the reflecting plate is 90 degrees.
According to the antenna reflection boundary and the antenna provided by the invention, under the condition that the antenna reflection boundary is used for the antenna, the wave width, the front-to-back ratio and the isolation of the radiation unit can be improved, the directional diagram of the antenna is optimized, and the coverage range of the antenna is widened.
Drawings
In order to more clearly illustrate the technical solutions of the present invention or the prior art, the drawings needed to be used in the description of the embodiments or the prior art will be briefly described below, and it is obvious that the drawings in the following description are some embodiments of the present invention, and it is obvious for those skilled in the art to obtain other drawings based on these drawings without creative efforts.
Fig. 1 is a schematic structural diagram of an antenna provided by the present invention;
FIG. 2 is a top view of FIG. 1;
FIG. 3 is a side view of FIG. 1;
reference numerals:
1: a reflective plate; 2: a radiation unit; 3: a side edge;
4: a guide rail; 41: a positioning groove; 5: an antenna reflection boundary;
51: an abutting portion; 52: a bending section; 53: a connecting portion;
54: a free portion.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention clearer, the technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings, and it is obvious that the described embodiments are some, but not all embodiments of the present invention. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
As shown in fig. 1, the antenna reflection boundary 5 of the embodiment of the present invention includes: an abutting portion 51, a bent portion 52, a connecting portion 53, and a free portion 54.
A bending portion 52 is formed by bending and extending one end of the abutting portion 51, a connecting portion 53 is formed by bending and extending one end of the bending portion 52 away from the abutting portion 51, and a free portion 54 is formed by extending one end of the connecting portion 53 away from the bending portion 52.
The length of the contact portion 51, the length of the bent portion 52, and the length of the free portion 54 are equal to each other, and the length of the connection portion 53 is greater than the length of the free portion 54.
The antenna reflection boundary 5 may be a plate-shaped structural member, and the contact portion 51, the bent portion 52, the connection portion 53, and the free portion 54 may be formed integrally.
It is understood that the thickness of the abutting portion 51, the thickness of the bent portion 52, the thickness of the connecting portion 53, and the thickness of the free portion 54 are the same.
In the embodiment of the present invention, when the antenna reflection boundary 5 is used for an antenna, the wave width, the front-to-back ratio, and the isolation of the radiation unit 2 can be improved, the directional diagram of the antenna is optimized, and the coverage of the antenna is widened.
In an alternative embodiment, the height of the connecting portion 53 is 2.5-3.5 mm.
Wherein the height of the connection part 53 may be 3 mm.
In an alternative embodiment, the height of the free portion 54 is 5.5-6.5 mm.
The height of the free portion 54 may be 6 mm.
The connecting portion 53 and the free portion 54 are located in the same plane.
In addition, as shown in fig. 1 and fig. 2, an embodiment of the present invention further provides an antenna, which includes a reflection plate 1, a radiation unit 2, and the above-mentioned antenna reflection boundary 5.
The radiation unit 2 can be an intermediate frequency oscillator, and the working frequency band of the medium frequency oscillator is 1710-2170M.
Two opposite sides of the reflecting plate 1 are respectively bent and extended to form two side edges 3, and the two side edges 3 are oppositely arranged.
One side of the reflecting plate 1 is bent and extended along a first direction to form a first side edge 3, the other side of the reflecting plate 1 is bent and extended along the first direction to form a second side edge 3, and the first side edge 3 and the second side edge 3 are located on the same side of the reflecting plate 1, that is, the reflecting plate 1 is integrally of a U-shaped structure.
The first side 3 is perpendicular to the top surface of the reflection plate 1 and the second side 3 is perpendicular to the top surface of the reflection plate 1.
Two antenna reflection boundaries 5 are arranged on the top surface of the reflection plate 1, and the two antenna reflection boundaries 5 are arranged oppositely. For convenience of description, the two antenna reflection boundaries 5 are referred to as a first antenna reflection boundary 5 and a second antenna reflection boundary 5, respectively.
Wherein, two antenna reflection boundaries 5 and two sides 3 enclose to close and are formed with the accommodation space, and radiating element 2 locates the top surface of reflecting plate, and is located the accommodation space.
The two antenna reflection boundaries 5 are arranged symmetrically with respect to the radiation element 2.
It should be noted that, along the clockwise direction, there are the first side edge 3, the first antenna reflection boundary 5, the second side edge 3, and the second antenna reflection boundary 5 in this order. The radiation unit 2 is located in the middle of the accommodating space.
It will be appreciated that the distance between the first antenna reflecting border 5 and the radiating element 2 is adjustable and the distance between the second antenna reflecting border 5 and the radiating element 2 is adjustable.
In the embodiment of the present invention, the radiation unit 2 is located in the accommodating space enclosed by the first side 3, the first antenna reflection boundary 5, the second side 3 and the second antenna reflection boundary 5, so that the wave width, the front-to-back ratio and the isolation of the radiation unit 2 can be improved, the directional diagram of the antenna is optimized, and the coverage of the antenna is widened.
In an alternative embodiment, two ends of the connecting portion 53 are respectively disposed on the two side edges 3, and one end of the abutting portion 51 away from the bending portion 52 abuts against the top surface of the reflection plate 1.
One end of the abutting portion 51 remote from the bent portion 52 is grounded.
That is, one end of the connecting portion 53 is disposed on the first side 3, and the other end of the connecting portion 53 is disposed on the second side 3, so as to connect the antenna reflection boundary 5 to the reflection plate 1.
The longitudinal direction of the connecting portion 53 is the same as the width direction of the reflection plate 1.
In an alternative embodiment, as shown in fig. 3, in order to facilitate adjustment of the distance between the antenna reflection boundary 5 and the radiation unit 2, the two side edges 3 are each provided with a guide rail 4, and the guide rails 4 are formed to extend along the length direction of the reflection plate 1.
Two guide rails 4 all are equipped with positioning groove 41, and the both ends of connecting portion 53 are spacing cooperation with two positioning groove 41 respectively.
For example, four positioning grooves 41 are sequentially provided at equal intervals along the length direction of the guide rail 4, the distance between two adjacent positioning grooves 41 is 5mm, and the depth of the positioning groove 41 may be 2 mm. Wherein, the guide rail 4 can be a strip shape, and the height of the guide rail 4 is 5 mm.
Wherein, the positioning grooves 41 on the two guide rails 4 are arranged in one-to-one correspondence, so that the connecting portion 53 is arranged perpendicular to the side edge 3.
It should be noted that, by providing the connecting portion 53 in different positioning grooves 41, the distance between the antenna reflection boundary 5 and the radiation unit 2 can be adjusted in real time according to the requirement.
In an alternative embodiment, the length l of the connecting portion 53 is d +10 mm;
where d is the distance between the first side 3 and the second side 3.
In an alternative embodiment, the height H of the antenna reflection boundary 5 is 0.7H;
where h is the height of the radiating element 2.
That is, the distance between the highest point and the lowest point of the antenna reflection boundary 5 is 0.7 h.
In an alternative embodiment, the length of the abutting portion 51, the length of the bending portion 52 and the length L of the free portion 54 are 0.4 to 0.8 λ;
where λ is the wavelength of the radiating element 2.
In an alternative embodiment, the included angle between the abutting portion 51 and the reflection plate 1 is 25-35 °, and the included angle between the bending portion 52 and the reflection plate 1 is 55-65 °.
The included angle between the bending portion 52 and the reflection plate 1 is twice the included angle between the abutting portion 51 and the reflection plate 1.
For example, the angle between the abutting portion 51 and the reflection plate 1 is 30 °, and the angle between the bent portion 52 and the reflection plate 1 is 60 °.
In an alternative embodiment, the connecting portion 53 and the free portion 54 are at an angle of 90 ° to the reflector plate 1.
That is, the connection portion 53 is perpendicular to the reflection plate 1, and the free portion 54 is perpendicular to the reflection plate 1.
The above-described embodiments of the apparatus are merely illustrative, and the units described as separate parts may or may not be physically separate, and parts displayed as units may or may not be physical units, may be located in one place, or may be distributed on a plurality of network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the present embodiment. One of ordinary skill in the art can understand and implement it without inventive effort.
Finally, it should be noted that: the above examples are only intended to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some technical features may be equivalently replaced; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions of the embodiments of the present invention.

Claims (10)

1. An antenna reflection boundary, comprising: a contact portion, a bent portion, a connecting portion, and a free portion;
the bending part is formed by bending and extending from the abutting part, the connecting part is formed by bending and extending from the bending part, and the free part is formed by extending from the connecting part;
the length of the abutting part, the length of the bent part and the length of the free part are equal, and the length of the connecting part is greater than that of the free part.
2. The antenna reflection boundary of claim 1, wherein the height of the connection portion is 2.5-3.5 mm.
3. The antenna reflection boundary of claim 1, wherein the height of the free portion is 5.5-6.5 mm.
4. An antenna, comprising: a reflector plate, a radiating element, and an antenna reflective border according to any one of claims 1 to 3;
two opposite sides of the reflecting plate are respectively bent and extended to form two side edges, the two side edges are arranged oppositely, two antenna reflecting boundaries are arranged on the reflecting plate, and the two antenna reflecting boundaries are arranged oppositely;
the two antenna reflection boundaries and the two side edges enclose to form an accommodating space, and the radiation unit is arranged on the reflection plate and is positioned in the accommodating space.
5. The antenna according to claim 4, wherein two ends of the connecting portion are respectively disposed on the two side edges, and an end of the abutting portion away from the bending portion abuts against the reflection plate.
6. The antenna according to claim 5, wherein two of the side edges are provided with guide rails, two of the guide rails are provided with positioning grooves, and two ends of the connecting portion are respectively in limit fit with the two positioning grooves.
7. The antenna of claim 4, wherein the height H of the antenna reflection boundary is 0.7H;
wherein h is the height of the radiating element.
8. The antenna according to claim 4, wherein the length of the abutting portion, the length of the bent portion, and the length L of the free portion are 0.4-0.8 λ;
wherein λ is a wavelength of the radiation unit.
9. The antenna according to claim 4, wherein an included angle between the abutting portion and the reflection plate is 25-35 °, and an included angle between the bent portion and the reflection plate is 55-65 °.
10. An antenna according to claim 4, wherein the connecting portion and the free portion are at an angle of 90 ° to the reflector plate.
CN202111136617.2A 2021-09-27 2021-09-27 Antenna reflection boundary and antenna Pending CN113764902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111136617.2A CN113764902A (en) 2021-09-27 2021-09-27 Antenna reflection boundary and antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111136617.2A CN113764902A (en) 2021-09-27 2021-09-27 Antenna reflection boundary and antenna

Publications (1)

Publication Number Publication Date
CN113764902A true CN113764902A (en) 2021-12-07

Family

ID=78797793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111136617.2A Pending CN113764902A (en) 2021-09-27 2021-09-27 Antenna reflection boundary and antenna

Country Status (1)

Country Link
CN (1) CN113764902A (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2760786Y (en) * 2004-11-24 2006-02-22 京信通信技术(广州)有限公司 High front to back ratio directional base station antenna
CN101515668A (en) * 2009-03-25 2009-08-26 华为技术有限公司 Base station antenna and reflection plate thereof
CN203456590U (en) * 2013-09-11 2014-02-26 深圳国人通信有限公司 Antenna and antenna isolation device thereof
CN203850436U (en) * 2014-04-21 2014-09-24 广州博纬通信科技有限公司 Dual-polarization wideband array antenna
CN205303687U (en) * 2016-01-12 2016-06-08 深圳国人通信股份有限公司 M type reflecting plate base station antenna
CN106981727A (en) * 2017-04-28 2017-07-25 深圳国人通信股份有限公司 A kind of boundary means for minimizing antenna for base station
CN107611611A (en) * 2017-08-11 2018-01-19 广东博纬通信科技有限公司 One kind miniaturization ultra-wideband multisystem array antenna
CN208028207U (en) * 2018-04-09 2018-10-30 深圳国人通信股份有限公司 A kind of double broadband base station antennas
CN209119357U (en) * 2018-11-22 2019-07-16 深圳国人通信技术服务有限公司 A kind of boundary means minimizing antenna for base station
CN209119367U (en) * 2018-11-21 2019-07-16 深圳国人通信技术服务有限公司 A kind of big angle of declination antenna for base station of ultra-wideband
CN209217217U (en) * 2019-01-24 2019-08-06 深圳国人通信股份有限公司 A kind of narrow beam array antenna
CN110854550A (en) * 2019-11-26 2020-02-28 武汉虹信通信技术有限责任公司 Antenna array, base station antenna and antenna index improving method
CN111430931A (en) * 2020-04-01 2020-07-17 武汉虹信通信技术有限责任公司 Radiation sheet for broadband antenna and broadband antenna
CN212695320U (en) * 2020-07-28 2021-03-12 武汉虹信科技发展有限责任公司 Antenna reflection boundary and antenna

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2760786Y (en) * 2004-11-24 2006-02-22 京信通信技术(广州)有限公司 High front to back ratio directional base station antenna
CN101515668A (en) * 2009-03-25 2009-08-26 华为技术有限公司 Base station antenna and reflection plate thereof
CN203456590U (en) * 2013-09-11 2014-02-26 深圳国人通信有限公司 Antenna and antenna isolation device thereof
CN203850436U (en) * 2014-04-21 2014-09-24 广州博纬通信科技有限公司 Dual-polarization wideband array antenna
CN205303687U (en) * 2016-01-12 2016-06-08 深圳国人通信股份有限公司 M type reflecting plate base station antenna
CN106981727A (en) * 2017-04-28 2017-07-25 深圳国人通信股份有限公司 A kind of boundary means for minimizing antenna for base station
CN107611611A (en) * 2017-08-11 2018-01-19 广东博纬通信科技有限公司 One kind miniaturization ultra-wideband multisystem array antenna
CN208028207U (en) * 2018-04-09 2018-10-30 深圳国人通信股份有限公司 A kind of double broadband base station antennas
CN209119367U (en) * 2018-11-21 2019-07-16 深圳国人通信技术服务有限公司 A kind of big angle of declination antenna for base station of ultra-wideband
CN209119357U (en) * 2018-11-22 2019-07-16 深圳国人通信技术服务有限公司 A kind of boundary means minimizing antenna for base station
CN209217217U (en) * 2019-01-24 2019-08-06 深圳国人通信股份有限公司 A kind of narrow beam array antenna
CN110854550A (en) * 2019-11-26 2020-02-28 武汉虹信通信技术有限责任公司 Antenna array, base station antenna and antenna index improving method
CN111430931A (en) * 2020-04-01 2020-07-17 武汉虹信通信技术有限责任公司 Radiation sheet for broadband antenna and broadband antenna
CN212695320U (en) * 2020-07-28 2021-03-12 武汉虹信科技发展有限责任公司 Antenna reflection boundary and antenna

Similar Documents

Publication Publication Date Title
CN110943295B (en) Multi-beam antenna array, base station antenna and antenna array decoupling method
CN201084828Y (en) Positioning base station antenna
CN103050764A (en) Isophase differential beam forming device
CN110034377B (en) Antenna device
EP2672568A2 (en) Dual polarization antenna for a mobile communication base station, and multiband antenna system using same
CN203813033U (en) Multi-frequency array antenna
CN105356062B (en) Broadband array antenna
CN205231255U (en) Three frequency base station antenna
US20100001918A1 (en) Passive repeater antenna
CN105071044A (en) Small high-isolation dual-polarization medium resonator antenna
CN109786938B (en) Mobile terminal
US20230023706A1 (en) Electromagnetic wave reflector, electromagnetic wave reflective fence, and method of assembling electromagnetic wave reflector
CN111029751A (en) Miniaturized one-low four-high ultra-wideband multi-port base station antenna
CN101702467A (en) Circular polarization waveguide standing-wave antenna
CN109560391B (en) MIMO antenna array and antenna reflecting plate thereof
GB2300308A (en) Radiating waveguide and communication system
CN113764902A (en) Antenna reflection boundary and antenna
US20220255235A1 (en) Millimeter wave (mmw) reflective structure and mmw transmission structure
CN109103590B (en) Antenna unit and antenna system
CN109546313B (en) Broadband radiating element and antenna
KR101159948B1 (en) Relay antenna using meta-material structure
KR20030075524A (en) Multi-Beam Array Antenna Apparatus for Base Station of Mobile Telecommunication System
CN111029727A (en) Antenna unit and base station
JP2012054653A (en) Antenna device and array antenna
Bagheri et al. MmWave array antenna based on gap waveguide technology for 5G applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination