CN113759313A - 一种基于混沌麻雀算法的时差/频差定位方法 - Google Patents

一种基于混沌麻雀算法的时差/频差定位方法 Download PDF

Info

Publication number
CN113759313A
CN113759313A CN202110836594.XA CN202110836594A CN113759313A CN 113759313 A CN113759313 A CN 113759313A CN 202110836594 A CN202110836594 A CN 202110836594A CN 113759313 A CN113759313 A CN 113759313A
Authority
CN
China
Prior art keywords
sparrow
algorithm
chaotic
tdoa
fdoa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110836594.XA
Other languages
English (en)
Other versions
CN113759313B (zh
Inventor
国强
王亚妮
戚连刚
刘立超
朱国会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202110836594.XA priority Critical patent/CN113759313B/zh
Publication of CN113759313A publication Critical patent/CN113759313A/zh
Application granted granted Critical
Publication of CN113759313B publication Critical patent/CN113759313B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0246Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves involving frequency difference of arrival or Doppler measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提供一种基于混沌麻雀搜索算法的TDOA/FDOA定位方法,包括:建立站址误差情况下的TDOA/FDOA定位模型;利用加权最小二乘法得到目标源位置信息的粗略估计;利用Ligostic混沌序列初始化种群;采用麻雀搜索算法对TDOA/FDOA模型进行定位解算;判断算法是否达到最大迭代次数Itera;如果是,停止迭代并输出目标的位置和速度,否则返回步骤四继续迭代。为使麻雀种群能够均匀分布在目标区域,将Logistic混沌映射引入种群进行初始化,降低算法陷入到局部最优的风险;用改进的麻雀搜索算法来实现TDOA/FDOA定位跟踪。本申请方法能够降低运算复杂度,有效解决低站址误差下定位精度差的问题。

Description

一种基于混沌麻雀算法的时差/频差定位方法
技术领域
本发明涉及一种基于混沌麻雀算法的时差/频差定位方法,是一种可以有效解决低站址误差情况下定位精度差的问题,属于无源定位领域。
背景技术
近十几年来,无源定位技术一直在不断的发展和完善,在雷达和声纳等领域都有广泛的应用。其中,基于时差(Time Difference of Arrival,TDOA)和频差(TimeDifference of Arrival,FDOA)测量的定位技术因其具有良好的实时性以及较广的侦测范围等优点,受到国内外学者的广泛关注。然而,现有算法多是针对静态接收站的定位,即接收站状态信息是准确已知的,这在实际场景中是不现实的。研究表明,即使在站址误差很小的情况下,也会严重降低目标的定位精度。因此,在实际应用中,将站址误差引入到TDOA/FDOA定位模型中,是很有必要的。
将麻雀搜索算法(Sparrow Search Algorithm,SSA)应用到TDOA/FDOA定位中,但该算法在站址误差较小的情况下,定位性能较差。为了解决上述问题,将Logistic混沌映射引入到SSA中来对目标进行定位跟踪,Logistic混沌映射可以使麻雀种群在搜索区域内均匀分布,降低算法收敛到局部最优的风险。同时,由于实际定位场景中,目标源的位置信息不可知,本方法利用加权最小二乘法(Weighted Least Squares,WLS)得到目标源位置信息的粗略估计,以限制CSSA算法的搜索区域。
发明内容
本申请发明针对麻雀搜索算法在低站址误差情况下定位精度差的问题,提出基于Logistic混沌映射的麻雀搜素算法(Chaotic Sparrow Search Algorithm,CSSA)。本发明首先建立TDOA/FDOA定位模型,然后利用混沌麻雀搜索算法对TDOA/FDOA模型进行定位解算。
本发明的具体实现步骤如下:
步骤一:建立站址误差情况下的TDOA/FDOA定位模型;
步骤二:利用加权最小二乘法得到目标源位置信息的粗略估计;
步骤三:利用Ligostic混沌序列初始化种群;
步骤四:采用麻雀搜索算法对TDOA/FDOA模型进行定位解算;
步骤五:判断算法是否达到最大迭代次数Itera。如果是,停止迭代并输出目标的位置和速度,否则返回步骤四继续迭代。
本发明主要涉及到以下特征:
1.步骤一中的TDOA/FDOA定位模型为:
Figure BDA0003177382450000021
其中,τi1为目标源到第i个接收站和第1个接收站之间的TDOA信息,
Figure BDA0003177382450000022
为目标源到第i个接收站和第1个接收站之间的FDOA信息,c为电磁波传播速度,f0为载波频率,M为接收站个数。
2.步骤二具体为:
将时差方程和频差方程组合成矩阵形式为:
ε=h-Gθ
然后,WLS目标函数可以表示为:
JWLS(θ)=(h-Gθ)TW(h-Gθ)
我们的目标是找到最小化目标函数JWLS(θ)的线性闭式解,可得
Figure BDA0003177382450000023
3.步骤三具体为:
Logistic混沌映射可以使种群在搜索区域内均匀分布,降低算法陷入局部最优的风险,其表达式为:
αt+1=αt×σ(1-αt)
其中,σ∈[0,4]为Logistic映射函数参数,是一个控制参数。αt∈[0,1]为Logistic映射函数在第t次迭代时的函数值。
4.步骤四具体为:
假设在D维搜索空间中有N只麻雀,则第i只麻雀在D维搜索空间中的位置为Xi=[xi1,xi2,...,xiD],其中i=1,2,...,N,xid表示第i只麻雀在第d维的位置。
生产者一般占到种群的10%~20%,位置更新公式如下:
Figure BDA0003177382450000031
其中,t=1,2,...,Itera为迭代次数,α∈(0,1]、Q为随机数,L为1×D的矩阵,其中每个元素都是1;R2∈[0,1]和ST∈[0.5,1]分别表示预警值和安全值。
除了生产者,剩余的麻雀均作为乞讨者,并根据下式进行位置更新:
Figure BDA0003177382450000032
其中,
Figure BDA0003177382450000033
表示种群在第d维的最差位置,
Figure BDA0003177382450000034
表示种群在第d维的最好位置。
侦察预警的麻雀一般占到种群的10%~20%,位置更新如下:
Figure BDA0003177382450000035
其中,β为服从标准正态分布的随机数,K∈[-1,1]。e的目的是为了避免分母为0的情况出现,是一个很小的常数。fi为第i只麻雀的适应度值,fg和fw分别是当前麻雀种群的全局最佳和最差适应度值。
本发明的核心技术在于:首先构建站址误差情况下的TDOA/FDOA定位模型;然后利用加权最小二乘法得到目标源的粗略估计,以限制目标区域;最后利用混沌麻雀算法搜索最优解。该方法可以有效解决麻雀算法在低站址误差下定位精度差的问题,能够有效提高算法的寻优能力。
本发明主要研究了站址误差情况下的TDOA/FDOA定位问题,所述方法包括:利用加权最小二乘法为后续算法提供粗略的目标源估计,以限制混沌麻雀算法的搜索算法,达到降低运算复杂度的目的;为使麻雀种群能够均匀分布在目标区域,将Logistic混沌映射引入种群进行初始化,降低算法陷入到局部最优的风险;用改进的麻雀搜索算法来实现TDOA/FDOA定位跟踪。本申请方法能够降低运算复杂度,有效解决低站址误差下定位精度差的问题。
附图说明
图1是混沌麻雀搜索算法的原理框图;
图2是站址误差条件下的定位模型图;
图3a-b是σ=4和σ=2.5时Logistic映射函数迭代图;
图4a-b是αt随σ和α0数值变化的分布情况;
图5是麻雀算法和混沌麻雀算法的收敛曲线对比;
图6a-d是本方法与SSA、FA、GA、ACO算法在近场源的定位性能对比;
图7a-d是本方法与SSA、FA、GA、ACO算法在远场源的定位性能对比。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述。
本发明是一种基于混沌麻雀搜索算法的TDOA/FDOA定位方法,具体包括:
(1.1)利用加权最小二乘法得到目标源的初始估计,以限制混沌麻雀算法的搜索区域,减少运算量;
(1.2)引入Logistic混沌映射,可以使麻雀种群均匀分布在整个搜索区域,以避免麻雀算法陷入到局部最优。
所述方法特征(1.1)包括:
(2.1)假设在三维空间中有M≥3个接收站和1个目标源,目标源的位置和速度坐标分别为uo=[xo,yo,zo]T
Figure BDA0003177382450000041
M≥3个接收站的位置和速度坐标为si=[xi,yi,zi]T
Figure BDA0003177382450000042
在测量得到TDOA和FDOA信息后,就可以利用目标源到达接收站之间的TDOA信息构造TDOA方程,即得到若干条TDOA双曲面。同理,利用目标源到达接收站之间的FDOA信息就可以构造FDOA方程,得到若干条FDOA复杂曲面。TDOA/FDOA定位模型可以总结为:
Figure BDA0003177382450000043
其中,τi1为目标源到第i个接收站和第1个接收站之间的TDOA信息,
Figure BDA0003177382450000044
为目标源到第i个接收站和第1个接收站之间的FDOA信息,c为电磁波传播速度,f0为载波频率,M为接收站个数。
(2.2)由于在实际定位场景中,目标源的位置信息是不确定的。所以本发明首先利用加权最小二乘法得到目标源的初始估计,同时可以限制麻雀算法的搜索区域,减少计算量。
将时差方程和频差方程组合成矩阵形式为:
ε=h-Gθ
式中
Figure BDA0003177382450000051
Figure BDA0003177382450000052
Figure BDA0003177382450000053
其中,
Figure BDA0003177382450000054
Δα为TDOA和FDOA测量误差矢量,Δβ为接收站运动状态的误差矢量。
Figure BDA0003177382450000055
Figure BDA0003177382450000056
Figure BDA0003177382450000057
然后,WLS目标函数可以表示为:
JWLS(θ)=(h-Gθ)TW(h-Gθ)
我们的目标是找到最小化目标函数JWLS(θ)的线性闭式解,可得
Figure BDA0003177382450000061
(2.3)假设WLS算法获得的初始结果是
Figure BDA0003177382450000062
则可以用下式来限制麻雀算法的搜索区域:
newX=lb+(ub-lb)·X
其中,lb、ub为搜索区域的上界向量和下界向量。
所述方法特征(1.2)包括:
(3.1)假设在D维搜索空间中有N只麻雀,则第i只麻雀在D维搜索空间中的位置为Xi=[xi1,xi2,...,xiD],其中i=1,2,...,N,xid表示第i只麻雀在第d维的位置。
生产者一般占到种群的10%~20%,位置更新公式如下:
Figure BDA0003177382450000063
其中,t=1,2,...,Itera为迭代次数,α∈(0,1]、Q为随机数,L为1×D的矩阵,其中每个元素都是1;R2∈[0,1]和ST∈[0.5,1]分别表示预警值和安全值。
除了生产者,剩余的麻雀均作为乞讨者,并根据下式进行位置更新:
Figure BDA0003177382450000064
其中,
Figure BDA0003177382450000065
表示种群在第d维的最差位置,
Figure BDA0003177382450000066
表示种群在第d维的最好位置。
侦察预警的麻雀一般占到种群的10%~20%,位置更新如下:
Figure BDA0003177382450000067
其中,β为服从标准正态分布的随机数,K∈[-1,1]。e的目的是为了避免分母为0的情况出现,是一个很小的常数。fi为第i只麻雀的适应度值,fg和fw分别是当前麻雀种群的全局最佳和最差适应度值。
(3.2)为了使麻雀种群均匀分布在整个搜索区域,降低算法陷入局部最优的风险,在初始化麻雀种群时引入Logistic混沌映射。
αt+1=αt×σ(1-αt)
其中,σ∈[0,4]为Logistic映射函数参数,是一个控制参数。αt∈[0,1]为Logistic映射函数在第t次迭代时的函数值。
本申请实施例根据麻雀算法的全局搜索特性,提出了一种基于混沌麻雀搜索算法的TDOA/FDOA定位方法。所申请方法通过引入Logistic混沌映射对麻雀种群进行初始化,使麻雀种群均匀分布在整个搜索区域,然后采用麻雀算法对麻雀位置进行更新,利用适应度函数进行评估,以实现对目标的定位。所申请方法可以通过限制搜索范围,降低算法运算量,然后在初始化时引入Logistic混沌映射,降低麻雀算法陷入局部最优的可能性。
为更加清晰的说明申请方法,本申请实施例通过仿真实验进行流程说明以及效果展示,但不限制本申请实施例的范围。实验条件为:利用M=5个接收站对目标源进行近场源和远场源定位,麻雀种群数量设置为N=100,迭代次数设置为Itera=100,蒙特卡洛仿真次数为L=1000。
图1是本发明所述方法的原理框图,该方法包括:
S110 TDOA/FDOA定位模型如图2所示,其表达式为
Figure BDA0003177382450000071
其中,τi1为目标源到第i个接收站和第1个接收站之间的TDOA信息,
Figure BDA0003177382450000072
为目标源到第i个接收站和第1个接收站之间的FDOA信息,c为电磁波传播速度,f0为载波频率,M为接收站个数。
S111将时差方程和频差方程组合成矩阵形式为:
ε=h-Gθ
然后,WLS目标函数可以表示为:
JWLS(θ)=(h-Gθ)TW(h-Gθ)
我们的目标是找到最小化目标函数JWLS(θ)的线性闭式解,可得
Figure BDA0003177382450000081
S112假设WLS算法获得的初始结果是
Figure BDA0003177382450000082
则可以用下式来限制麻雀算法的搜索区域:
newX=lb+(ub-lb)·X
其中,lb、ub为搜索区域的上界向量和下界向量。
S120在D维搜索空间中有N只麻雀,则第i只麻雀在D维搜索空间中的位置为Xi=[xi1,xi2,...,xiD],其中i=1,2,...,N,xid表示第i只麻雀在第d维的位置。
生产者一般占到种群的10%~20%,位置更新公式如下:
Figure BDA0003177382450000083
其中,t=1,2,...,Itera为迭代次数,α∈(0,1]、Q为随机数,L为1×D的矩阵,其中每个元素都是1;R2∈[0,1]和ST∈[0.5,1]分别表示预警值和安全值。
除了生产者,剩余的麻雀均作为乞讨者,并根据下式进行位置更新:
Figure BDA0003177382450000084
其中,
Figure BDA0003177382450000085
表示种群在第d维的最差位置,
Figure BDA0003177382450000086
表示种群在第d维的最好位置。
侦察预警的麻雀一般占到种群的10%~20%,位置更新如下:
Figure BDA0003177382450000087
其中,β为服从标准正态分布的随机数,K∈[-1,1]。e的目的是为了避免分母为0的情况出现,是一个很小的常数。fi为第i只麻雀的适应度值,fg和fw分别是当前麻雀种群的全局最佳和最差适应度值。
S121为了使麻雀种群均匀分布在整个搜索区域,降低算法陷入局部最优的风险,在初始化麻雀种群时引入Logistic混沌映射。
αt+1=αt×σ(1-αt)
其中,σ∈[0,4]为Logistic映射函数参数,是一个控制参数。αt∈[0,1]为Logistic映射函数在第t次迭代时的函数值。
S130若使求得的的目标位置最好,其适应度函数可表示为:
Fitness(x)=||h-Gθ||2
其中
Figure BDA0003177382450000091
Figure BDA0003177382450000092
Figure BDA0003177382450000093
令接收站的数量为M=5,经过若干次迭代后,就可以优化得到目标源的位置和速度。图3为σ=4和σ=2.5时的Logistic映射函数迭代图。图4为αt随σ和α0数值变化的分布情况。图5为混沌麻雀搜索算法和麻雀搜索算法的收敛曲线对比,可知,混沌麻雀搜索算法能更快的收敛到全局最优解。为了说明该方法的优越性,将其与麻雀搜索算法(SparrowSearch Algorithm,SSA)、萤火虫算法(Firefly Algorithm,FA)、遗传算法(GeneticAlgorithm,GA)、蚁群算法(Ant Colony Optimization,ACO)进行了对比,结果如图6和图7所示。其中,图6为近场源;图7为远场源。可以发现本发明所提方法的均方根误差(RootMean Square Error,RMSE)更贴近克拉美罗下界(Cramer-Rao Lower Bound,CRLB),定位偏差(Bias)更小,所以本发明能够保证站址误差较小的情况下,定位性能更优。
综上,本实施例的方法根据麻雀算法的全局搜索特性,提出了一种基于混沌麻雀搜索算法的TDOA/FDOA定位方法。所申请方法通过引入Logistic混沌映射对麻雀种群进行初始化,使麻雀种群均匀分布在整个搜索区域,然后采用麻雀算法对麻雀位置进行更新,利用适应度函数进行评估,以实现对目标的定位。所申请方法可以通过限制搜索范围,降低算法运算量,然后在初始化时引入Logistic混沌映射,降低麻雀算法陷入局部最优的可能性。
本领域技术人员可以理解,在本申请具体实施方式的上述方法中,各步骤的序号大小并不意味着执行顺序的先后,各步骤的执行顺序应以其功能和内在逻辑确定,而不应对本申请具体实施方式的实施过程构成任何限定。
最后应说明的是,以上实施例仅用以描述本发明的技术方案而不是对本技术方法进行限制,本发明在应用上可以延伸为其他的修改、变化、应用和实施例,并且因此认为所有这样的修改、变化、应用、实施例都在本发明的精神和教导范围内。

Claims (5)

1.一种基于混沌麻雀算法的时差/频差定位方法,其步骤如下:
步骤一:建立站址误差情况下的TDOA/FDOA定位模型;
步骤二:利用加权最小二乘法得到目标源位置信息的粗略估计;
步骤三:利用Ligostic混沌序列初始化种群;
步骤四:采用麻雀搜索算法对TDOA/FDOA模型进行定位解算;
步骤五:判断算法是否达到最大迭代次数Itera;如果是,停止迭代并输出目标的位置和速度,否则返回步骤四继续迭代。
2.根据权利要求1所述的一种基于混沌麻雀算法的时差/频差定位方法,其特征在于:步骤一中的TDOA/FDOA定位模型为:
Figure FDA0003177382440000011
其中,τi1为目标源到第i个接收站和第1个接收站之间的TDOA信息,
Figure FDA0003177382440000012
为目标源到第i个接收站和第1个接收站之间的FDOA信息,c为电磁波传播速度,f0为载波频率,M为接收站个数。
3.根据权利要求2所述的一种基于混沌麻雀算法的时差/频差定位方法,其特征在于:步骤二具体为:
将时差方程和频差方程组合成矩阵形式为:
ε=h-Gθ
然后,WLS目标函数可以表示为:
JWLS(θ)=(h-Gθ)TW(h-Gθ)
找到最小化目标函数JWLS(θ)的线性闭式解,可得:
Figure FDA0003177382440000013
4.根据权利要求3所述的一种基于混沌麻雀算法的时差/频差定位方法,其特征在于:步骤三具体为:
Logistic混沌映射可以使种群在搜索区域内均匀分布,降低算法陷入局部最优的风险,其表达式为:
αt+1=αt×σ(1-αt)
其中,σ∈[0,4]为Logistic映射函数参数,是一个控制参数;αt∈[0,1]为Logistic映射函数在第t次迭代时的函数值。
5.根据权利要求4所述的一种基于混沌麻雀算法的时差/频差定位方法,其特征在于:步骤四具体为:
假设在D维搜索空间中有N只麻雀,则第i只麻雀在D维搜索空间中的位置为:
Xi=[xi1,xi2,...,xiD]
其中i=1,2,...,N,xid表示第i只麻雀在第d维的位置;
生产者占到种群的10%~20%,位置更新公式如下:
Figure FDA0003177382440000021
其中,t=1,2,...,Itera为迭代次数,α∈(0,1]、Q为随机数,L为1×D的矩阵,其中每个元素都是1;R2∈[0,1]和ST∈[0.5,1]分别表示预警值和安全值;
除了生产者,剩余的麻雀均作为乞讨者,并根据下式进行位置更新:
Figure FDA0003177382440000022
其中,
Figure FDA0003177382440000023
表示种群在第d维的最差位置,
Figure FDA0003177382440000024
表示种群在第d维的最好位置;
侦察预警的麻雀一般占到种群的10%~20%,位置更新如下:
Figure FDA0003177382440000025
其中,β为服从标准正态分布的随机数,K∈[-1,1];e的目的是为了避免分母为0的情况出现,是一个很小的常数;fi为第i只麻雀的适应度值,fg和fw分别是当前麻雀种群的全局最佳和最差适应度值。
CN202110836594.XA 2021-07-23 2021-07-23 一种基于混沌麻雀算法的时差/频差定位方法 Active CN113759313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110836594.XA CN113759313B (zh) 2021-07-23 2021-07-23 一种基于混沌麻雀算法的时差/频差定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110836594.XA CN113759313B (zh) 2021-07-23 2021-07-23 一种基于混沌麻雀算法的时差/频差定位方法

Publications (2)

Publication Number Publication Date
CN113759313A true CN113759313A (zh) 2021-12-07
CN113759313B CN113759313B (zh) 2023-09-29

Family

ID=78787877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110836594.XA Active CN113759313B (zh) 2021-07-23 2021-07-23 一种基于混沌麻雀算法的时差/频差定位方法

Country Status (1)

Country Link
CN (1) CN113759313B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440893A (zh) * 2022-02-16 2022-05-06 北京邮电大学 用于tdoa信号解算的协同定位方法、系统及存储介质
CN115494450A (zh) * 2022-11-17 2022-12-20 长沙驰芯半导体科技有限公司 一种高精度的超宽带室内定位跟踪与控制方法及装置
CN117807356A (zh) * 2024-02-29 2024-04-02 齐鲁工业大学(山东省科学院) 基于改进麻雀算法优化粒子滤波的双矢量水听器定位方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2672691A1 (en) * 2006-12-15 2008-06-19 Thales Set mode passive location in toa/tdoa modes
JP2009198435A (ja) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp 未知送信局の測位装置及び測位方法
US20100315290A1 (en) * 2009-06-16 2010-12-16 L3 Communications Integrated Systems, L.P. Globally-convergent geo-location algorithm
CN107300687A (zh) * 2017-03-22 2017-10-27 哈尔滨工程大学 一种基于运动多站的高精度无源时差定位方法
KR20190044269A (ko) * 2017-10-20 2019-04-30 국방과학연구소 향상된 caf 기법을 이용한 tdoa 및 fdoa의 추정 방법
CN112329934A (zh) * 2020-11-17 2021-02-05 江苏科技大学 一种基于改进麻雀搜索算法的rbf神经网络优化算法
CN112461247A (zh) * 2020-12-16 2021-03-09 广州大学 一种基于自适应麻雀搜索算法的机器人路径规划方法
CN112880688A (zh) * 2021-01-27 2021-06-01 广州大学 基于混沌自适应麻雀搜索算法的无人机三维航迹规划方法
CN112926139A (zh) * 2021-03-23 2021-06-08 中国人民解放军火箭军工程大学 一种基于混沌映射和黄金正弦策略的改进麻雀智能优化方法
CN112995898A (zh) * 2021-03-10 2021-06-18 南京航空航天大学 基于cassa优化的无人机集群置信传播协同定位方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2672691A1 (en) * 2006-12-15 2008-06-19 Thales Set mode passive location in toa/tdoa modes
JP2009198435A (ja) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp 未知送信局の測位装置及び測位方法
US20100315290A1 (en) * 2009-06-16 2010-12-16 L3 Communications Integrated Systems, L.P. Globally-convergent geo-location algorithm
CN107300687A (zh) * 2017-03-22 2017-10-27 哈尔滨工程大学 一种基于运动多站的高精度无源时差定位方法
KR20190044269A (ko) * 2017-10-20 2019-04-30 국방과학연구소 향상된 caf 기법을 이용한 tdoa 및 fdoa의 추정 방법
CN112329934A (zh) * 2020-11-17 2021-02-05 江苏科技大学 一种基于改进麻雀搜索算法的rbf神经网络优化算法
CN112461247A (zh) * 2020-12-16 2021-03-09 广州大学 一种基于自适应麻雀搜索算法的机器人路径规划方法
CN112880688A (zh) * 2021-01-27 2021-06-01 广州大学 基于混沌自适应麻雀搜索算法的无人机三维航迹规划方法
CN112995898A (zh) * 2021-03-10 2021-06-18 南京航空航天大学 基于cassa优化的无人机集群置信传播协同定位方法
CN112926139A (zh) * 2021-03-23 2021-06-08 中国人民解放军火箭军工程大学 一种基于混沌映射和黄金正弦策略的改进麻雀智能优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
唐巍, 李殿璞, 陈学允: "混沌理论及其应用研究", 电力系统自动化, no. 07 *
高向颖;赵拥军;刘智鑫;刘成城;: "考虑站址误差的稳健TDOA定位算法", 信号处理, no. 08 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114440893A (zh) * 2022-02-16 2022-05-06 北京邮电大学 用于tdoa信号解算的协同定位方法、系统及存储介质
CN115494450A (zh) * 2022-11-17 2022-12-20 长沙驰芯半导体科技有限公司 一种高精度的超宽带室内定位跟踪与控制方法及装置
CN117807356A (zh) * 2024-02-29 2024-04-02 齐鲁工业大学(山东省科学院) 基于改进麻雀算法优化粒子滤波的双矢量水听器定位方法
CN117807356B (zh) * 2024-02-29 2024-05-10 齐鲁工业大学(山东省科学院) 基于改进麻雀算法优化粒子滤波的双矢量水听器定位方法

Also Published As

Publication number Publication date
CN113759313B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
CN113759313A (zh) 一种基于混沌麻雀算法的时差/频差定位方法
Zhang et al. Positioning optimisation based on particle quality prediction in wireless sensor networks
Zhang et al. Multiple sources localization by the WSN using the direction-of-arrivals classified by the genetic algorithm
Liu et al. Application on target localization based on salp swarm algorithm
Guo et al. Passive tracking in heavy clutter with sensor location uncertainty
Zhong et al. RF-OSFBLS: An RFID reader-fault-adaptive localization system based on online sequential fuzzy broad learning system
Guo et al. A novel radar signals sorting method-based trajectory features
Yu et al. Mean shift-based mobile localization method in mixed LOS/NLOS environments for wireless sensor network
Kong et al. A robust weighted intersection algorithm for target localization using AOA measurements
Zhou et al. Time-difference-of-arrival Location Method of UAV Swarms Based on Chan-Taylor
Yong Kang et al. A robust indoor mobile localization algorithm for wireless sensor network in mixed LOS/NLOS environments
Yang et al. TDOA location based on modified Newton method
Ma et al. A TDOA localization method for complex environment localization
Hu et al. A TDOA/AOA hybrid positioning based on improved sparrow search algorithm for mobile position estimation
CN112836784A (zh) 一种基于蚁群与l-m混合算法的磁性运动目标定位方法
CN113030853A (zh) 基于rss和aoa联合测量的多辐射源无源定位方法
Liang et al. Application of Taylor-Chan algorithm based on TDOA in sound source location
CN113804199B (zh) 一种基于Chan氏算法和牛顿法的组合定位方法与系统
Li et al. Directional Fuzzy Data Association Filter.
Zhang et al. Simulation of multilateration system based on Chan algorithm and conjugate gradient optimisation algorithm
WANG et al. A Cellular Ant Colony Algorithm for Path Planning Using Bayesian Posterior Probability
Peng et al. Application of Grey Wolf Particle Filter Algorithm based on Golden Section in WSN Mobile Target Tracking
Yamada et al. Multi-dimensional multiple hypothesis tracking with a Gaussian mixture model to suppress grating lobes
Hong et al. Iterative Virtual Force Localization Based on Anchor Selection for Three-Dimensional Wireless Sensor Networks
Najarro et al. Evolutionary Tracking Algorithm based on Combined Received Signal Strength and Angle of Arrival Measurements in Wireless Sensor Networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant