CN113746374A - 一种基于镂空振膜的mems压电声学与振动能量采集器 - Google Patents

一种基于镂空振膜的mems压电声学与振动能量采集器 Download PDF

Info

Publication number
CN113746374A
CN113746374A CN202111005784.3A CN202111005784A CN113746374A CN 113746374 A CN113746374 A CN 113746374A CN 202111005784 A CN202111005784 A CN 202111005784A CN 113746374 A CN113746374 A CN 113746374A
Authority
CN
China
Prior art keywords
piezoelectric
diaphragm
vibration energy
acoustics
mems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111005784.3A
Other languages
English (en)
Other versions
CN113746374B (zh
Inventor
徐佳文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202111005784.3A priority Critical patent/CN113746374B/zh
Publication of CN113746374A publication Critical patent/CN113746374A/zh
Application granted granted Critical
Publication of CN113746374B publication Critical patent/CN113746374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/183Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators using impacting bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • H02N2/188Vibration harvesters adapted for resonant operation

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Micromachines (AREA)

Abstract

本发明涉及一种基于镂空振膜的MEMS压电声学与振动能量采集器,可用于同时将声学与环境振动的机械能转化为电能;包括:衬底;质量块,产生振幅,用于与外部声学耦合膜连接;背腔,位于中间区域;绝缘层;振膜,用于支撑压电薄膜并将其采集的机械能传递给质量块;顶电极;压电薄膜层,通过压电效应将机械转化为电能;底电极。本发明中振膜采用镂空结构,与非镂空振膜MEMS压电声学与振动能量采集器相比,镂空结构的引入可降低压电能量采集器的刚度,降低MEMS压电声学与振动能量采集器第一谐振频率,且有效增加器件机电耦合系数,利用镂空结构降低谐振频率并不减薄压电换能器整体厚度,以维持压电薄膜的应变,最终提高能量转换效率。

Description

一种基于镂空振膜的MEMS压电声学与振动能量采集器
技术领域
本发明涉及微机电系统领域,尤其涉及一种基于镂空振膜的MEMS压电声学与振动能量采集器。
背景技术
MEMS即微机电系统,表示通过微电子和微机械加工技术制造出来的新型器件,具有尺寸小、工艺简单、易集成、便于批量化生产和成本低等优点。MEMS压电声学与振动能量采集器即为通过MEMS工艺制备得到的一类环境能量采集器,具有体积小和易于集成等优点,同时由于批量化进程可降低成本。MEMS能量采集器可分为电磁式MEMS声学与振动能量采集器、静电式MEMS声学与振动能量采集器和压电式MEMS声学与振动能量采集器。MEMS压电式声学与振动能量采集器在结构设计、加工工艺和整合技术上更简单,更易于实现轻薄化微型高性能声学与振动能量采集器。
相关技术将MEMS压电换能器与质量块和声学耦合膜相连接,一方面使得质量块可以在外界振动激励下振动并且产生电能,一方面声学耦合膜可以在外界声场激励下带动质量块振动,从而产生电能,有效将环境中的振动能量和声学能量转换为电能。
然而,相关技术中MEMS器件的第一谐振频率较高,导致低频性能不好,难以满足实际使用。其第一谐振频率受限于MEMS压电换能器的共振频率,主要由MEMS压电换能器的刚度决定。同时,由于MEMS压电环能器尺寸小,使得声学与振动能量采集器的效率提高困难,故需要优化MEMS压电声学与振动能量采集器的系统层面机电耦合系数。传统MEMS压电声学与振动能量采集器的设计中主要采用两种手段降低器件的第一谐振频率,其一,增加质量块的质量;其二,减薄压电换能器的厚度。增加质量并不改变系统机电耦合系数的大小,无益于能量采集器整体效率的提高;减薄压电声学与振动能量采集器的厚度,降低压电声学与振动能量采集器刚度的同时也会减弱压电换能器中的应变,对压电声学与振动能量采集器机电耦合系数的提高无正面贡献,传统方法难以在降低器件刚度的同时不降低器件的机电耦合系数。因此。要同时满足声学与振动能量采集器高效率和低第一谐振频率两个条件,传统的MEMS压电声学与振动能量采集器设计难以实现。
因此,有必要提供一种改进的MEMS压电声学与振动能量采集器来解决上述问题。
发明内容
为解决上述问题,本发明公开了一种基于镂空振膜的MEMS压电声学与振动能量采集器,同时采集环境中的振动能量和声学能量,并将其转化为电能。
一种基于镂空振膜的MEMS压电声学与振动能量采集器,可用于采集环境中的振动和声学机械能,并将其转化为电能。该MEMS压电声学与振动能量采集器,包括:衬底;质量块,用于与外部声学耦合膜连接,并采集环境振动能量;背腔,位于中间区域;绝缘层;振膜,用于支撑压电薄膜并将其产生的机械能传递给质量块;顶电极;压电薄膜层,通过压电效应将机械能转化为电能;底电极。
优选的,振膜由三部分构成:位于四周基底之上部分、位于压电薄膜层上方或下方部分、以及将中间质量块与压电薄膜连接起来的结构梁部分。其中位于压电薄膜上方或下方部分的振膜采用镂空结构,加工形成光栅等条状结构,或波浪纹、网状及多孔结构等镂空结构。
优选的,振膜的结构梁部分形状可为L型、S型及C型曲线等。
优选的,衬底为矩形,中央区域为背腔。
优选的,质量块为1~10个,位于器件中间。
优选的,振膜、顶、底电极层和压电薄膜层共同构成有机振动膜层,形成于背腔之上。
优选的,有机振动膜层可以为一个相连的整体或是多个分立的单元,且并不仅限于包括所述部件,还可包括绝缘层、钝化层、保护层等附加结构。
优选的,顶、底电极层和压电薄膜层呈三明治结构,压电薄膜为单层或多层,其上、下表面都被电极层覆盖。
优选的,三明治结构可位于振膜的上表面或/和下表面。
优选的,三明治结构分布于有机振动膜层的两侧,单边形状为1~10个矩形、梯形或扇形,关于左右对称。
优选的,压电材料为PZT、AlN、ZnO或其它压电薄膜材料。
优选的,振膜为单一或复合薄膜,其材料为无机或有机材料。
本发明的有益效果:
与相关技术相比:
1、本发明的MEMS压电声学与振动能量采集器采用镂空结构的振膜,该结构使得器件结构刚度得以大幅降低,同时压电薄膜中产生的应变并不减小;从而实现了MEMS压电声学与振动能量采集器刚度降低及机电耦合系数提升的双重需求。
2、本发明改善了MEMS压电声学与振动能量采集器的低频性能,并增加了器件全频域能量转换效率,与压电声学与振动能量采集装置中其他部件封装在一起,可降低声学与振动能量采集的第一谐振频率,改善低频性能,且提高了系统复合环境能量采集的效率。
附图说明
图1是相关技术中MEMS压电声学与振动能量采集装置的结构示意图;
图2是本发明提供的MEMS压电声学与振动能量采集器实施例一的结构示意图;
图3是根据本发明实施例一所示的MEMS压电声学与振动能量采集器沿着A-A面剖开的剖面示意图;
图4是图3所示MEMS压电声学与振动能量采集器振膜的结构示意图;
图5是本发明提供的MEMS压电声学与振动能量采集器实施例二的剖面结构示意图;
图6是本发明提供的MEMS压电声学与振动能量采集器实施例三振膜结构示意图;
附图标记列表:
其中:1- MEMS声学与振动能量采集器装置;2- 音膜;3 -耦合板;4- PCB板;5- 壳体;6- MEMS压电声学与振动能量采集器;6-1 实施例一的MEMS压电声学与振动能量采集器;
6-2 实施例二的MEMS压电声学与振动能量采集器;7 后腔;8 防尘网;9 振膜;9-1实施例一的振膜;9-2 实施例三的振膜;10 顶电极;11 压电薄膜;12 底电极;13 绝缘层;14 衬底;15 背腔;16 质量块;17 压电薄膜三明治结构;18 有机振动膜层。
具体实施方式
下面结合附图和具体实施方式,进一步阐明本发明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。需要说明的是,下面描述中使用的词语“前”、“后”、“左”、“右”、“上”和“下”指的是附图中的方向,词语“内”和“外”分别指的是朝向或远离特定部件几何中心的方向。
图1为相关技术的MEMS压电声学与振动能量采集器装置结构示意图,包括:壳体5,用于支撑所述装置其他部件;音膜2,其能够相对于PCB板4沿垂直方向振动;耦合板3,用于连接音膜2与质量块,可将环境中声学和振动机械能由音膜、质量块传递给MEMS压电换能器;MEMS压电声学与振动能量采集器6,通过机电耦合效应将环境中的机械能转化为电能;PCB板4,用于激励MEMS压电声学与振动能量采集器6;防尘网8和后腔7。其中MEMS压电声学与振动能量采集器6为核心部件,直接决定了声学与振动能量采集器的灵敏度和第一谐振频率,本发明基于该声学与振动能量采集器装置,将MEMS压电声学与振动能量采集器加以设计,使其采集环境中声学与振动能量并将其转化为电能的性能更佳。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的实施例一中,提供了一种MEMS压电声学与振动能量采集器。
图2-图4为本发明实施例一的结构示意图。其中,图2为本发明实施例一的整体结构示意图;图3为根据本发明实施例一所示的MEMS压电声学与振动能量采集器沿着A-A面剖开的剖面示意图;图4为本发明实施例一所示的MEMS压电声学与振动能量采集器振膜的结构示意图。
参照图2-图3,MEMS压电声学与振动能量采集器6,包括:衬底14,用于固定有机振动膜层18边缘;质量块16,产生振幅,用于与外部音膜连接;背腔15,位于中间区域;绝缘层13;振膜9,用于支撑压电薄膜三明治结构17并将其采集的机械能传递给质量块;顶电极10;压电薄膜层11,通过压电效应将机械能转化为电能;底电极12。
下面结合附图来对本发明的MEMS压电声学与振动能量采集器的各部分进行详细介绍。
参照图4,本实施例中,振膜9由三部分构成:位于四周基底之上部分、位于压电薄膜层,上方或下方部分、以及将中间质量块与压电薄膜连接起来的结构梁部分。其中位于压电薄膜上方或下方部分的振膜采用镂空结构,通过刻蚀形成光栅条状结构,呈左右对称。
需要说明的是,实施例中MEMS压电声学与振动能量采集器的镂空振膜不仅限于光栅条状结构,本发明还可包含其他镂空结构,如波浪纹、网状及多孔结构等。同时,振膜中与压电薄膜相连接的结构梁部分,可为L型、S型及C型曲线等。
参照图2-图3,本实施例中,MEMS压电声学与振动能量采集器6的衬底14外形为矩形,中央区域为背腔15,拐角处通过圆弧过渡处理;质量块16位于器件正中间。振膜9、顶、底电极层10、12和压电薄膜层11共同构成有机振动膜层18,形成于背腔15之上。电极层10、12和压电薄膜层11呈三明治结构17,压电薄膜上下表面都被电极层覆盖,位于振膜9的下表面。三明治结构17分布于有机振动膜层的两侧,单边形状为矩形。
需要说明的是,实施例中MEMS压电声学与振动能量采集器的有机振动膜层,可以为一个相连的整体或多个分立的单元,且并不仅限于包括所述部件,还可包括绝缘层、钝化层、保护层等附加结构,可根据实际需求进行选择。同时,压电材料为PZT、AlN、ZnO或其它压电薄膜材料,为单层或多层结构;单侧三明治结构17可为1~10个矩形、梯形或扇形,关于中心左右对称。振膜9可为单一或复合薄膜,其材料可为无机或有机材料,具体根据实际需求进行选择。
图5为本发明实施例二的结构截面示意图。在本发明的实施例二中,提供了一种MEMS压电声学与振动能量采集器;所述压电声学与振动能量采集器的结构与实施例一中所述的压电声学与振动能量采集器的结构基本相同,不同点在于:
实施例中MEMS压电声学与振动能量采集器的三明治结构17,位于振膜9的上表面。在具体工艺步骤中,与实施例一有较大差别,具体可根据实际需求进行选择。
图5为本发明实施例三的振膜结构示意图。在本发明的实施例三中,提供了一种MEMS压电能量采集器的网状结构振膜。与实例一中光栅结构振膜相比,横向刚度更大,有利于结构的稳定性,具体可根据实际需求进行选择。
与相关技术相比,本发明的MEMS压电声学与振动能量采集器采用镂空结构的振膜。该结构使得器件结构刚度得以大幅降低,同时压电薄膜中产生的应变并不减小,甚至有所增加。从而实现了MEMS压电声学与振动能量采集器刚度降低及机电耦合系数不降低双重需求。本发明的MEMS压电声学与振动能量采集器与压电声学与振动能量采集器装置中其他部件封装在一起,可改善能量采集器的低频性能,提高环境声学与振动能量的转换效率。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于镂空振膜的MEMS压电声学与振动能量采集器,包括MEMS压电声学与振动能量采集器(6),其中MEMS压电声学与振动能量采集器(6)包括衬底(14);质量块(16),产生振幅,用于与外部声学耦合膜连接;背腔(15),位于中间区域;绝缘层(13);振膜(9),用于支撑压电薄膜并将采集的机械能传递给质量块;顶电极层(10);压电薄膜层(11),通过压电效应将机械能转化为电能;和底电极层(12);其特征在于:所述振膜(9)为单一或复合薄膜,其材料为无机或有机材料;所述振膜(9)由三部分构成:位于四周基底和质量块(16)之上部分、位于压电薄膜层(11)上方或下方部分、以及将中间质量块(16)与压电薄膜(11)连接起来的结构梁部分;其中位于压电薄膜(11)上方或下方部分的振膜采用镂空结构,所述镂空结构加工形成光栅型的条状结构或波浪纹或网状或多孔结构的其中一种。
2.根据权利要求1所述的一种基于镂空振膜的MEMS压电声学与振动能量采集器,其特征在于:所述振膜(9)的结构梁部分形状为L型或S型或C型曲线或其他可连接的结构形状。
3.根据权利要求1所述的一种基于镂空振膜的MEMS压电声学与振动能量采集器,其特征在于,所述衬底(14)为矩形,中央区域为背腔(15)。
4.根据权利要求1所述的一种基于镂空振膜的MEMS压电声学与振动能量采集器,其特征在于,所述质量块(16)为1~10个,位于器件中间。
5.根据权利要求1所述的一种基于镂空振膜的MEMS压电声学与振动能量采集器,其特征在于:振膜(9)、顶、底电极层(10、12)和压电薄膜层(11)共同构成有机振动膜层(18),形成于背腔(15)之上。
6.根据权利要求5所述的一种基于镂空振膜的MEMS压电声学与振动能量采集器,其特征在于,所述有机振动膜层(18)为一个相连的整体或多个分立的单元,且并不仅限于包括所述部件,还可包括绝缘层、钝化层、保护层的附加结构。
7.根据权利要求5所述的一种基于镂空振膜的MEMS压电声学与振动能量采集器,其特征在于:所述顶、底电极层(10、12)和压电薄膜层(11)呈三明治结构(17),压电薄膜层(11)为1~5层,其上、下表面都被电极层覆盖。
8.根据权利要求7所述的一种基于镂空振膜的MEMS压电声学与振动能量采集器,其特征在于:所述三明治结构(17)可位于振膜(9)的上表面或/和下表面。
9.根据权利要求5所述的有机振动膜层(18),其特征在于,三明治结构(17)分布于有机振动膜层(18)的两侧,单边形状为1~10个矩形、梯形或扇形,关于左右对称。
10.根据权利要求1所述的一种基于镂空振膜的MEMS压电声学与振动能量采集器,其特征在于:所述压电薄膜层(11)的压电材料为PZT、AlN、ZnO或其它压电薄膜材料。
CN202111005784.3A 2021-08-30 2021-08-30 一种基于镂空振膜的mems压电声学与振动能量采集器 Active CN113746374B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111005784.3A CN113746374B (zh) 2021-08-30 2021-08-30 一种基于镂空振膜的mems压电声学与振动能量采集器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111005784.3A CN113746374B (zh) 2021-08-30 2021-08-30 一种基于镂空振膜的mems压电声学与振动能量采集器

Publications (2)

Publication Number Publication Date
CN113746374A true CN113746374A (zh) 2021-12-03
CN113746374B CN113746374B (zh) 2023-11-10

Family

ID=78733928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111005784.3A Active CN113746374B (zh) 2021-08-30 2021-08-30 一种基于镂空振膜的mems压电声学与振动能量采集器

Country Status (1)

Country Link
CN (1) CN113746374B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065301A (zh) * 2014-06-06 2014-09-24 上海交通大学 压电静电复合式低频振动能量采集器
CN108199617A (zh) * 2017-12-20 2018-06-22 北京航天控制仪器研究所 一种横向mems压电-静电耦合能量采集器及加工方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065301A (zh) * 2014-06-06 2014-09-24 上海交通大学 压电静电复合式低频振动能量采集器
CN108199617A (zh) * 2017-12-20 2018-06-22 北京航天控制仪器研究所 一种横向mems压电-静电耦合能量采集器及加工方法

Also Published As

Publication number Publication date
CN113746374B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN110052391B (zh) 双谐振模式耦合的微机械压电超声波换能器
KR101520070B1 (ko) 압전형 마이크로 스피커 및 그 제조 방법
CN1163105C (zh) 压电电声换能器
KR100408609B1 (ko) 압전형 전기 음향 변환기
CN101313628B (zh) 电声变换器
EP2728903B1 (en) Acoustic generator and acoustic generation device using same
WO2007083497A1 (ja) 圧電アクチュエータおよび電子機器
US20110234048A1 (en) Apparatus for generating electricity
WO2016173276A1 (zh) 扬声器模组
JP5652813B2 (ja) 電気音響変換器及びそれを用いた電子機器
KR101663089B1 (ko) 압전 소자 및 압전 스피커
JP3714128B2 (ja) 圧電型電気音響変換器
KR100448108B1 (ko) 압전 발음체 및 그 제조 방법
CN115914975A (zh) 一种像素发声单元及其制造方法、数字发声芯片
WO2022141585A1 (zh) 一种骨传导传声装置
JP2002010393A (ja) 圧電型電気音響変換器
CN113746374B (zh) 一种基于镂空振膜的mems压电声学与振动能量采集器
CN113746373B (zh) 基于带辐射状镂空振膜的mems压电声学与振动能量采集器
CN104811881A (zh) 压电扬声器及其形成方法
CN108964518B (zh) 空气声能聚集和收集装置及系统
JP2007104562A (ja) マイクロホン装置
CN212115670U (zh) 压电扬声器
CN113746372B (zh) 一种基于立体振膜的mems压电声学与振动能量采集器
CN114222231A (zh) 基于固支梁结构的双晶压电式mems麦克风
CN114501267A (zh) 像素发声单元及其制造方法、数字发声芯片和电子终端

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant