CN113758952A - 基于动量编码的x射线衍射成像装置及方法 - Google Patents

基于动量编码的x射线衍射成像装置及方法 Download PDF

Info

Publication number
CN113758952A
CN113758952A CN202110959718.3A CN202110959718A CN113758952A CN 113758952 A CN113758952 A CN 113758952A CN 202110959718 A CN202110959718 A CN 202110959718A CN 113758952 A CN113758952 A CN 113758952A
Authority
CN
China
Prior art keywords
momentum
ray
diffractor
array detector
area array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110959718.3A
Other languages
English (en)
Other versions
CN113758952B (zh
Inventor
喻虹
杨海瑞
谈志杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN202110959718.3A priority Critical patent/CN113758952B/zh
Publication of CN113758952A publication Critical patent/CN113758952A/zh
Application granted granted Critical
Publication of CN113758952B publication Critical patent/CN113758952B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray

Abstract

一种基于动量编码的X射线衍射成像装置及方法,包括X射线源、动量编码模块、待测物体、X射线面阵探测器和数据处理模块,动量编码模块为一个多衍射体结构,各个衍射体具有不同的衍射周期、中心位置与指向。X射线源发出的发散的X射线经过动量编码模块,各个不同衍射周期、中心位置与指向的衍射体对发散的X射线的动量进行编码,出射的X射线会沿着不同的动量方向传播,并汇聚通过待测物体。本发明光学传递过程、装置特性和数据处理过程不同于传统的衍射成像方法。本发明应用于X射线衍射成像中,能极大地提高成像质量和成像速度,并减少待测物体的辐射损伤。

