CN113716797B - 一种用于混排箱涵微污染水体的原位净化系统及方法 - Google Patents

一种用于混排箱涵微污染水体的原位净化系统及方法 Download PDF

Info

Publication number
CN113716797B
CN113716797B CN202110970826.0A CN202110970826A CN113716797B CN 113716797 B CN113716797 B CN 113716797B CN 202110970826 A CN202110970826 A CN 202110970826A CN 113716797 B CN113716797 B CN 113716797B
Authority
CN
China
Prior art keywords
purifying
frame
purification
mixed
water body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110970826.0A
Other languages
English (en)
Other versions
CN113716797A (zh
Inventor
陈亚松
李翀
王殿常
柳蒙蒙
贾泽宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Three Gorges Environmental Technology Co ltd
China Three Gorges Corp
Original Assignee
Three Gorges Environmental Technology Co ltd
China Three Gorges Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Three Gorges Environmental Technology Co ltd, China Three Gorges Corp filed Critical Three Gorges Environmental Technology Co ltd
Priority to CN202110970826.0A priority Critical patent/CN113716797B/zh
Publication of CN113716797A publication Critical patent/CN113716797A/zh
Application granted granted Critical
Publication of CN113716797B publication Critical patent/CN113716797B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/109Characterized by the shape
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

一种用于混排箱涵微污染水体的原位净化系统,包括设置在混排箱涵进口前的泥沙池,混排箱涵的进口端设置净化区A,净化区A由多个框式净化块a拼接组成;净化区A通过自然复氧区依次与净化区B、净化区C连接,净化区B由多个框式净化块b拼接组成;净化区C设置于混排箱涵的出口端,净化区C由多个框式净化块c组成。本发明提供的一种用于混排箱涵微污染水体的原位净化系统及方法,可以解决混排箱涵微污染水体原位净化效果不佳的问题,改善和提升混排箱涵微污染水体的水质,无需新建构筑物、无需通电和动力设备、无需人工操作,大幅降低了投资和运行成本,运维维护简便。

Description

一种用于混排箱涵微污染水体的原位净化系统及方法
技术领域
本发明涉及生态环境治理技术领域,尤其是一种用于混排箱涵微污染水体的原位净化系统及方法。
背景技术
排水箱涵用于转输雨水、河水等清水时,由于污水管混接、错接及初雨面源污染等排入箱涵导致水体被污染,形成雨污水混合的混排箱涵。
由于污染程度不高、水质特征区别于污水、形成微污染水。由于其污染程度远比城市污水低,长期以来并未受到足够的重视。随着我国水环境治理的进程不断加快,环境质量要求不断提高,排水箱涵中污染水体的净化是当前和未来水环境治理中迫在眉睫的问题。
排水箱涵本身不具备水质净化功能,为了控制水质污染,一般采用源头控制的方法,如控源截污、截留后当污水处理等。控源截污仍然是目前普遍采取的管理策略,即对偷排、漏排的污水进行控源截污、对排水管网进行雨污分流、错漏接改造等。尽管如此,排水管网错综复杂、管网随着城市化进程在动态变化,现实中错漏混接现象普遍存在。故,污水错漏排是造成混排箱涵水污染的不可避免因素。与此同时,在城市化进程中,初期雨水污染日益严重,雨水夹带道路、广场等硬地面污染物排入箱涵,这些面源污染都不可避免地造成了箱涵水体的污染。因此,污水错漏排、初雨面源等造成混排箱涵水体污染是无法回避的现实问题,并在相当长的一段时间内存在。
在混排箱涵转输微污染水的过程中原位净化鲜为报道,但针对河道的原位净化处理已有报道,一般采用人工浮岛、人工水草、曝气、人工湿地、植物和岸带净化等原位处理的工艺,但这些工艺无法适宜于渠涵的特征和条件,具有以下缺陷:
(1)混排箱涵一般为硬质的钢筋混凝土结构,无法构建植物、湿地等植物的净化方式
(2)混排箱涵内绝大多数时候水位较低(小于0.5m),大雨时水位波动较大,无法满足浮岛、人工水草等的安装;
(3)混排箱涵为封闭结构、且空间狭小,各类传统的污水净化设备无法在内部安装、且无法运维维护;
(4)混排箱涵内无法通电也无法满足机电设备的应用;
(5)混排箱涵内通常水质污染程度不高,属于微污染水体,传统典型的污水处理工艺和方法如活性污泥法,不适宜于其净化处理,故一般其技术经济性较差。
目前还没有应用于混排箱涵微污染水体的原位净化工艺,主要存在的技术难点和问题如下:
(1)箱涵的特殊结构(空间狭小、封闭且硬质化),须解决净化装置的小型化、模块化,并须解决净化装置的安装和检修;
(2)由于混排箱涵空间狭小,在水体单向转输条件下,须解决水-气-生物的高效传质问题,以便提高污染物的净化效率、减少净化装置规模;
(3)针对混排箱涵污染物的特征(污染物种类多、污染浓度不高),须解决生物处理对不同污染物的去除,尤其是以脱氮除磷和提升透明度为核心;
(4)不同的污染物降解对溶解氧的需求不同,混排箱涵中无法通电机械曝气补充氧气,须解决水体中不同阶段的溶解氧问题;
(5)混排箱涵中大雨时水中泥砂和悬浮物严重,须解决泥砂和悬浮物对净化装置的破坏;
(6)混排箱涵的核心属性为水的转输,须解决原位净化装置不影响其通水能力和行洪要求。
发明内容
本发明所要解决的技术问题是提供一种用于混排箱涵微污染水体的原位净化系统及方法,可以解决混排箱涵微污染水体原位净化效果不佳的问题,改善和提升混排箱涵微污染水体的水质,无需新建构筑物、无需通电和动力设备、无需人工操作,大幅降低了投资和运行成本,运维维护简便。
为解决上述技术问题,本发明所采用的技术方案是:一种用于混排箱涵微污染水体的原位净化系统,包括设置在混排箱涵进口前的泥沙池,混排箱涵的进口端设置净化区A,净化区 A 由多个框式净化块 a 拼接组成,净化区 A 对混排箱涵中有机物、氨氮和悬浮物和附着磷进行初步净化处理;净化区 A通过自然复氧区依次与净化区 B、净化区 C 连接,净化区 B 由多个框式净化块 b 拼接组成,净化区 B 实现了对混排箱涵中总氮、有机物、氨氮和总磷的进一步净化处理;净化区 C 设置于混排箱涵的出口端,净化区 C 由多个框式净化块 c 组成,实现了对混排箱涵中胶体、悬浮物和总磷的深度净化处理。
优选地,框式净化块 a 包括净化块框架 a,净化块框架 a 的进水端和出水端分别设置有格栅网,净化块框架 a 的底部铺设有沸石填料层,净化块框架 a 内部空间沿水流方向水平安装有多根第一辫绳式载体,第一辫绳式载体两端与净化块框架 a 的边框绑扎连接。
优选地,净化块框架 a 内部空间沿水流方向还设置有至少两块整流板,各辫绳式载体上还设置有一块紊流板,紊流板的数量为 36 块。
优选地,框式净化块 b 包括净化块框架 b,净化块框架 b 的进水端和出水端分别设置有格栅网,净化块框架 b 的底部铺设有铝钒土填料层,净化块框架 b 内部空间沿水流方向水平安装有多根第二辫绳式载体,第二辫绳式载体两端与净化块框架 b 的边框绑扎连接。
优选地,净化块框架 b 内部空间沿水流方向还设置有两块整流板,各辫绳式载体上还设置有至少一个紊流板,紊流板的数量为 36 块。
优选地,框式净化块 c 包括净化块框架 c,净化块框架 c 的进水端和出水端分别设置有格栅网,净化块框架 c 底部铺设有铝钒土填料层,净化块框架 c 内部空间沿水流方向水平安装有多根蕾丝纤维载体,蕾丝纤维载体扎紧端与净化块框架 c 的边框绑扎连接。
优选地,净化块框架 c 内部空间沿水流方向还设置有至少一块整流板。
一种采用上述系统进行混排箱涵微污染水体原位净化的方法,该方法包括以下步骤:
步骤 1:在混排箱涵进口前设置泥沙池,泥砂池用于沉淀水体中粒径较大的石块、泥砂等无机颗粒物,微污染水体经过泥砂池进入混排箱涵;
步骤 2:在箱涵的进口端设置净化区 A,净化区 A 由多个框式净化块 a 拼接组成,框式净化块 a 进水端设置有格栅网用于拦截粒径较大的悬浮物,框式净化块 a 底部的沸石填料层厚度为 30-60mm,沸石粒径 16-32mm,比重 1.2-1.4g/cm3,孔隙率>50%,吸附交换容量>1000g/cm3;辫绳式载体用于附着微生物的生长繁殖继而形成生物膜,实现对微污染水体中的有机物和有机氮的去除,通过净化区 A 实现了对混排箱涵中微污染水体有机物、氨氮和悬浮态磷的初步净化处理、污染物浓度大幅降低;
步骤 3:微污染水体经过净化区 A 处理后进入自然复氧区,自然复氧区的长度不低于 500m,通过水体流动与空气长时间的自然接触获得溶解氧;
步骤 4:微污染水体经过自然复氧区后进入净化区 B,净化区 B 由多个框式净化块 b 拼接组成,净化块框架 b 底部铺设有铝钒土填料层,铝矾土填料粒径 8-16mm,容重1.7g/cm3,铝含量>75%,SiO2含量<10%,空隙率>43%,通过化学反应去除水体中溶解态磷,实现了对磷的进一步去除, 辫绳式载体用于附着微生物的生长繁殖附着微生物的生长繁殖继而形成生物膜,实现对水体中的有机物和有机氮的去除;
步骤 5:微污染水体经过净化区 B 后进入净化区 C, 净化区 C 由多个框式净化块c 组成, 框式净化块 c 底部的铝钒土填料层厚度为 30-60mm,铝矾土填料粒径 8-16mm,容重 1.7g/cm3,铝含量>75%,SiO2含量<10%,空隙率>43%;蕾丝纤维载体实现对水体中的悬浮物和胶体的去除,提高水体的透明度;
步骤 6:微污染水体经过净化区 C 后得到净化合格,排放至收纳水体,即实现箱涵微污染水体原位净化。
优选地,框式净化块 a 的第一辫绳式载体和框式净化块 b 的第二辫绳式载体中,每两根辫绳式载体之间水平间距为 50mm,垂直间距为 60mm,所用辫绳外直径 10-20mm、比表面积>35m2/m、空隙率>99%,挂膜后湿重 2-3kg/m;
框式净化块 c 的蕾丝纤维载体由一端扎紧的多根蕾丝组成,蕾丝为聚丙烯材质,蕾丝纤维载体的外直径 20mm、单根蕾丝直径<0.01mm、比表面积>16m2/m、比重 1.1g/cm。
优选地,框式净化块 a、框式净化块 b 和框式净化块 c 为标准化模块,单个模块尺寸为长 1000mm,宽 1000mm,高 300mm,铺设长度和位置具体根据水质净化程度和现场实施条件而确定。
研究表明,排水管道内污染物的迁移转化过程是多种因素综合作用的结果:
(1)管道内污水为微生物的生长提供了充足的底物,存在具有定向降解性能的微生物;
(2)管道上中途设施的设置,制造好氧-厌氧交替的内部环境;
(3)城市排水管道一般规模大、路线长,具备充足的水力停留时间。
因此,上述条件为混排箱涵中微污染水体的原位净化提供了理论基础。
本发明提供的一种用于混排箱涵微污染水体的原位净化系统及方法,有益效果如下:
1、通过原位净化处理的方式,有效解决了混排箱涵微污染水体净化,当原水COD<100mg/L、SS<80mg/L、氨氮<5mg/L、总磷<1.0mg/L、总氮<8mg/L时,通过本发明净化后,COD、SS去除率可达80%,氨氮、总氮、总磷的去除率可达60%。与传统的异位污水处理方法相比,具有无需新建构筑物、无需通电和动力设备、无需人工操作,大幅降低了投资和运行成本,运维维护简便。
2、混排箱涵微污染水具有污染物浓度低、浑浊度高、生物除磷难等特征,传统异位污水净化方法不适宜于混排箱涵的条件,如混凝沉淀、活性污泥法等。本发明采用了“净化区A+自然复氧+净化区B+净化区C”的多级净化工艺,三段不同功能的净化块分别有不同的污染物去除对象。净化块采用了多种不同的生物载体和填料,分别发挥不同的功能作用。有效解决了箱涵微污染水的高效净化难题。
微污染水体经过泥砂池后进入混排箱涵:
(1)混排箱涵的进口端设置有净化区A,净化区A主要通过好氧生物降解作用去除有机物(COD)、氨氮(NH3-N),有机物转化成CO2而去除,有机氮和氨氮转化成NO3--N;净化区A主要通过沉淀和吸附作用去除水体中悬浮物附着磷,悬浮物附着磷被沸石填料吸附和沉淀。故,通过净化区A实现了对混排箱涵中有机物、氨氮和悬浮物和附着磷的初步净化处理、污染物浓度大幅降低。
(2)经过净化区A处理后进入自然复氧区,充分利用混排箱涵的长度优势,增大净化区A与净化区B之间的安装距离,自然复氧区的长度不低于500m,通过水体流动与空气长时间的自然接触获得溶解氧(>2mg/L)。当特殊情况无法达到时,在两段净化块之间设置跌水等自然曝气措施,提高水体的溶解氧浓度。
(3)水体经过自然复氧区后进入净化区B,由于水体中的溶解氧已降低,生物膜内部呈缺氧和厌氧状态有利于反硝化菌繁殖,净化区B中生物膜内反硝化菌主要对来自净化区A产生的NO3--N,进行反硝化反应从而去除总氮(TN);生物膜外的好氧生物进一步利用溶解氧降解有机物(COD)、氨氮(NH3-N),实现深度净化;净化块内的铝矾土填料主要通过化学反应去除水体中溶解态磷,实现了对磷的进一步去除。故,通过净化区B实现了对混排箱涵中总氮(TN)的去除、有机物(COD)、氨氮(NH3-N)和总磷(TP)的进一步净化处理。
(4)水体经过净化区B后进入混排箱涵末端的净化区C,大部分有机物、氨氮和悬浮物已去除,净化区C利用蕾丝纤维载体吸附去除水体中的细小悬浮物和胶体,大幅提高水体的透明度;利用铝矾土主要通过化学反应去除溶解性的总磷。故通过净化区C实现了对混排箱涵中胶体、悬浮物和总磷(TP)的深度净化处理。
3、采取异位模式的污水处理工艺,一般在反应器内通过曝气或搅拌可使得微生物与污染物充分混合,不存在污染物与生物的传质问题,但混排箱涵水流基本为单向流动,导致其传质效果差,是影响净化效率的核心因素。本发明根据混排箱涵水流普遍为层流的特征,在净化块内设计了独特的整流板和紊流板,整流板的设置使单个净化块构造成推流型反应器(L/B=3),有利于提高反应效率;通过紊流板的设置利用水头差,水流由层流到紊流的变化,雷诺数(Re)由500提高到2000以上,有效解决了传质效率,提高了净化块的净化效率。这是实现混排箱涵微污染水原位净化的重要前提。
4、影响通水断面、淤积检修维护也是混排箱涵原位净化的重要制约因素,本发明通过独特的模块化设计解决了以上问题。针对混排箱涵平日溪流排水的特征,框式净化块采用较低的深度(300mm)设计,单端铺设长度可达150m,铺设长度和位置具体根据水质净化程度和现场实施条件而确定;通过模块化安装延长净化块的铺装长度,净化块的过流截面积仅占箱涵截面的10%,由于载体本身的孔隙率达99%,故其实际影响通水截面小于2%。既能提高净化块的生物量发挥净化效果,又不影响混排箱涵的输水能力,模块化的设计有效解决了净化块检修维护的问题,极大的简化了检修工作,用高压水枪和拆装离线清洗也极为方便。
5、整流栅以及紊流板的设置,改变水体流动、增加水体与载体的碰撞接触,提高了氧气-水体-生物膜的传质效率。整流板的设置使单个净化块构造成推流型反应器(L/B=3),有利于提高反应效率;通过紊流板的设置利用水头差,水流由层流到紊流的变化,雷诺数(Re)由500提高到2000以上,有效解决了传质效率,提高了净化块的净化效率和效果。
附图说明
下面结合附图和实施例对本发明作进一步说明:
图 1 为本发明净化系统的连接示意图;
图 2 为本发明净化系统的示意图;
图 3 为本发明框式净化块 a 的俯视图;
图 4 为本发明框式净化块a的结构示意图;
图5为本发明框式净化块b的俯视图;
图6为本发明框式净化块b的结构示意图;
图7为本发明框式净化块c的结构示意图;
图8为本发明框式净化块c的俯视图。
实施方式
实施例一:
如图 1-图 8 所示,一种用于混排箱涵微污染水体的原位净化系统,包括设置在混排箱涵进口前的泥沙池 1,混排箱涵的进口端设置净化区 A3,净化区 A 由多个框式净化块 a4 拼接组成,净化区 A3 对混排箱涵中有机物、氨氮和悬浮物和附着磷进行初步净化处理;净化区 A3 通过自然复氧区 5 依次与净化区 B6、净化区 C7 连接,净化区 B6 由多个框式净化块 b8 拼接组成,净化区 B6 实现了对混排箱涵中总氮、有机物、氨氮和总磷的进一步净化处理;净化区 C7 设置于混排箱涵的出口端,净化区 C7 由多个框式净化块c2 组成,实现了对混排箱涵中胶体、悬浮物和总磷的深度净化处理。
框式净化块 a4 包括净化块框架 a4-1,净化块框架 a4-1 的进水端和出水端分别设置有格栅网 4-2,净化块框架 a4-1 的底部铺设有沸石填料层 4-3,净化块框架 a4-1内部空间沿水流方向水平安装有多根第一辫绳式载体 4-4,第一辫绳式载体 4-4 两端与净化块框架 a4-1 的边框绑扎连接。
净化块框架 a4-1 内部空间沿水流方向还设置有至少一块整流板 4-5,各第一辫绳式载体 4-4 上还设置有至少一个紊流板 4-6。
框式净化块 b8 包括净化块框架 b8-1,净化块框架 b8-1 的进水端和出水端分别设置有格栅网 8-2,净化块框架 b8-1 的底部铺设有铝钒土填料层 8-3,净化块框架b8-1 内部空间沿水流方向水平安装有多根第二辫绳式载体 8-4,第二辫绳式载体 8-4 两端与净化块框架 b8-1 的边框绑扎连接。
净化块框架 b8-1 内部空间沿水流方向还设置有至少一块整流板 8-5,各第二辫绳式载体 8-4 上还设置有至少一个紊流板 8-6。
框式净化块 c2 包括净化块框架 c2-1,净化块框架 c2-1 的进水端和出水端分别设置有格栅网 2-2,净化块框架 c2-1 底部铺设有铝钒土填料层 2-3,净化块框架 c2-1内部空间沿水流方向水平安装有多根蕾丝纤维载体 2-4,蕾丝纤维载体 2-4 扎紧端与净化块框架 c2-1 的边框绑扎连接。
净化块框架 c2-1 内部空间沿水流方向还设置有至少一块整流板 2-5。
第二辫绳式载体 8-4 其比外表积大、生物膜浓度高(高达 8g/L)、切割水流、不易藏泥堵塞,通过生物作用去除低浓度的有机物和氮;沸石填料的吸附、纳污能力强,主要发挥沉淀和吸附作用去除悬浮态磷,铝矾土填料的铝含量高,主要发挥化学反应作用去除溶解态的磷酸盐;蕾丝纤维载体 2-4 具有直径更小、亲水和吸附能力强,主要通物化吸附作用去除胶体和悬浮物,解决了水体浑浊问题。因此,框式净化块 a4、框式净化块 b8 以及框式净化块 c2 通过一系列生物、化学和物理作用实现了对不同类型污染物的去除。
实施例二:
如图 1-图 8 所示,一种采用上述实施例一所述的系统进行混排箱涵微污染水体原位净化的方法,该方法包括以下步骤:
步骤 1:在混排箱涵进口前设置泥沙池 1,泥砂池 1 用于沉淀水体中粒径较大的石块、泥砂等无机颗粒物,微污染水体经过泥砂池 1 进入混排箱涵;
步骤 2:在箱涵的进口端设置净化区 A3,净化区 A 由多个框式净化块 a4 拼接组成,框式净化块 a4 进水端设置有格栅网 4-2 用于拦截粒径较大的悬浮物,框式净化块a4 底部的沸石填料层 4-2 厚度为 30-60mm,沸石粒径 16-32mm,比重 1.2-1.4g/cm3,孔隙率>50%,吸附交换容量>1000g/cm3;辫绳式载体 4-3 用于附着微生物的生长繁殖继而形成生物膜,实现对微污染水体中的有机物和有机氮的去除,通过净化区 A3 实现了对混排箱涵中微污染水体有机物、氨氮和悬浮态磷的初步净化处理、污染物浓度大幅降低;
步骤 3:微污染水体经过净化区 A3 处理后进入自然复氧区 5,自然复氧区 5 的长度不低于 500m,通过水体流动与空气长时间的自然接触获得溶解氧;
步骤 4:微污染水体经过自然复氧区 5 后进入净化区 B6,净化区 B6 由多个框式净化块 b8 拼接组成,净化块框架 b8-1 底部铺设有铝钒土填料层 8-2,铝矾土填料粒径 8-16mm,容重 1.7g/cm3,铝含量>75%,SiO2含量<10%,空隙率>43%,通过化学反应去除水体中溶解态磷,实现了对磷的进一步去除, 辫绳式载体 8-3 用于附着微生物的生长繁殖附着微生物的生长繁殖继而形成生物膜,实现对水体中的有机物和有机氮的去除;
步骤 5:微污染水体经过净化区 B6 后进入净化区 C7, 净化区 C7 由多个框式净化块 c2 组成, 框式净化块 c2 底部的铝钒土填料层 2-3 厚度为 30-60mm,铝矾土填料粒径 8-16mm,容重 1.7g/cm3,铝含量>75%,SiO2含量<10%,空隙率>43%;蕾丝纤维载体2-4 实现对水体中的悬浮物和胶体的去除,提高水体的透明度;
步骤 6:微污染水体经过净化区 C7 后得到净化合格,排放至收纳水体,即实现箱涵微污染水体原位净化。
框式净化块 a4 的辫绳式载体 4-3 和框式净化块 b8 的辫绳式载体 8-3 中,每两根辫绳式载体之间水平间距为 50mm,垂直间距为 60mm,所用辫绳外直径 10-20mm、比表面积>35m2/m、空隙率>99%,挂膜后湿重 2-3kg/m;
框式净化块 c2 的蕾丝纤维载体 2-4 由一端扎紧的多根蕾丝组成,蕾丝为聚丙烯材质,蕾丝纤维载体 2-4 的外直径 20mm、单根蕾丝直径<0.01mm、比表面积>16m2/m、比重 1.1g/cm。
框式净化块 a4、框式净化块 b8 和框式净化块 c2 为标准化模块,单个模块尺寸为长 1000mm,宽 1000mm,高 300mm,铺设长度和位置具体根据水质净化程度和现场实施条件而确定。
实施例三:
某山地城市箱涵微污染水体的原位净化某山地城市某一段箱涵长为 2.1km,其中明涵 450m,箱涵尺寸 3m×3m。平日水位 20-30cm,水流速度 0.05-0.15m/s,平日水量5000-12000 吨/天,占全年天数的比例 85%。箱涵水源主要为上游水库溢流水,箱涵沿程有各类排水口若干,导致箱涵内水体呈微污染,水体较为浑浊、略有发白,已无法满足地表水环境质量的考核要求。
主要水质指标:COD 35-68mg/L,NH3-N 1.2-6.5mg/L,TP 0.3-1.2mg/L,SS 30-70mg/L。
如图 1-图 8 所示,一种采用上述实施例一所述的系统进行混排箱涵微污染水体原位净化的方法,该方法包括以下步骤:
步骤 1:在混排箱涵进口前设置泥沙池 1,泥砂池 1 用于沉淀水体中粒径较大的石块、泥砂等无机颗粒物,避免在净化装置的沉积影响。泥砂池尺寸 L×B×H=2m×3m×1.5m,旱季水平流速<0.1m/s。微污染水体经过泥砂池 1 进入混排箱涵。
步骤 2:在箱涵的进口端设置净化区 A3,净化区 A 由多个框式净化块 a4 拼接组成,框式净化块 a4 进水端设置有格栅网 4-2 用于拦截粒径较大的悬浮物,框式净化块a4 底部的沸石填料层 4-2 厚度为 30-60mm,沸石粒径 16-32mm,比重 1.2-1.4g/cm3,孔隙率>50%,吸附交换容量>1000g/cm3;辫绳式载体 4-3 用于附着微生物的生长繁殖继而形成生物膜,实现对微污染水体中的有机物和有机氮的去除;
框式净化块 a4 主要通过好氧生物降解作用去除有机物(COD)、氨氮(NH3-N),有机物转化成 CO2而去除,有机氮和氨氮转化成 NO3--N;主要通过沉淀和吸附作用去除水体中悬浮态磷为主,悬浮态磷被沸石填料吸附和沉淀。
通过净化区 A3 实现了对混排箱涵中微污染水体有机物、氨氮和悬浮态磷的初步净化处理、污染物浓度大幅降低。
单个框式净化块 a4 的尺寸为 L×B×H=1000×1000×300mm,横向铺设三组净化块覆盖箱涵整个宽度,纵向从箱涵入口沿水流方向铺设,净化区 A3 在箱涵内的铺设长度 150m,单个框式净化块 a4 总数量 450 个。
步骤 3:微污染水体经过净化区 A3 处理后进入自然复氧区 5,自然复氧区 5的长度为 1200m,通过水体流动与空气长时间的自然接触获得溶解氧(2-4mg/L)。
步骤 4:微污染水体经过自然复氧区 5 后进入净化区 B6,净化区 B6 由多个框式净化块 b8 拼接组成,净化块框架 b8-1 底部铺设有铝钒土填料层 8-2,铝矾土填料粒径 8-16mm,容重 1.7g/cm3,铝含量>75%,SiO2含量<10%,空隙率>43%,通过化学反应去除水体中溶解态磷,实现了对磷的进一步去除,辫绳式载体 8-3 用于附着微生物的生长繁殖附着微生物的生长繁殖继而形成生物膜,由于水体中的溶解氧已降低,生物膜内部呈缺氧和厌氧状态有利于反硝化菌繁殖,框式净化块 b8 中生物膜内反硝化菌主要对来自净化块 a产生的 NO3--N,进行反硝化反应从而去除总氮(TN);生物膜外的好氧生物进一步利用溶解氧降解有机物(COD)、氨氮(NH3-N),实现深度净化;铝矾土填料主要通过化学反应去除水体中悬浮态和溶解态磷,实现了对磷的进一步去除。
单个框式净化块 b8 的尺寸为 L×B×H=1000×1000×300mm,横向铺设三组箱涵整个宽度,纵向沿水流方向铺设,净化区 B6 在箱涵内的铺设长度 150m,单个框式净化块 b8 总数量 450 个。
步骤 5:微污染水体经过净化区 B6 后进入混排箱涵末端的净化区 C7, 此时大部分有机物、氨氮和悬浮物已去除,净化区 C7 由多个框式净化块 c2 组成, 框式净化块c2 底部的铝钒土填料层 2-3 厚度为 30-60mm,铝矾土填料粒径 8-16mm,容重 1.7g/cm3,铝含量>75%,SiO2含量<10%,空隙率>43%;蕾丝纤维载体 2-4 利用高密度的纤维束吸附去除水体中的细小悬浮物和胶体,大幅提高水体的透明度,利用铝矾土主要通过化学反应去除溶解性的总磷。故,通过净化块 c 实现了对箱涵中胶体、悬浮物和总磷(TP) 。
框式净化块 c2 铺设于混排箱涵的排放出口处,根据其污染程度和水质目标,其铺设长度为 80m,其规格和安装方式与单个框式净化块 a4 相同,铺设总数量 240 个。
步骤 6:微污染水体经过净化区 C7 后得到净化合格,排放至收纳水体,即实现箱涵微污染水体原位净化。
通过检测出水水质指标可达到 COD<30mg/L,NH3-N <1.5mg/L,TP <0.3mg/L,SS<20mg/L,达到地表水环境质量标准(GB3838-2002)四类水水质标准要求。
框式净化块 a4 的辫绳式载体 4-3 和框式净化块 b8 的辫绳式载体 8-3 中,每两根辫绳式载体之间水平间距为 50mm,垂直间距为 60mm,所用辫绳外直径 10-20mm、比表面积>35m2/m、空隙率>99%,挂膜后湿重 2-3kg/m;
框式净化块 c2 的蕾丝纤维载体 2-4 由一端扎紧的多根蕾丝组成,蕾丝为聚丙烯材质,蕾丝纤维载体 2-4 的外直径 20mm、单根蕾丝直径<0.01mm、比表面积>16m2/m、比重 1.1g/cm。
上述的实施例仅为本发明的优选技术方案,而不应视为对于本发明的限制,本申请中的实施例及实施例中的特征在不冲突的情况下,可以相互任意组合。本发明的保护范围应以权利要求记载的技术方案,包括权利要求记载的技术方案中技术特征的等同替换方案为保护范围。即在此范围内的等同替换改进,也在本发明的保护范围之内。

Claims (7)

1.一种用于混排箱涵微污染水体的原位净化系统,包括设置在混排箱涵进口前的泥沙池(1),其特征在于:混排箱涵的进口端设置净化区A(3),净化区A由多个框式净化块a(4)拼接组成,净化区A(3)对混排箱涵中有机物、氨氮和悬浮物和附着磷进行初步净化处理;净化区A(3)通过自然复氧区(5)依次与净化区B(6)、净化区C(7)连接,净化区B(6)由多个框式净化块b(8)拼接组成,净化区B(6)实现了对混排箱涵中总氮、有机物、氨氮和总磷的进一步净化处理;净化区C(7)设置于混排箱涵的出口端,净化区C(7)由多个框式净化块c(2)组成,实现了对混排箱涵中胶体、悬浮物和总磷的深度净化处理;框式净化块a(4)包括净化块框架a(4-1),净化块框架a(4-1)的进水端和出水端分别设置有格栅网,净化块框架a(4-1)的底部铺设有沸石填料层(4-3),净化块框架a(4-1)内部空间沿水流方向水平安装有多根第一辫绳式载体(4-4),第一辫绳式载体(4-4)两端与净化块框架a(4-1)的边框绑扎连接;框式净化块b(8)包括净化块框架b(8-1),净化块框架b(8-1)的进水端和出水端分别设置有格栅网,净化块框架b(8-1)的底部铺设有铝钒土填料层,净化块框架b(8-1)内部空间沿水流方向水平安装有多根第二辫绳式载体(8-4),第二辫绳式载体(8-4)两端与净化块框架b(8-1)的边框绑扎连接;框式净化块c(2)包括净化块框架c(2-1),净化块框架c(2-1)的进水端和出水端分别设置有格栅网,净化块框架c(2-1)底部铺设有铝钒土填料层,净化块框架c(2-1)内部空间沿水流方向水平安装有多根蕾丝纤维载体(2-4),蕾丝纤维载体(2-4)扎紧端与净化块框架c(2-1)的边框绑扎连接。
2.根据权利要求1所述的一种用于混排箱涵微污染水体的原位净化系统,其特征在于:净化块框架a(4-1)内部空间沿水流方向还设置有两块整流板,各第一辫绳式载体(4-4)上还设置有一个紊流板,紊流板的数量为36块。
3.根据权利要求1所述的一种用于混排箱涵微污染水体的原位净化系统,其特征在于:净化块框架b(8-1)内部空间沿水流方向还设置有两块整流板,各第二辫绳式载体(8-4)上还设置有紊流板,紊流板的数量为36块。
4.根据权利要求1所述的一种用于混排箱涵微污染水体的原位净化系统,其特征在于:净化块框架c(2-1)内部空间沿水流方向还设置有两块整流板。
5.一种采用权利要求1-4中任一项所述的系统进行混排箱涵微污染水体原位净化的方法,其特征在于该方法包括以下步骤:
步骤1:在混排箱涵进口前设置泥沙池(1),泥沙池(1)用于沉淀水体中粒径较大的无机颗粒物,包括石块和泥沙;微污染水体经过泥沙池(1)进入混排箱涵;
步骤2:在箱涵的进口端设置净化区A(3),净化区A由多个框式净化块a(4)拼接组成,框式净化块a(4)进水端设置有格栅网用于拦截粒径较大的悬浮物,框式净化块a(4)底部的沸石填料层(4-3)厚度为30-60mm,沸石粒径16-32mm,比重1.2-1.4g/cm3,孔隙率>50%,吸附交换容量>1000g/cm3;第一辫绳式载体(4-4)用于附着微生物的生长繁殖继而形成生物膜,实现对微污染水体中的有机物和有机氮的去除,通过净化区A(3)实现了对混排箱涵中微污染水体有机物、氨氮和悬浮态磷的初步净化处理、污染物浓度大幅降低;
步骤3:微污染水体经过净化区A(3)处理后进入自然复氧区(5),自然复氧区(5)的长度不低于500m,通过水体流动与空气长时间的自然接触获得溶解氧;
步骤4:微污染水体经过自然复氧区(5)后进入净化区B(6),净化区B(6)由多个框式净化块b(8)拼接组成,净化块框架b(8-1)底部铺设有铝钒土填料层,铝矾土填料粒径8-16mm,容重1.7g/cm3,铝含量>75%,SiO2含量<10%,孔隙率>43%,通过化学反应去除水体中溶解态磷,实现了对磷的进一步去除,第二辫绳式载体(8-4)用于附着微生物的生长繁殖附着微生物的生长繁殖继而形成生物膜,实现对水体中的有机物和有机氮的去除;
步骤5:微污染水体经过净化区B(6)后进入净化区C(7), 净化区C(7)由多个框式净化块c(2)组成, 框式净化块c(2)底部的铝钒土填料层厚度为30-60mm,铝矾土填料粒径8-16mm,容重1.7g/cm3,铝含量>75%,SiO2含量<10%,孔隙率>43%;蕾丝纤维载体(2-4)实现对水体中的悬浮物和胶体的去除,提高水体的透明度;
步骤6:微污染水体经过净化区C(7)后得到净化合格,排放至收纳水体,即实现箱涵微污染水体原位净化。
6.根据权利要求5所述的方法,其特征在于:框式净化块a(4)的第一辫绳式载体(4-4)和框式净化块b(8)的第二辫绳式载体(8-4)中,每两根辫绳式载体之间水平间距为50mm,垂直间距为60mm,所用辫绳外直径10-20mm、比表面积>35m2/m、空隙率>99%,挂膜后湿重2-3kg/m;
框式净化块c(2)的蕾丝纤维载体(2-4)由一端扎紧的多根蕾丝组成,蕾丝为聚丙烯材质,蕾丝纤维载体(2-4)的外直径20mm、单根蕾丝直径<0.01mm、比表面积>16m2/m、比重1.1g/cm。
7.根据权利要求6所述的方法,其特征在于:框式净化块a(4)、框式净化块b(8)和框式净化块c(2)为标准化模块,单个模块尺寸为长1000mm,宽1000mm,高300mm,铺设长度和位置具体根据水质净化程度和现场实施条件而确定。
CN202110970826.0A 2021-08-23 2021-08-23 一种用于混排箱涵微污染水体的原位净化系统及方法 Active CN113716797B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110970826.0A CN113716797B (zh) 2021-08-23 2021-08-23 一种用于混排箱涵微污染水体的原位净化系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110970826.0A CN113716797B (zh) 2021-08-23 2021-08-23 一种用于混排箱涵微污染水体的原位净化系统及方法

Publications (2)

Publication Number Publication Date
CN113716797A CN113716797A (zh) 2021-11-30
CN113716797B true CN113716797B (zh) 2023-07-18

Family

ID=78677507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110970826.0A Active CN113716797B (zh) 2021-08-23 2021-08-23 一种用于混排箱涵微污染水体的原位净化系统及方法

Country Status (1)

Country Link
CN (1) CN113716797B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205241362U (zh) * 2015-12-22 2016-05-18 郑州大学 一种微污染河流水体生态修复装置
CN106698849A (zh) * 2017-01-18 2017-05-24 农业部环境保护科研监测所 规模化奶牛场挤奶厅废水分散式处理与回用系统及方法
CN107720971A (zh) * 2017-11-09 2018-02-23 山东大学 基于生物质循环的人工湿地及其污染物强化去除方法
CN111499093A (zh) * 2020-04-08 2020-08-07 诚邦生态环境股份有限公司 一种外源污水生态处理系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106277657A (zh) * 2016-10-31 2017-01-04 中冶华天工程技术有限公司 原位临时净化集成系统及污水净化方法
CN208166682U (zh) * 2018-08-06 2018-11-30 浙江省环境工程有限公司 用于污水处理系统的多级生态人工湿地
CN209456149U (zh) * 2018-12-27 2019-10-01 江苏凯米膜科技股份有限公司 一种新型组合式生物填料模块
US20200290908A1 (en) * 2019-03-15 2020-09-17 Imet Corporation Submerged bio-restoration artificial ecosystem reactor
CN110713313A (zh) * 2019-09-29 2020-01-21 北京邦源环保科技股份有限公司 一种用于河道黑臭水体治理的生态修复坝
CN112441704A (zh) * 2020-11-24 2021-03-05 重庆大学 一种模块化组合型强化脱氮人工湿地系统
CN112794560A (zh) * 2020-12-25 2021-05-14 北京北华中清环境工程技术有限公司 一种用于污染水体治理的原位生态净化模块及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205241362U (zh) * 2015-12-22 2016-05-18 郑州大学 一种微污染河流水体生态修复装置
CN106698849A (zh) * 2017-01-18 2017-05-24 农业部环境保护科研监测所 规模化奶牛场挤奶厅废水分散式处理与回用系统及方法
CN107720971A (zh) * 2017-11-09 2018-02-23 山东大学 基于生物质循环的人工湿地及其污染物强化去除方法
WO2019091178A1 (zh) * 2017-11-09 2019-05-16 山东大学 基于生物质循环的人工湿地及其污染物强化去除方法
CN111499093A (zh) * 2020-04-08 2020-08-07 诚邦生态环境股份有限公司 一种外源污水生态处理系统

Also Published As

Publication number Publication date
CN113716797A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
US9221698B2 (en) Hybrid artificial wetland water purification system, sewage treatment device using same, and natural nonpoint purification device capable of simultaneously purifying river and lake water
CN104817239B (zh) 一种重污染河道原位水质净化系统及净化方法
CN201873573U (zh) 微纳米气浮垂直潜流式人工湿地污水处理装置
CN100464812C (zh) 一种人工强化土地渗滤污水处理装置
CN105254127B (zh) 自清式微曝气复合人工湿地污水处理系统
CN107500474B (zh) 一种农村生活污水分散收集和处理的方法及系统
CN102120677A (zh) 多级污水处理用生物反应系统及制作方法和污水处理方法
CN112158958B (zh) 一种强化污染物去除的海绵城市建设用人工雨水湿地系统
CN109437484A (zh) 一种适用于河流型水源地水体的生物预处理系统及方法
CN105174468B (zh) 一种分隔式复合立体人工湿地系统及污水处理方法
CN107188379A (zh) 一种村镇生活污水田园景观式综合处理系统
CN113582444B (zh) 一种干散货码头径流污染的收集净化与回用工艺
CN207047066U (zh) 一种村镇生活污水田园景观式综合处理系统
CN111392964B (zh) 一种雨污合流泵站污水的处理方法及其装置
CN103951136B (zh) 一种应用于雨水管网的阳台废水、初期雨水净化器及净化方法
CN113716797B (zh) 一种用于混排箱涵微污染水体的原位净化系统及方法
CN204625450U (zh) 一种新型重污染河道原位水质净化系统
CN1257854C (zh) 有脱氨除磷通气层的污水深度处理装置
CN204874036U (zh) 一种分隔式复合立体人工湿地系统
TWI383961B (zh) 用於處理含鹽污水之人工溼地
CN211170301U (zh) 地上式生活污水处理系统
CN112279362B (zh) 针对入河排污口排水的耦合炭基膜生物反应装置及其方法
CN209872686U (zh) 生态污水处理系统
CN210736455U (zh) 污水无动力生物生态处理装置及包含其的污水处理系统
CN109987796B (zh) 一种高效净水模块化人工湿地系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant