CN113764747A - 一种检测电池热管理系统接触热阻方法及装置 - Google Patents

一种检测电池热管理系统接触热阻方法及装置 Download PDF

Info

Publication number
CN113764747A
CN113764747A CN202110922553.2A CN202110922553A CN113764747A CN 113764747 A CN113764747 A CN 113764747A CN 202110922553 A CN202110922553 A CN 202110922553A CN 113764747 A CN113764747 A CN 113764747A
Authority
CN
China
Prior art keywords
battery
temperature
management system
thermal management
contact resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110922553.2A
Other languages
English (en)
Inventor
王扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lantu Automobile Technology Co Ltd
Original Assignee
Lantu Automobile Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lantu Automobile Technology Co Ltd filed Critical Lantu Automobile Technology Co Ltd
Priority to CN202110922553.2A priority Critical patent/CN113764747A/zh
Publication of CN113764747A publication Critical patent/CN113764747A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种检测电池热管理系统接触热阻方法,包括初始化电池热管理系统参数;按照充电策略给电池充放电;按照预设的调温周期将环境仓温度调至电池的最高温度,并实时获取电池热管理系统的运行参数,直到电池的最高温度和/或最低温度在时间阈值内保持不变;根据所述运行参数计算接触热阻。本发明在电池充放电过程中控制环境仓温度与电池充放电循环过程温度一致,隔绝电池与外界换热,通过冷却液热量变化计量电池产生热量,进而通过计算得到接触热阻,可用于评价电池热管理系统的换热效果,本发明还公开了一种检测电池热管理系统接触热阻的装置,结构简单,操作方便。

Description

一种检测电池热管理系统接触热阻方法及装置
技术领域
本发明涉及动力电池技术领域,特别涉及一种检测电池热管理系统接触热阻方法及装置。
背景技术
电池热管理系统是通过导热介质、测控单元以及温控设备构成闭环调节系统,时动力电池工作在合适的工作范围内,以维持动力电池的最佳使用状态,保证电池系统的性能、安全性和寿命。
目前动力电池系统的热管理主要可分为四类,自然冷却、风冷、液冷、直冷。其中自然冷却是被动式的热管理方式,而风冷、液冷、直流是主动式的,这三者的主要区别在于换热介质的不同,其中 液冷方式主要通过冷却液为电池系统降温。首先,冷凝器、压缩机等设备为冷却液强制降温,低温冷却液流经电池系统内部与电芯发生热交换以后,再流回热交换器与低温制冷剂进行热交换,从而将电池产生的热量带出电池系统,液冷具有散热效率高、散热均匀、电芯温差小等优点而得到广泛的应用,但是对于不同的液冷方案,其换热能力的优劣难以评价,因此,有必要提出一种测电池热管理系统接触热阻方法,以评价不同液冷方案的换热能力。
发明内容
针对现有技术存在的问题,本发明提供了一种检测电池热管理系统接触热阻方法,在电池充放电过程中控制环境仓温度与电池充放电循环过程温度一致,隔绝电池与外界换热,通过冷却液热量变化计量电池产生热量,进而通过计算得到接触热阻,以实现对电池热管理系统换热效果的评价。
本发明的技术方案是:
一种检测电池热管理系统接触热阻方法,包括:
初始化电池热管理系统参数;
按照充电策略给电池充放电;
按照预设的调温周期将环境仓温度调至电池的最高温度,并实时获取电池热管理系统的运行参数,直到电池的最高温度和/或最低温度在时间阈值内保持不变;
根据运行参数计算接触热阻。
优选的是,系统参数包括电池荷电、热敏电阻器温度、冷却液温度和冷却液流量。
优选的是,运行参数包括实时电池荷电、电流、电压、热敏电阻器温度、、电池温度、冷却液进出口温度和时间。
优选的是,计算接触热阻包括如下步骤:
计算电池产生的热量,并根据热量计算电池的发热功率;
计算电池与冷却液的温差;
根据发热功率和温差计算接触热阻。
优选的是,调温周期为10-30分钟。
优选的是,时间阈值为0.5-1.5小时。
优选的是,电池热管理系统的初始电池荷电为45-55%,初始热敏电阻器温度为25-35℃,初始冷却液温度为25-25℃,初始冷却液流量为8-12mL/min。
优选的是,接触热阻的计算公式为:
Figure BDA0003207941190000021
其中,R表示接触热阻,ΔTC表示电池与冷却液温差,P表示电池发热功率。
一种检测电池热管理系统接触热阻的装置,包括:
环境仓,其具有容置腔,能够容纳电池;
充放电设备,其连接电池,能够设定电池充电策略,并根据充电策略给电池充放电;
液冷设备,其连接电池,能够通过冷却液热交换给电池降温;
测试设备,其连接电池和环境仓,能够获取热管理系统的运行参数;
控制设备,其连接环境仓,能够调节环境仓温度。
优选的是,液冷设备包括:
导热垫,其设置在环境仓内,且包覆在电池的外表面;
液冷板,其设置在环境仓内,且位于导热垫的外层;
液冷控制器,其设置在环境仓外部;
冷却液,其可循环的设置在环境仓内,且与液冷控制器联通,能够将电池产生的热量换出。
本发明的有益效果是:
1、本发明提供了一种检测电池热管理系统接触热阻方法,在电池充放电过程中控制环境仓温度与电池充放电循环过程温度一致,以隔绝电池与外界换热,通过冷却液将电池产热带出,以冷却液的热量变化值计量电池产生热量,进而通过计算得到接触热阻,可用于评价电池热管理系统的换热效果。
2、本发明还提供了一种检测电池热管理系统接触热阻的装置,通过控制设备调节环境仓温度,以保证环境仓温度与电池充放电循环过程温度一致,通过液冷设备给电池降温,通过测试设备获取热管理系统的运行参数,以实现对电池热管理系统热阻的检测功能,结构简单,可操作性强。
附图说明
图1为本发明的提供的一种检测电池热管理系统接触热阻方法流程图。
图2为本发明的提供的一种检测电池热管理系统接触热阻的装置示意图。
图3为本发明的一个实施例中液冷设备的框架示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
“内”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
如图1所示,一种检测电池热管理系统接触热阻方法,包括:
S110、初始化电池热管理系统参数。
其中,系统参数包括电池荷电、热敏电阻器温度、冷却液温度和冷却液流量。
S120、按照充电策略给所述电池充放电。
S130、按照预设的调温周期将环境仓温度调至电池的最高温度。
S140、实时获所述取电池热管理系统的运行参数。
其中,运行参数包括实时电池荷电、电流、电压、热敏电阻器温度、电池温度、冷却液进出口温度和时间。
S150、判断电池的最高温度和/或最低温度在时间阈值内是否保持不变,若保持不变则结束检测程序。
S160、根据运行参数计算接触热阻。
首先,计算电池产生的热量,并根据热量计算电池的发热功率;
在电池的充放电过程中,环境仓温度与电池温度保持一致且稳定不变化,那么电池与环境的散热可以忽略不计,电池充放电产生的热量由冷却液全部换出,即电池产生的热量等于冷却液换热量Q=cmΔTC,进而计算电池的发热功率
Figure BDA0003207941190000041
其中,Q表示电池产生的热量,c表示冷却液比热容,m表示冷却液质量,ΔTC表示冷却液进出口温差,P表示电池发热功率,t表示检测时间。
然后,计算电池与冷却液的温差,ΔTe=Ta-Tb,其中,ΔTe表示电池与冷却液温差,Ta表示电池温度,Tb表示冷却液进水口温度。
最后,根据发热功率和温差计算接触热阻,
Figure BDA0003207941190000051
其中,R表示接触热阻,ΔTC表示电池与冷却液温差,P表示电池发热功率。
作为一种优选,电池热管理系统的初始电池荷电为45-55%,初始热敏电阻器温度为25-35℃,初始冷却液温度为25-25℃,初始冷却液流量为8-12mL/min。,调温周期为10-30分钟。时间阈值为0.5-1.5小时。
通过在电池充放电过程中控制环境仓温度与电池充放电循环过程温度一致,以隔绝电池与外界换热,通过冷却液将电池产热带出,以冷却液的热量变化值计量电池产生热量,进而通过计算得到接触热阻。
如图2所示,一种检测电池热管理系统接触热阻的装置充放电设备120、液冷设备130、测试设备140、控制设备150和环境仓160。
其中,环境仓160具有容置腔,能够容纳电池110,充放电设备120连接电池110,能够设定电池充电策略,并根据充电策略给电池110充放电,液冷设备130连接电池110,能够通过冷却液热交换给电池110降温,测试设备140连接电池110和环境仓160,能够获取热管理系统的运行参数,控制设备150连接环境仓160,能够调节环境仓160的温度。
测试设备140的一个例子是利用万用表持续测得电池的电流和电压并对时间进行积分,获得各时刻电量累计变化量,从而得到SOC值。通过设置于热敏电阻器、电池内部、或者与热敏电阻器、电池的外侧相接地设置了的感温元件,以获取热敏电阻器温度。通过设置在冷却液进出口处的感温元件获取冷却液进出口温度。
进一步的,如图3所示液冷设备130包括导热垫131、液冷板132、冷却液133和液冷控制器。
导热垫131设置在环境仓160内,且包覆在电池110的外表面,导热垫131的一个例子是导热硅胶。
液冷板132设置在环境仓160内,且位于导热垫131的外层,液冷板132可以是真空钎焊式水冷板、搅拌摩擦焊式水冷板、埋管式水冷板、深孔钻/腔体式水冷板中的任意一种。
液冷控制器设置在环境仓160外部,液冷控制器的一个例子是采用循环水冷机组,其内部自带流量泵。
冷却液133可循环的设置在环境仓160内,且与液冷控制器联通,能够将电池产生的热量换出,冷却液133可以是酒精型、甘油型或乙二醇型冷却液。
充放电过程中电池内部会进行电化学反应,释放一定的热量,热量通过导热垫131传递到液冷板132,再通过冷却液133与液冷板132表面以对流的方式实现换热。
本发明通过控制设备调节环境仓温度,以保证环境仓温度与电池充放电循环过程温度一致,通过液冷设备给电池降温,通过测试设备获取热管理系统的运行参数,以实现对电池热管理系统热阻的检测功能,结构简单,可操作性强。
在一个具体实施例中,采用如图2-3所示的检测电池热管理系统接触热阻的装置进行接触热阻检测,具体过程为:
1、试验准备:
初始化动力电池包初始负荷SOC为50(±0.5)%;
初始化动力电池热敏电阻器NTC温度为30(±2)℃;
刷写测试版BMS充电策略(1C充10s放10s循环充放)以及出厂版热管理控制策略程序;
连接乙二醇型冷却液、充放电设备;
冷却液初始温度为20℃,流量为10L/min,充放电过程中冷却液设备加热功率足够大,在试验过程中能够持续以目标20℃,10L/min恒定输出冷却液;
2、试验过程:
按照测试版充电策略以及出厂版热管理控制策略进行充放电,根据电池温度变化,每隔20分钟将环境温度改为电池最高温TMAX,直至电池温度最高温TMAX和/或最低温度TMIN在1h内不发生变化结束试验。
3、测量数据:
试验过程中记录试验过程中实时SOC、电流、电压、NTC温度、电池进出水口温度和时间。
如下为举例数据说明计算接触热阻过程:
试验结束时,冷却液流量为10L/min,进水口温度20℃,出水口温度28℃,环境仓稳定温度36℃,环境仓温度与电池温度保持一致且稳定不变化,那么电池与环境的散热可以忽略不计,那么电池充放电产生的热量由冷却液全部换出,即电池产生的热量=冷却液换热量。
冷却液质量m=ρLt=1071kg/m3×10L/min×1s=0.1785kg;
电池产生的热量Q=cmΔTC=3.36KJ/kg.K×0.1785kg×(28-20)℃=4.8Kj;
电池的发热功率
Figure BDA0003207941190000071
电池与冷却液的温差,ΔTe=Ta-Tb=36℃-20℃=16℃
接触热阻
Figure BDA0003207941190000072
即图2所示电池110与冷却液133之间的接触热阻。
其中,Q表示电池产生的热量,c表示冷却液比热容,m表示冷却液质量,ΔTC表示冷却液进出口温差,P表示电池发热功率,t表示检测时间,ΔTe表示电池与冷却液温差,Ta表示电池温度,Tb表示冷却液进水口温度,R表示接触热阻,ΔTC表示电池与冷却液温差,P表示电池发热功率。
由此,本发明提供的一种检测电池热管理系统接触热阻方法及装置,测试方法简单、方便、快捷,可以用来评价不同项目热管理换热性能,进行横向对比。
以上内容仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不脱离本发明的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。

Claims (10)

1.一种检测电池热管理系统接触热阻方法,其特征在于,包括:
初始化电池热管理系统参数;
按照充电策略给所述电池充放电;
按照预设的调温周期将环境仓温度调至所述电池的最高温度,并实时获取所述电池热管理系统的运行参数,直到所述电池的最高温度和/或最低温度在时间阈值内保持不变;
根据所述运行参数计算接触热阻。
2.如权利要求1所述的检测电池热管理系统接触热阻方法,其特征在于,所述系统参数包括电池荷电、热敏电阻器温度、冷却液温度和冷却液流量。
3.如权利要求2所述的检测电池热管理系统接触热阻方法,其特征在于,所述运行参数包括实时电池荷电、电流、电压、热敏电阻器温度、电池温度、冷却液进出口温度和时间。
4.如权利要求3所述的检测电池热管理系统接触热阻方法,其特征在于,所述计算接触热阻包括如下步骤:
计算所述电池产生的热量,并根据所述热量计算所述电池的发热功率;
计算所述电池与所述冷却液的温差;
根据所述发热功率和所述温差计算接触热阻。
5.如权利要求4所述的检测电池热管理系统接触热阻方法,其特征在于,所述调温周期为10-30分钟。
6.如权利要求5所述的检测电池热管理系统接触热阻方法,其特征在于,所述时间阈值为0.5-1.5小时。
7.如权利要求6所述的检测电池热管理系统接触热阻方法,其特征在于,所述电池热管理系统的初始电池荷电为45-55%,初始热敏电阻器温度为25-35℃,初始冷却液温度为25-25℃,初始冷却液流量为8-12mL/min。
8.如权利要求7所述的检测电池热管理系统接触热阻方法,其特征在于,所述接触热阻的计算公式为:
Figure FDA0003207941180000011
其中,R表示接触热阻,ΔTC表示电池与冷却液温差,P表示电池发热功率。
9.一种检测电池热管理系统接触热阻的装置,其特征在于,包括:
环境仓,其具有容置腔,能够容纳电池;
充放电设备,其连接所述电池,能够设定电池充电策略,并根据所述充电策略给所述电池充放电;
液冷设备,其连接所述电池,能够通过冷却液热交换给所述电池降温;
测试设备,其连接所述电池和所述环境仓,能够获取热管理系统的运行参数;
控制设备,其连接所述环境仓,能够调节所述环境仓温度。
10.如权利要求9所述的检测电池热管理系统接触热阻的装置,其特征在于,所述液冷设备包括:
导热垫,其设置在所述环境仓内,且包覆在所述电池的外表面;
液冷板,其设置在所述环境仓内,且位于所述导热垫的外层;
液冷控制器,其设置在所述环境仓外部;
冷却液,其可循环的设置在所述环境仓内,且与所述液冷控制器联通,能够将电池产生的热量换出。
CN202110922553.2A 2021-08-12 2021-08-12 一种检测电池热管理系统接触热阻方法及装置 Pending CN113764747A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110922553.2A CN113764747A (zh) 2021-08-12 2021-08-12 一种检测电池热管理系统接触热阻方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110922553.2A CN113764747A (zh) 2021-08-12 2021-08-12 一种检测电池热管理系统接触热阻方法及装置

Publications (1)

Publication Number Publication Date
CN113764747A true CN113764747A (zh) 2021-12-07

Family

ID=78789094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110922553.2A Pending CN113764747A (zh) 2021-08-12 2021-08-12 一种检测电池热管理系统接触热阻方法及装置

Country Status (1)

Country Link
CN (1) CN113764747A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114492019A (zh) * 2022-01-22 2022-05-13 苏州纬方电子有限公司 一种电池模组的自适应温度调控的评估方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120219838A1 (en) * 2009-10-19 2012-08-30 Nitto Shinko Corporation Thermally conductive member and battery pack device using same
CN106872898A (zh) * 2017-02-06 2017-06-20 中国第汽车股份有限公司 动力电池单体界面热阻快速测试方法
CN107069131A (zh) * 2016-11-29 2017-08-18 北京交通大学 一种锂离子电池集总热学参数的辨识方法
CN108195878A (zh) * 2017-12-15 2018-06-22 北京长城华冠汽车科技股份有限公司 一种接触热阻的测试装置和方法
CN109188285A (zh) * 2018-07-24 2019-01-11 合肥工业大学 一种锂电池内外热阻估计方法
CN109738801A (zh) * 2018-11-30 2019-05-10 铜陵市优车科技有限公司 电池系统发热功率测试方法和系统
CN111044930A (zh) * 2019-12-06 2020-04-21 清华大学 锂离子电池模组传热热阻测试方法和系统
CN112540312A (zh) * 2020-12-29 2021-03-23 吉林大学 一种锂离子电池测试装置
CN112600284A (zh) * 2021-03-04 2021-04-02 苏州宝时得电动工具有限公司 电池包的充放电调控装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120219838A1 (en) * 2009-10-19 2012-08-30 Nitto Shinko Corporation Thermally conductive member and battery pack device using same
CN107069131A (zh) * 2016-11-29 2017-08-18 北京交通大学 一种锂离子电池集总热学参数的辨识方法
CN106872898A (zh) * 2017-02-06 2017-06-20 中国第汽车股份有限公司 动力电池单体界面热阻快速测试方法
CN108195878A (zh) * 2017-12-15 2018-06-22 北京长城华冠汽车科技股份有限公司 一种接触热阻的测试装置和方法
CN109188285A (zh) * 2018-07-24 2019-01-11 合肥工业大学 一种锂电池内外热阻估计方法
CN109738801A (zh) * 2018-11-30 2019-05-10 铜陵市优车科技有限公司 电池系统发热功率测试方法和系统
CN111044930A (zh) * 2019-12-06 2020-04-21 清华大学 锂离子电池模组传热热阻测试方法和系统
CN112540312A (zh) * 2020-12-29 2021-03-23 吉林大学 一种锂离子电池测试装置
CN112600284A (zh) * 2021-03-04 2021-04-02 苏州宝时得电动工具有限公司 电池包的充放电调控装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114492019A (zh) * 2022-01-22 2022-05-13 苏州纬方电子有限公司 一种电池模组的自适应温度调控的评估方法及系统
CN114492019B (zh) * 2022-01-22 2024-02-02 苏州纬方电子有限公司 一种电池模组的自适应温度调控的评估方法及系统

Similar Documents

Publication Publication Date Title
CN108172930B (zh) 电池包冷却控制方法、装置和电池包
WO2021121110A1 (zh) 一种预估充电时间的方法,装置及存储介质
An et al. Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel
CN103094640B (zh) 电池组热管理装置
CN108199122B (zh) 基于电化学-热耦合模型的锂离子电池无析锂低温加热方法
Lei et al. Preheating method of lithium-ion batteries in an electric vehicle
Wang et al. Investigation of thermal management of lithium-ion battery based on micro heat pipe array
CN111175656B (zh) 电池析锂检测方法与电池死锂检测参数的计算方法
CN111244568A (zh) 电动汽车动力电池液冷系统实时制冷量计算方法及其控制
CN112864488A (zh) 一种储能液冷系统装置及其控制方法
CN112219334A (zh) 控制二次电池组的充电的装置和方法
CN111600084A (zh) 电池组发热量等效测试系统及测试方法
CN113764747A (zh) 一种检测电池热管理系统接触热阻方法及装置
CN102082314A (zh) 一种蓄电池温度控制装置及系统
CN109066003A (zh) 电池热管理装置
CN110281808A (zh) 一种基于电池温度与健康状态的v2g安全控制方法及系统
Keyser et al. Thermal characterization of advanced lithium-ion polymer cells
KR20100035772A (ko) 하이브리드 차량의 고전압배터리 냉각 제어 방법
Williams et al. Immersion Cooling of Lithium-ion Batteries for Electric Vehicles
Wu et al. Experimental assessment and comparison of single-phase versus two-phase liquid cooling battery thermal management systems
CN113611947B (zh) 一种电动汽车电池温度控制装置
CN206180060U (zh) 一种锂电池的温度控制装置
CN114883701A (zh) 一种均衡控制锂离子电池充放电过程温度的方法
CN111211366B (zh) 适用于超快速充电的锂离子电池组的热均衡方法
CN115189073A (zh) 一种电池加热装置、加热策略选取方法及选取装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211207

RJ01 Rejection of invention patent application after publication