Description

基于动量编码的X射线衍射成像装置及方法
技术领域:
本发明属于X射线衍射成像技术领域,具体是一种基于动量编码的X射线衍射成像装置及方法。
背景技术:
X射线衍射强度关联成像技术是一种利用光场高阶关联的衍射成像技术。该成像技术在理论上不需要相干光源就可以得到物体透过率函数的傅里叶变换分布,通过相位恢复算法恢复出物体的实空间分布信息。由于其对光源要求较低,有望实现小型化的显微成像装置。
中国科学院上海光学精密机械研究所的喻虹等人设计了非相干X射线衍射强度关联成像装置(非相干X射线衍射强度关联成像装置,201110148476.6),并于2016年完成了X射线傅里叶变换关联成像(XFGI)的原理演示实验(H.Yu et al.,“Fourier-TransformGhost Imaging with Hard X Rays,”Phys.Rev.Lett.,vol.117,no.11,2016),验证了该成像技术的有效性。但该技术采集的数据是时间序列的,主要存在以下几个局限:
1)在理论上,关联成像的结果是通过计算系综平均得到的,需要无限多的时间序列才能够得到结果。在实际中,往往是有限次的测量,通过压缩感知等算法得到一个较为满意的结果,其时间测量次数通常为几百至数千次。较多的时间测量次数带来的必然是成像时间的延长,特别的在X光成像领域中,较长的成像时间通常是难以接受的。
2)传统强度关联衍射成像技术中,在探测臂通常是采样点探测器,相比与面阵探测器,点探测器只能够记录一个空间点的光强数据。而探测臂光强在空间中具有一定的分布,仅记录一点的光强数据无疑造成了光通量的浪费。
3)由于传统分光装置无法运用在X射线分光中,探测臂和参考臂需要依靠是否在光路中放置待测物体进行分辨。因此,探测臂和参考臂的数据需要依靠时间序列采集,大大延长成像时间。
发明内容:
本发明要解决的技术问题在于克服上述在先技术的缺陷,提出一种基于动量编码的X射线衍射成像装置及方法,在光路中引入动量编码模块,其中,动量编码模块为一个多衍射体结构,各个衍射体具有不同的衍射周期、中心位置与指向。X射线源发出的发散的X射线经过动量编码模块,各个不同衍射周期、中心位置与指向的衍射体对发散的X射线的动量进行编码,单一X射线面阵探测器上记录的空间光强分布包含在先技术中所述探测臂与参考臂测量得到的空间信息,通过计算X射线面阵探测器上记录的空间光强分布的空间关联得到物体的傅里叶衍射谱,进行相位恢复或端对端的图像恢复神经网络程序得到物体的实空间强度分布。
本发明的技术解决方案如下:
一种基于动量编码的X射线衍射成像装置及方法,其特征在于其构成包括X射线源、动量编码模块、待测物体、X射线面阵探测器和数据处理模块。所述的X射线源发出的发散的X射线经过动量编码模块,汇聚通过待测物体后射入X射线面阵探测器。所述的数据处理模块与X射线面阵探测器相连,具有对记录的光强空间分布进行待测物体实空间分布恢复的程序。
所述的动量编码模块是一个多衍射体结构,各个衍射体的衍射周期、中心位置与指向的编码会对发散的X射线的动量产生编码作用。所述的X射线源是真实热X射线源,或赝热X射线源。
所述的基于动量编码的X射线衍射成像装置及方法,其特征在于所述的数据处理模块是计算机,或具有计算和存储能力的处理器。
所述的数据处理模块包含程序有进行空间强度关联计算的数值计算程序与相位恢复算法程序,或深度学习训练的端对端的图像恢复神经网络程序。
该成像光路与成像方法具体为:
<1>调节X射线源、动量编码模块、X射线面阵探测器同轴,其中,X射线源和动量编码模块的距离为dforward,动量编码模块和X射线面阵探测器的距离为dbackward
<2>将待测物体放入此光路中,其距X射线面阵探测器距离为dccd,调节其与光路同轴;
<3>在X射线源的一个相干时间内,X射线面阵探测器曝光一次,获得空间光强分布图像为I(x,y),其中,x,y为X射线面阵探测器的空间坐标;
<4>数据处理模块对空间光强分布图像进行空间强度关联计算与相位恢复运算,或深度学习训练的端对端的图像恢复神经网络运算,最后得到待测物体的实空间分布信息。
所述的多衍射体结构满足:
<1>每个衍射体满足衍射体同侧衍射公式:
d[sin(θin)+sin(θout)]=mλ
其中,d为衍射周期,θin为入射衍射体的X射线
Figure BDA0003221780120000031
和衍射体平面法线的夹角,θout为出射衍射体的X射线
Figure BDA0003221780120000032
和衍射体平面法线的夹角,m为衍射级次,λ为X射线的波长;
<2>所述的光路中,单个衍射体中心位置满足如下公式:
Figure BDA0003221780120000033
其中,ρ为单个衍射体中心在动量编码模块的径向位置,ρ′为单个衍射体相对于物平面的径向位置;
<3>每一个衍射体的一级次衍射X射线通过待测物体中心,需满足每一个衍射体的指向,即z轴标定角度,满足:
Figure BDA0003221780120000041
其中,x,y是单个衍射体中心在动量编码模块的相对位置,且满足
Figure BDA0003221780120000042
<4>每一个衍射体的一级次衍射X射线通过待测物体中心,需满足以下式子:
Figure BDA0003221780120000043
所述的多衍射体结构的设计要求,可以解得:
Figure BDA0003221780120000044
可以看出单个衍射体中心在动量编码模块的径向位置ρ和衍射周期d成反比;
经过上述的单个衍射体的出射X射线的
Figure BDA0003221780120000045
将被编码为:
Figure BDA0003221780120000046
<5>所述的多衍射体结构中的各个衍射体,所述的选取指向与位置方式,在动量编码模块上排列,且不存在靠近与重叠交叉。
所述的单个衍射体结构可以是光栅、晶体、多层膜结构或其他可以满足上述原理的结构。
本发明的技术效果如下:
本发明基于动量编码的X射线衍射成像装置及方法在X射线衍射成像技术中引入动量编码模块,使用单臂收集数据,其光学传递过程和处理过程不同于传统的时间序列关联成像计算方法,应用于X射线衍射成像中,能极大的提高图像质量和成像速度,并减少待测样品辐射损伤。
附图说明:
图1是本发明一种基于动量编码的X射线衍射成像装置及方法的实施例结构示意图,图中:
1:X射线源,2:动量编码模块,3:待测物体,4:X射线面阵探测器,5:数据处理模块。
图2是本发明一种基于动量编码的X射线衍射成像装置及方法的实施例X射线面阵探测器记录下的光强空间分布。
图3是本发明一种基于动量编码的X射线衍射成像装置及方法的实施例动量编码模块的结构示意图。
图4是本发明一种基于动量编码的X射线衍射成像装置及方法的实施例动量编码模块的多衍射体结构细节图。
具体实施方式:
本发明基于动量编码的X射线衍射成像装置,如图1所示,构成包括X射线源1、动量编码模块2、待测物体3、X射线面阵探测器4、数据处理模块5。X射线源1、动量编码模块2、待测物体3、X射线面阵探测器4处于同一高度。X射线源1发出的发散的X射线经过动量编码模块2,汇聚通过待测物体3后射入X射线面阵探测器4,X射线面阵探测器4记录X射线光强空间信息。数据处理模块5与X射线面阵探测器4相连,具有对记录的光强空间分布进行待测物体实空间分布恢复的程序。能够在单次曝光的情况下进行成像。
利用本实施例的基于动量编码的X射线衍射成像装置进行成像,包括以下步骤:
<1>调节X射线源1、动量编码模块2、X射线面阵探测器4同轴,其中,X射线源1和动量编码模块2的距离为dforward,动量编码模块2和X射线面阵探测器4的距离为dbackward
在本实施例中,X射线源1和动量编码模块2的距离为dforward为55cm,动量编码模块2和X射线面阵探测器4的距离为dbackward为118cm;
<2>将待测物体3放入此光路中,其距X射线面阵探测器4距离为dccd,调节其与光路同轴;
在本实施例中,待测物体3距X射线面阵探测器4距离为dccd为100cm;
<3>在X射线源1的一个相干时间内,X射线面阵探测器4曝光一次,获得空间光强分布图像为I;
在本实施例中,X射线源1为赝热光源,波长为1.1324nm,相干时间T0为40秒。X射线面阵探测器4的曝光时间Tt为30秒,满足强度关联成像的相干探测条件:Tt<T0
在本实施例中,X射线面阵探测器4的维度大小为512×512,空间光强分布见图2。
<4>数据处理模块5对空间光强分布图像进行空间强度关联计算与相位恢复运算,或深度学习训练的端对端的图像恢复神经网络运算,最后得到待测物体3的实空间分布信息。
在本实施例中,数据处理模块5是含有深度学习训练的端对端的图像恢复神经网络模型的计算机。
所述的动量编码模块中的多衍射体结构满足:
<1>每个衍射体满足衍射体同侧衍射公式:
d[sin(θin)+sin(θout)]=mλ
其中,d为衍射周期,θin为入射衍射体的X射线
Figure BDA0003221780120000071
和衍射体平面法线的夹角,θout为出射衍射体的X射线
Figure BDA0003221780120000072
和衍射体平面法线的夹角,m为衍射级次,λ为X射线的波长;
<2>所述的光路中,单个衍射体中心位置满足如下公式:
Figure BDA0003221780120000073
其中,ρ为单个衍射体中心在动量编码模块的径向位置,ρ′为单个衍射体相对于物平面的径向位置;
<3>每一个衍射体的一级次衍射X射线通过待测物体中心,需满足每一个衍射体的指向,即z轴标定角度,满足:
Figure BDA0003221780120000074
其中,x,y是单个衍射体中心在动量编码模块的相对位置,且满足
Figure BDA0003221780120000075
<4>每一个衍射体的一级次衍射X射线通过待测物体3中心,需满足以下式子:
Figure BDA0003221780120000081
根据所述的多衍射体结构的设计要求,可以解得:
Figure BDA0003221780120000082
可以看出单个衍射体中心在动量编码模块的径向位置ρ和衍射周期d成反比;
经过上述的单个衍射体的出射X射线的
Figure BDA0003221780120000083
将被编码为:
Figure BDA0003221780120000084
<5>所述的多衍射体结构中的各个衍射体,按照<3>、<4>中所述的衍射周期、选取指向与位置方式,在动量编码模块上排列,且不存在靠近与重叠交叉。
在本实施例中,动量编码模块为多光栅结构。装置上随机部署255个光栅。其衍射周期,选取指向与位置由上述公式限制。本实施例中的动量编码模块示意图,见图3。动态方向编码装置多衍射体结构细节图,见图4。
综上所述,本发明基于动量编码的X射线衍射成像装置及方法在X射线衍射成像技术中引入动量编码模块,使用单臂收集数据,其光学传递过程和处理过程不同于传统的时间序列关联成像计算方法,应用于X射线衍射成像中,能极大的提高图像质量和成像速度,并减少待测样品辐射损伤。

Claims (9)

1.一种基于动量编码的X射线衍射成像装置,包括同光轴的X射线源(1)和X射线面阵探测器(4),其特征在于:还包括动量编码模块(2)和数据处理模块(5);所述的X射线源(1)发出的发散的X射线经过动量编码模块(2)汇聚后,通过待测物体(3)射入X射线面阵探测器(4);所述的数据处理模块(5)与X射线面阵探测器(4)相连,具有对记录的光强空间分布进行待测物体实空间分布恢复的程序;所述的动量编码模块(2)是一个多衍射体结构,各个衍射体的衍射周期、中心位置与指向的编码会对发散的X射线的动量产生编码作用。
2.根据权利要求1所述的基于动量编码的X射线衍射成像装置,其特征在于,各个衍射体在动量编码模块(2)排列,且不存在靠近与重叠交叉。
3.根据权利要求1或2所述的基于动量编码的X射线衍射成像装置,其特征在于,每个衍射体满足衍射体同侧衍射,公式如下:
d[sin(θin)+sin(θout)]=mλ
其中,d为衍射周期,θin为入射衍射体的X射线
Figure FDA0003221780110000011
和衍射体平面法线的夹角,θout为出射衍射体的X射线
Figure FDA0003221780110000012
和衍射体平面法线的夹角,m为衍射级次,λ为X射线的波长;
每个衍射体中心位置满足如下公式:
Figure FDA0003221780110000013
其中,ρ为单个衍射体中心在动量编码模块(2)的径向位置,ρ′为单个衍射体相对于物平面的径向位置,dforward为X射线源(1)和动量编码模块(2)的距离,dbackward为动量编码模块(2)和X射线面阵探测器(4)的距离;dccd为待测物体(3)和X射线面阵探测器(4)的距离;
每一个衍射体的指向满足如下公式:
Figure FDA0003221780110000021
其中,x,y是单个衍射体中心在动量编码模块(2)的相对位置,且满足
Figure FDA0003221780110000022
多衍射体结构满足如下公式:
Figure FDA0003221780110000023
4.根据权利要求3所述的基于动量编码的X射线衍射成像装置,其特征在于,单个衍射体结构是光栅、晶体或多层膜结构。
5.根据权利要求1所述的基于动量编码的X射线衍射成像装置,其特征在于所述的数据处理模块(5)是计算机,或具有计算和存储能力的处理器。
6.根据权利要求5所述的基于动量编码的X射线衍射成像装置及方法,其特征在于所述的数据处理模块(5)包含程序有进行空间强度关联计算的数值计算程序与相位恢复算法程序,或深度学习训练的端对端的图像恢复神经网络程序。
7.利用权利要求1-6任一所述的基于动量编码的X射线衍射成像装置的成像方法,其特征在,该方法包括如下步骤:
<1>调节X射线源(1)、动量编码模块(2)、X射线面阵探测器(4)同轴,其中,X射线源(1)和动量编码模块(2)的距离为dforward,动量编码模块(2)和X射线面阵探测器(4)的距离为dbackward
<2>将待测物体(3)放入此光路中,其距X射线面阵探测器(4)距离为dccd,调节其与光路同轴;
<3>在X射线源(1)的一个相干时间内,X射线面阵探测器(4)曝光一次,获得空间光强分布图像I(x,y),其中,x,y为X射线面阵探测器的空间坐标;
<4>数据处理模块(5)对空间光强分布图像I(x,y)进行处理,得到待测物体(3)的实空间分布信息。
8.根据权利要求7所述的基于动量编码的X射线衍射成像方法,其特征在于每一个衍射体的一级次衍射X射线通过待测物体(3)中心,需满足以下式子:
Figure FDA0003221780110000031
9.根据权利要求7所述的基于动量编码的X射线衍射成像方法,其特征在于单个衍射体的出射X射线的
Figure FDA0003221780110000032
编码为:
Figure FDA0003221780110000033
CN202110959718.3A 2021-08-20 2021-08-20 基于动量编码的x射线衍射成像装置及方法 Active CN113758952B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110959718.3A CN113758952B (zh) 2021-08-20 2021-08-20 基于动量编码的x射线衍射成像装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110959718.3A CN113758952B (zh) 2021-08-20 2021-08-20 基于动量编码的x射线衍射成像装置及方法

Publications (2)

Publication Number Publication Date
CN113758952A true CN113758952A (zh) 2021-12-07
CN113758952B CN113758952B (zh) 2022-10-11

Family

ID=78790528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110959718.3A Active CN113758952B (zh) 2021-08-20 2021-08-20 基于动量编码的x射线衍射成像装置及方法

Country Status (1)

Country Link
CN (1) CN113758952B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101568855A (zh) * 2006-10-24 2009-10-28 塞莫尼根分析技术有限责任公司 利用编码光束检查目标的设备
CN102221565A (zh) * 2010-04-19 2011-10-19 清华大学 X射线源光栅步进成像系统与成像方法
CN103079469A (zh) * 2010-09-03 2013-05-01 皇家飞利浦电子股份有限公司 利用改善的采样的微分相位对比成像
US20170307549A1 (en) * 2016-04-18 2017-10-26 The Board Of Trustees Of The Leland Stanford Junior University Single X-ray Grating X-ray Differential Phase Contrast Imaging System
CN108827988A (zh) * 2018-06-12 2018-11-16 中国科学院上海光学精密机械研究所 基于光场高阶关联的非局域调制x射线衍射成像装置和方法
CN109425625A (zh) * 2017-09-01 2019-03-05 株式会社岛津制作所 X射线成像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101568855A (zh) * 2006-10-24 2009-10-28 塞莫尼根分析技术有限责任公司 利用编码光束检查目标的设备
CN102221565A (zh) * 2010-04-19 2011-10-19 清华大学 X射线源光栅步进成像系统与成像方法
CN103079469A (zh) * 2010-09-03 2013-05-01 皇家飞利浦电子股份有限公司 利用改善的采样的微分相位对比成像
US20170307549A1 (en) * 2016-04-18 2017-10-26 The Board Of Trustees Of The Leland Stanford Junior University Single X-ray Grating X-ray Differential Phase Contrast Imaging System
CN109425625A (zh) * 2017-09-01 2019-03-05 株式会社岛津制作所 X射线成像装置
CN108827988A (zh) * 2018-06-12 2018-11-16 中国科学院上海光学精密机械研究所 基于光场高阶关联的非局域调制x射线衍射成像装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RUIGUO ZHU等: "Ghost imaging based on Y-net: a dynamic coding and decoding approach", 《OPTICS EXPRESS》 *

Also Published As

Publication number Publication date
CN113758952B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
JP6463582B2 (ja) 符号化ローカライゼーションシステム、方法および装置
CN104583872B (zh) 用于组合式x‑射线及光学计量的模型建立及分析引擎
WO2016070771A1 (zh) X射线相衬成像系统与成像方法
CN109844898A (zh) 用于x射线散射测量系统的全光束度量
CN107076681A (zh) 用于基于图像及散射术的叠对测量的信号响应度量
CN106463430A (zh) 用于测量半导体参数的设备、技术和目标设计
US20110079725A1 (en) Apparatus and method to achieve high-resolution microscopy with non-diffracting or refracting radiation
CN109752844B (zh) 一种基于随机光强涨落的成像方法和系统
US9297999B2 (en) Synthetic focal plane imager
Dyomin et al. Digital holographic video for studying biological particles
JP2009545265A (ja) コード化アパーチャーセンサのための処理方法
Alexander et al. Precise measurements in digital holographic microscopy by modeling the optical train
Daniel et al. Application of a deep learning algorithm to Compton imaging of radioactive point sources with a single planar CdTe pixelated detector
Kishimoto et al. Path planning for localization of radiation sources based on principal component analysis
KR20210128490A (ko) 기계 학습을 사용하는 반도체 제조 데이터 획득 기구의 향상된 해상도
CN113758952B (zh) 基于动量编码的x射线衍射成像装置及方法
US20200393580A1 (en) Rotating Scatter Mask for Directional Radiation Detection and Imaging
CN113340418A (zh) 基于卷积神经网络的光束轨道角动量谱测量方法与系统
Liu et al. Study of muon tomographic imaging for high-Z material detection with a Micromegas-based tracking system
US9363484B2 (en) Method and device for range imaging
Dyomin et al. Evaluation of the plankton species coordinates from digital holographic video
Cibrario et al. Joint machine learning and analytic track reconstruction for X-ray polarimetry with gas pixel detectors
Qu et al. Wafer Eccentricity Deviation Measurement Method Based on Line-Scanning Chromatic Confocal 3D Profiler
Le Breton et al. The Spid-X gamma camera: A miniature gamma ray integral field spectrometer for nuclear industry applications
DeRoo Fabrication and testing of off-plane gratings for future X-ray spectroscopy missions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant