WO2019091178A1 - 基于生物质循环的人工湿地及其污染物强化去除方法 - Google Patents

基于生物质循环的人工湿地及其污染物强化去除方法 Download PDF

Info

Publication number
WO2019091178A1
WO2019091178A1 PCT/CN2018/101127 CN2018101127W WO2019091178A1 WO 2019091178 A1 WO2019091178 A1 WO 2019091178A1 CN 2018101127 W CN2018101127 W CN 2018101127W WO 2019091178 A1 WO2019091178 A1 WO 2019091178A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
layer
constructed wetland
sediment
wetland
Prior art date
Application number
PCT/CN2018/101127
Other languages
English (en)
French (fr)
Inventor
张建
沈晓彤
张成禄
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to CH000553/2020A priority Critical patent/CH715708B9/de
Publication of WO2019091178A1 publication Critical patent/WO2019091178A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F2003/001Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms
    • C02F2003/003Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms using activated carbon or the like

Definitions

  • the invention belongs to the field of sewage treatment and resource utilization and water pollution control, and particularly relates to a method for strengthening the removal of artificial wetlands and pollutants based on biomass circulation.
  • Constructed wetland is an ecological treatment technology that has the advantages of beautifying the landscape, maintaining ecological balance, and easy management. Constructed wetland technology has outstanding application advantages in global, especially in developing areas, and has been widely used in the treatment of various types of sewage such as polluted river water, urban sewage plant tail water, and dispersed domestic sewage. As a main component of constructed wetlands, wetland plants are mostly old, and traditional constructed wetland sewage treatment technologies have problems such as plant degradation and corruption. Wetland animals have good pollutant adsorption and degradation effects on constructed wetlands. However, animal body residues such as shrimp, crab shells, fish scales, and their spoilage and odor can cause water deterioration and secondary pollution.
  • wetland straws produced in constructed wetlands, and there is currently no good treatment and utilization method.
  • the most common treatment is natural accumulation of decay or incineration, which not only takes up space, wastes resources, but also causes environmental pollution.
  • the constructed wetland carbonizes biomass such as plant straw and animal residue, prepares activated carbon, and backfills it in the wetland matrix, thereby realizing biomass circulation and improving the removal effect of pollutants in the wastewater.
  • the technical solution of the present invention is:
  • An artificial wetland based on biomass circulation wherein an activated carbon layer is backfilled, and activated carbon in the activated carbon layer is prepared by carbonization of plant residues or/and animal residues in the constructed wetland.
  • Activated carbon is recovered from the wetland plants and spoiled animal residues in the constructed wetland from the constructed wetland, and the prepared activated carbon is backfilled in the constructed wetland.
  • the biomass charcoal from the constructed wetland is taken back and filled.
  • the material circulation realizes the treatment and treatment of wetland plants and spoiled animal residues;
  • the second aspect can solve the problem that biomass such as plant residues and animal residues easily lead to blockage of fillers in constructed wetlands and reduce the ability of constructed wetlands to treat organic wastewater.
  • the third aspect can solve the problem of secondary pollution caused by biomass pollutants such as plant residues and animal residues in the process of spoilage degradation.
  • the backfilling method of the activated carbon layer in the surface flow constructed wetland comprises a direct mixing method, a module method and a float method; and the backfilling method of the activated carbon layer in the submerged artificial wetland includes a module method and a float method.
  • the direct mixing and adding method is to mix the activated carbon and the sediment and backfilling to obtain a mixed layer of activated carbon and a sediment, the mixed layer is a coating layer above and a bottom layer.
  • the activated carbon and the sediment are mixed and backfilled to make the activated carbon more stable and difficult to float and disperse.
  • the cover layer has a thickness of 4-8 cm, the mixed layer has a thickness of 25-40 cm, and the water layer height is 30-50 cm; preferably, the cover layer has a thickness of 5-6 cm, and the thickness of the mixed layer is 26-35cm, the height of the water layer is 35-45cm.
  • the density of activated carbon is small. When it is filled in the sediment, it is easy to float.
  • the cover layer is laid on the mixed layer to cover the surface and prevent the activated carbon from floating. To avoid affecting the adsorption effect, the thickness of the cover layer is limited. It is 4-8cm. When the thickness/height of the cover layer, the mixed layer and the water layer are set as such, the activated carbon in the mixed layer has a better effect on the treatment of the organic wastewater in the aqueous layer.
  • the mass ratio of the activated carbon to the sediment in the mixed layer is 1:0.8-1.2.
  • the substance in the cover layer is a sediment.
  • the module method is to embed a tank containing activated carbon in a sediment or a filler, and the activated carbon in the tank is divided into two layers, the upper layer is a granular activated carbon with a particle size of 7-8 cm, and the lower layer is Activated carbon of 10-20 mesh, evenly perforated around the bottom and bottom of the tank.
  • the small granular activated carbon is easy to float in the sediment or the filler.
  • the bulk activated carbon is pressed on the small granular activated carbon. On the one hand, it can suppress the small granular activated carbon, avoiding the floating of the small granular activated carbon, and on the other hand, supporting the expansion of the sewage.
  • the flow channel enables the surface flow sewage to quickly reach the lower small particle activated carbon zone, and the wastewater can improve the adsorption treatment effect under the same residence time, thereby improving the treatment effect of the organic wastewater; in the third aspect, the upper layer of activated carbon can be used in the organic wastewater.
  • the solid impurities act as a barrier to filtration, avoiding clogging of the small granular activated carbon layer and prolonging the service life of the activated carbon.
  • the entire tank can be taken out to facilitate the recovery and replacement of the activated carbon.
  • the distance between the upper surface of the tank body and the upper surface of the sediment or filler is 4-20 cm.
  • the opening diameter on the tank body is smaller than the particle diameter of the small particle activated carbon. Prevent small particles from active. The charcoal flows out of the tank.
  • the thickness of the upper layered activated carbon is 7-8 cm, and the thickness of the lower layer of small granular activated carbon is 8-10 cm.
  • the floating ball method is to embed a hollow sphere containing activated carbon in a sediment or a filler, and the hollow spheres are connected and fixed by a rope, and each of the hollow spheres has a plurality of through holes.
  • the diameter of the activated carbon in the hollow sphere near the inlet of the constructed wetland is 5-8 cm, and the diameter of the activated carbon from the inlet of the constructed wetland to the outlet gradually decreases.
  • the organic wastewater enters from the water inlet and flows out from the water outlet, and sequentially flows through the activated carbon with decreasing particle size.
  • the adsorption effect of the activated carbon is gradually enhanced, and the blockage near the water inlet can be avoided, which is beneficial to improve the treatment effect.
  • the hollow sphere is pulled out to facilitate the recovery and replacement of the activated carbon.
  • the hollow sphere has a diameter of 10-15 cm and a through hole diameter of 1-2 cm.
  • a coupled system of a constructed wetland and a microbial fuel cell comprising the above-mentioned artificial wetland and a microbial fuel cell, the microbial fuel cell comprising an anode, a cathode and a wire, the anode being embedded in the activated carbon layer, and the cathode being fixed to the dissolved oxygen in the water layer of the constructed wetland
  • the zone, the anode and the cathode are connected by wires.
  • the method for enhancing contaminant removal of the above-mentioned biomass circulation-based artificial wetland comprises the following steps:
  • the plant residues and/or animal residues in the constructed wetland are recovered, carbonized, activated carbon is prepared, and then the activated carbon is backfilled into the sediment or filler of the constructed wetland.
  • the animal residue is a shrimp, a crab shell or a fish scale.
  • the backfilled activated carbon is activated carbon obtained by carbonization of a plant residue or activated carbon obtained by carbonization of an animal residue or a mixture of the two.
  • the plant residue is harvested in the non-growing period of the plant, and is converted into activated carbon by hydrothermal carbonization technology in combination with a novel active agent.
  • Figure 1 is a schematic view of a biomass flow-based surface flow constructed wetland and its contaminant enhanced removal method according to the present invention.
  • FIG. 2 is a schematic diagram of a trough device for a biomass flow-based surface flow constructed wetland and a contaminant enhanced removal method thereof according to the present invention.
  • FIG. 3 is a diagram of a float device of a biomass flow-based surface flow constructed wetland and a method for enhancing the removal of the same according to the present invention.
  • FIG. 4 is a modular device diagram of a biomass circulation-based subsurface flow constructed wetland and a method for enhancing the removal thereof of pollutants according to an embodiment of the present invention.
  • FIG. 5 is a diagram of a floating ball device based on biomass circulation-based subsurface flow constructed wetland and its contaminant enhanced removal method according to the present invention.
  • FIG. 6 is a diagram of a biomass-based combined wetland and microbial fuel cell unit based on the implementation of the present invention.
  • the surface flow constructed wetland is bottom sediment layer 1, activated carbon and sediment mixed layer 2, cover layer 3, water layer 4, Hydrilla verticillata 5, and Myriophyllum sp. 8 from bottom to top.
  • the constructed wetland uses intermittent flow with a hydraulic retention time of 3 days.
  • the bottom mud layer 1 is covered by the bottom mud, taken from about 10 cm below the surface of the sediment layer, and the mud point is about 5 m away from the bank edge, and passed through a 200 mesh sieve to remove impurities, and the layer has a thickness of about 25 cm.
  • the activated carbon is prepared by mixing a mixture of spirulina and shrimp, and is ground into a powder and mixed with the sediment in a ratio of 1:1, and laid flat on the sediment layer 1, the layer having a thickness of about 30 cm.
  • the composition of the cover layer 3 is the same as that of the sediment layer 1, and is laid on the mixed layer 2 of the activated carbon and the sediment to protect the activated carbon from floating, which affects the adsorption effect.
  • the thickness of the layer is about 5 cm.
  • the water layer 4 is a water body contaminated with pollutants, and the height of the water layer 4 is about 40 cm.
  • the submerged plants were planted in a 1:1 ratio between Hydrilla verticillata 5 and Myriophyllum sp. 8 .
  • the Hydrilla verticillata 5 is selected from a plant having a length of about 30 cm.
  • the roots are inserted into the matrix by cutting, and the main part of the plant is in the water.
  • a 7-10 cm Myriophyllum sp. 8 was selected and planted in the sediment layer 1 by cutting.
  • the surface flow constructed wetland adopts the simplest structure and is composed of a sediment layer 1, a water layer 4, and a goldfish algae 11.
  • the constructed wetland uses intermittent flow with a hydraulic retention time of 3 days.
  • the bottom mud layer is the bottom mud, which is taken from the surface of the bottom mud about 10cm, and the mud point is about 5m away from the bank edge.
  • the impurities and large particles are removed, and the bottom layer is laid on the bottom layer, and the thickness is about 25cm.
  • Activated carbon is prepared from a mixture of goldfish and crab shells. Goldfish algae is planted in the sediment by cutting.
  • the module is made of a PVC tank body 9, and the tank body 9 is uniformly perforated around the bottom and the bottom.
  • the lower layer is coated with 10-20 mesh small granular activated carbon, and the upper layer is covered with massive activated carbon (particle size is 7-8 cm).
  • the tank body 9 is placed about 5 cm below the surface of the sediment layer 1, where the root of the goldfish algae 11 is present, and the organic matter near the root system promotes microbial adhesion growth on the surface of the activated carbon, thereby improving the adsorption treatment capacity.
  • the upper layer of activated carbon can make the surface flow sewage quickly reach the lower small particle activated carbon area, improve the adsorption treatment effect, and can reduce the surface blockage of the artificial surface of the surface flow. After the activated carbon reaches the upper limit of adsorption, the entire tank is raised and replaced, and the operation is convenient.
  • Another method of addition is the float method.
  • a polyethylene float 15 having a diameter of about 12 cm is used, and the sphere is evenly drilled with a hole having a diameter of about 1.5 cm, and 10-20 mesh activated carbon small particles are placed in the float.
  • the float balls 15 are connected by a rope 14 and placed about 5 cm below the surface of the bottom mud layer 1, and the number of activated carbon float balls to be added can be flexibly selected according to the concentration of the pollutants and the size of the wetland.
  • the starting and trailing ends of the entire set of floats are attached to the ground studs 12 by ropes 14, and the studs 12 are fixed to the wet shore.
  • the activated carbon adsorption After the activated carbon adsorption reaches the upper limit, it can be taken out and replaced as a whole.
  • the plants were planted in a 1:1 uniformity between the genus Ceratophyllum 11 and Typha 13 . Near natural wetlands are similar to surface wetlands, and the same addition method can be used.
  • the subsurface flow constructed wetland is composed of a coarse medium layer 16, a fine medium layer 17, and a cattail 13.
  • Activated carbon is made from a mixture of cattail and alfalfa. Activated carbon is added in a modular manner.
  • the stainless steel tank body 9 is uniformly perforated around the bottom and the bottom, and the front end is placed with a block of activated carbon, and the rear end is 10-20 mesh small particles.
  • the tank body 9 is placed at a distance of about 15 cm from the surface layer filler.
  • the sewage flows in from the water inlet and is first filtered through the plant body and then passed through the front block activated carbon zone.
  • Bulk activated carbon can not only adsorb pollutants, but also allow sewage to pass quickly, avoiding front-end blockage.
  • the small particle activated carbon at the back end enhances the adsorption effect.
  • Other embodiments may flexibly select the number of modules to be added depending on the size of the wetland, the concentration of the contaminants.
  • the activated carbon reaches the upper adsorption limit and can be replaced as a whole.
  • the subsurface flow constructed wetland is composed of a gravel layer 18, a surface soil layer 21, and a reed 20.
  • Activated carbon is made from a mixture of reeds and fish scales.
  • the activated carbon is placed in a filler ball 19 having a diameter of about 12 cm, and the float ball is uniformly punched with a hole having a diameter of about 1.5 cm.
  • the stuffing balls 19 are placed directly between the gravel block slits, about 15 cm from the surface of the packing, and joined by a rope 14. Both ends of the filling ball 19 are fixed to the ground nail 12 by a rope, and the ground nail 12 is fixed to the wet shore.
  • the activated carbon is in the form of a block and is about 6 cm long. The closer to the water outlet, the smaller the activated carbon in the filler ball 19.
  • Activated carbon adsorption reaches the upper limit and is directly pulled out for replacement.
  • the surface flow constructed wetland is composed of a sediment layer 1, a water layer 4, and a Hydrilla 5.
  • the constructed wetland uses intermittent flow with a hydraulic retention time of 3 days.
  • the substrate layer is Xiaoyanhe sediment, which is taken from the surface below 10cm, and the mud point is about 5m away from the bank. It passes through a 200 mesh sieve to remove impurities and large particles with a thickness of about 25cm.
  • Activated carbon is prepared from a mixture of Hydrilla verticillata and strontium and is mixed with the sediment in a ratio of 1:1.
  • the water layer 4 is a water body contaminated by pollutants, and the water layer 4 has a height of about 40 cm.
  • the submerged plant is Hydrilla verticillata. A plant with a good length of about 30 cm is selected. The roots are inserted into the sediment by cutting, and the main part of the plant is in the water.
  • a microbial fuel cell is introduced, and the materials of the anode 22 and the cathode 23 are both carbon felts.
  • the anode 22 is buried in the mixed layer 2 of activated carbon and sediment.
  • the cathode 23 is suspended in a body of water.
  • the cathode 23 and the anode 22 are connected by a titanium wire 24 and connected to an external resistor 25.
  • the external resistor 25 has a resistance of 1000 ⁇ .
  • the addition of activated carbon effectively improves the removal of contaminants in two ways. The first is to improve the adsorption effect and remove pollutants by adsorption. Second, the addition of activated carbon increases the conductivity of the sediment and enhances the electricity production of the entire system. The anode degrades more contaminant contaminants for better removal.
  • the sewage flows into the constructed wetland, and the pollutants are first removed by the wet plant body and the animal body through adsorption and metabolism. Subsequently, the sewage penetrates into the sediment. The sediment is more adsorbed to the pollutants, and a large amount of pollutants are present in the pore pore water. Plant and animal residues are used to prepare activated carbon, backfilled in the sediment, and adsorb pollutants in the pore water of the sediment to achieve a biomass cycle.
  • contaminants present in the pore water are utilized by the electrogenic microorganisms on the surface of the anode to release protons and electrons. The electrons reach the cathode through the external circuit, and the protons reach the cathode through the sediment. At the cathode, protons, electrons, and oxygen undergo a reduction reaction to complete the circuit cycle of the microbial fuel cell.
  • the two processes are carried out simultaneously, greatly increasing the removal rate of contaminants. At the same time, it can produce electricity and save energy.

Abstract

一种基于生物质循环的人工湿地及其与微生物燃料电池的耦合系统,该人工湿地中回填有活性炭层,活性炭层中的活性炭(10)由该人工湿地中的植物残体或/和动物残体经炭化制备而成。耦合系统包括该人工湿地和微生物燃料电池,微生物燃料电池包括阳极(22)、阴极(23)和导线,阳极(22)埋设于活性炭层,阴极(23)固定于人工湿地的水层(4)的溶氧区,阳极(22)和阴极(23)之间通过导线连接。

Description

基于生物质循环的人工湿地及其污染物强化去除方法 技术领域
本发明属于污水处理与资源化和水污染控制领域,具体涉及一种基于生物质循环的人工湿地及其污染物强化去除方法。
背景技术
人工湿地是一种生态处理技术,它具有美化景观、维持生态平衡、管理简便等优点。人工湿地技术在全球尤其是发展中地区流域污染治理中具有突出的应用优势,已被广泛应用于污染河水、城市污水厂尾水、分散生活污水等多种类型污水的处理。作为人工湿地的主要组成部分,湿地植物多为年生,传统人工湿地污水处理技术存在植物退化与腐败等问题。湿地动物对于人工湿地有很好的污染物吸附与降解效果,然而动物体残渣,如虾、蟹壳、鱼鳞的产生,以及其腐败变臭会导致水体恶化以及二次污染的问题。枯萎的湿地植物、腐败的动物残渣等生物质导致的填料堵塞、污染物质释放问题,人工湿地工程的运行中普遍存在的湿地植物利用方式的经济附加值低等问题极大地限制了其推广应用。
人工湿地有大量的湿地秸秆产生,目前还没有很好的处理利用方法。最常见的处理方法是自然堆积腐烂或者焚烧,这不仅占用空间、浪费资源,并且还会导致环境污染。对于湿地动物残渣,目前还没有有效的处理方法。因此,实现对湿地秸秆的综合利用以及动物体残渣的处理处置,对于提高人工湿地的可持续利用性非常重要。
大量研究表明,吸附法是处理有机物污染废水的有效技术,但是传统的吸附剂价格昂贵,而且回收利用困难,当吸附剂饱和后难以再起到相应的作用。提高了人工湿地处理有机废水的成本,并难以维持人工湿地处理有机废水的效率。
发明内容
为了解决上述现有技术中存在的技术问题,本发明的目的是提供一种基于生物质循环的人工湿地及其污染物强化去除方法。该人工湿地是将植物秸秆、动物残渣等生物质进行炭化,制备活性炭,回填于湿地基质,实现了生物质循环,并提高了废水中污染物的去除效果。
为了解决以上技术问题,本发明的技术方案为:
一种基于生物质循环的人工湿地,其中回填有活性炭层,活性碳层中的活性炭由该人工湿地中的植物残体或/和动物残体经炭化制备而成。
将人工湿地中枯萎的湿地植物和腐败的动物残渣从人工湿地中回收制备活性炭,并将制备的活性炭回填于人工湿地中,一方面,取来自人工湿地的生物质制炭并回填,实现了 生物质循环,实现了对湿地植物和腐败的动物残渣的处理处置;第二方面,可以解决植物残体和动物残渣等生物质容易导致人工湿地中填料堵塞,降低人工湿地处理有机废水能力的问题,提高湿地利用效率;第三方面,可以解决植物残体和动物残渣等生物质在腐败降解过程中产生较多的污染物质,对有机废水造成二次污染的问题。
优选的,表流人工湿地中活性炭层的回填方式包括直接混合添加法、模块法和浮球法;潜流人工湿地中活性炭层的回填方式包括模块法和浮球法。
进一步优选的,所述直接混合添加法为将活性炭与底泥混合后回填,得到活性炭和底泥的混合层,该混合层的上方是覆盖层,下方是底泥层。将活性炭和底泥混合后回填使得活性炭更加稳定,不易上浮、分散。
更进一步优选的,所述覆盖层的厚度为4-8cm,混合层的厚度为25-40cm,水层高度为30-50cm;优选为,覆盖层的厚度为5-6cm,混合层的厚度为26-35cm,水层高度为35-45cm。
活性炭的密度较小,填充在底泥中时,容易发生上浮现象,覆盖层平铺于混合层上,起到遮盖的作用,防止活性炭浮出,为避免影响吸附效果,将覆盖层的厚度限定为4-8cm。当覆盖层、混合层和水层的厚度/高度这样设置时,混合层中的活性炭对水层中的有机废水的处理效果较好。
更进一步优选的,所述混合层中的活性炭与底泥的质量比为1:0.8-1.2。
更进一步优选的,所述覆盖层中的物质为底泥。
进一步优选的,所述模块法为将盛放有活性碳的槽体埋填在底泥或填料中,槽体内的活性炭分为两层,上层为粒度为7-8cm的块状活性炭,下层为10-20目的活性炭,槽体的四周和底部均匀打孔。
小颗粒活性炭在底泥或填料中容易上浮,块状活性炭压在小颗粒活性炭的上方,一方面可以压住小颗粒活性炭,避免小颗粒活性炭的上浮,另一方面起到支撑作用,扩大污水的流动通道,使表面流污水迅速到达下部小颗粒活性炭区,废水在相同的停留时间下,可以提高吸附处理效果,进而提高有机废水的处理效果;第三方面,上层块状活性炭可以对有机废水中的固体杂质起到阻挡过滤作用,避免对小颗粒活性炭层造成堵塞,延长活性炭的使用寿命。
当槽体内的活性炭达到吸附上限时,可以将槽体整体取出,便于活性炭的回收和更换。
更进一步优选的,所述槽体的上表面与底泥或填料的上表面之间的距离为4-20cm。此处有水生植物的根,根系附近的有机质促进活性炭表面微生物的附着生长,提高活性炭的吸附处理能力。
更进一步优选的,所述槽体上的开孔直径小于小颗粒活性炭的粒径。防止小颗粒活性 炭从槽体中流出。
更进一步优选的,上层块状活性炭的厚度为7-8cm,下层小颗粒活性炭的厚度为8-10cm。
进一步优选的,所述浮球法为将装有活性炭的中空球体埋于底泥或填料中,中空球体之间通过绳子连接固定,每个中空球体上均开设多个通孔。
更进一步优选的,靠近人工湿地进水口的中空球体中的活性炭的直径为5-8cm,自人工湿地进水口至出水口之间的活性炭的直径逐渐减小。
有机废水从进水口进入,出水口流出,依次流经粒径逐步减小的活性炭,活性炭的吸附效果逐步增强,同时可以避免进水口附近发生堵塞,有利于提高处理效果。
活性炭到达气浮上限时,将中空球体拉出,便于活性炭的回收与替换。
更进一步优选的,所述中空球体的直径为10-15cm,通孔直径为1-2cm。
一种人工湿地与微生物燃料电池的耦合系统,包括上述人工湿地和微生物燃料电池,微生物燃料电池包括阳极、阴极和导线,阳极埋设于所述活性炭层,阴极固定于人工湿地的水层的溶氧区,阳极和阴极之间通过导线连接。
上述基于生物质循环的人工湿地的污染物强化去除方法,包括如下步骤:
回收人工湿地中的植物残体和/或动物残体,将其炭化,制备得到活性炭,然后将活性炭回填于该人工湿地的底泥或填料中。
优选的,所述动物残体为虾、蟹壳或鱼鳞。
优选的,回填的活性炭为植物残体炭化得到的活性炭或动物残体炭化得到的活性炭或两者的混合物。
优选的,所述植物残体在植物的非生长期收割,利用水热炭化技术结合新型的活性剂将其转化为活性炭。
本发明的有益效果为:
1)相比于传统的人工湿地污水处理技术,回收利用生物质作为填料,重新回填入人工湿地实现了物质循环利用,避免二次污染,同时避免了湿地堵塞问题。
2)采用槽子、浮球等作为活性炭添加载体,可以实现活性炭的回收处理。
3)在微生物燃料电池与人工湿地耦合系统中加入生物质活性炭,降低成本的同时增加产电量。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明实施的基于生物质循环的表流人工湿地及其污染物强化去除方法的装置 图。
图2为本发明实施的基于生物质循环的表流人工湿地及其污染物强化去除方法的槽子装置图。
图3为本发明所述的基于生物质循环的表流人工湿地及其污染物强化去除方法的浮球装置图。
图4为本发明实施的基于生物质循环的潜流人工湿地及其污染物强化去除方法的模块化装置图。
图5为本发明实施的基于生物质循环的潜流人工湿地及其污染物强化去除方法的浮球装置图。
图6为本发明实施的基于生物质循环的人工湿地与微生物燃料电池联用装置图。
其中,1、底泥层;2、活性炭与底泥的混合层;3、覆盖层;4、水层;5、黑藻;6、出水口;7、入水口;8、狐尾藻;9、槽体,10、活性炭;11、金鱼藻,12、地钉;13、香蒲;14、绳子;15、浮球;16、粗介质层;17、细介质层;18、砾石层;19、填料球;20、芦苇;21、表层土层;22、阳极;23、阴极;24、钛丝;25、外电阻。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例1
如图1所示,表流人工湿地由下往上依次为底泥层1、活性炭与底泥混合层2、覆盖层3、水层4、黑藻5、狐尾藻8。人工湿地采用间歇流,水力停留时间为3天。底泥层1为由底泥铺满,取自底泥层表面以下10cm左右,取泥点距岸边约5m,过200目筛,除去杂质,该层厚度25cm左右。活性炭是由黑藻和虾的混合体制备而成,研磨成粉末以1:1的比例与底泥混合,平铺于底泥层1上,该层厚度30cm左右。覆盖层3组成与底泥层1相同,平铺于活性炭与底泥的混合层2上,起到遮盖的作用,防止活性炭浮出,影响吸附效果,该层厚度5cm左右。水层4是被污染物污染的水体,水层4的高度为40cm左右。沉水植物为黑藻5和狐尾藻8以1:1比例种间种植。黑藻5选取长度在30cm左右长势良好的株,采 用扦插法,根插入基质中,植物主体部分在水中。选取7-10cm的狐尾藻8,采用扦插法种植于底泥层1。
实施例2
如图2所示,表流人工湿地采用最简单的构造,由底泥层1、水层4、金鱼藻11组成。人工湿地采用间歇流,水力停留时间为3天。底泥层为底泥,取自底泥表面以下10cm左右,取泥点距岸边约5m,过200目筛,除去杂质和大颗粒,平铺于最底层,厚度25cm左右。活性炭由金鱼藻和蟹壳混合体制备而成。金鱼藻采用扦插法,植于底泥中。
特别的,该实施例活性炭添加方式有两种。一种为模块法。模块由PVC槽体9制成,槽体9四周及底部均匀打孔。下层铺10-20目的小颗粒活性炭,上层覆盖块状活性炭(粒径为7-8cm)。将槽体9放置于底泥层1表面以下5cm左右,该处有金鱼藻11的根,根系附近的有机质促进活性炭表面微生物附着生长,提高吸附处理能力。上层块状活性炭可以让表面流污水迅速到达下部小颗粒活性炭区,提高吸附处理效果,又可以减弱表面流人工湿地表层堵塞问题。活性炭达到吸附上限后,将槽子整个提出、更换,操作方便。
如图3所示,另一种添加方法为浮球法。采用直径12cm左右的聚乙烯浮球15,球体均匀打直径1.5cm左右的孔,将10-20目活性炭小颗粒放置于浮球内。浮球15之间用绳子14连接,放置于底泥层1表面以下5cm左右,可根据污染物浓度和湿地大小灵活选择需添加的活性炭浮球数。整套浮球开始端和尾端用绳子14连接在地钉12上,将地钉12固定于湿地岸边。活性炭吸附达到上限后,可整体取出更换。植物体为金鱼藻11和香蒲13按1:1均匀种间种植。近自然湿地与表流湿地相似,可采用相同添加方法。
实施例3
如图4所示,潜流人工湿地由粗介质层16、细介质层17和香蒲13组成。活性炭由香蒲和蚯蚓混合体制成。活性炭以模块化方式加入。不锈钢槽体9四周及底部均匀打孔,前端放置块状活性炭,后端10-20目小颗粒。槽体9放置于距离表层填料15cm左右。
污水由进水口流入,先经过植物体过滤吸附作用,随后经过前端块状活性炭区。大块活性炭既可以吸附处理污染物,又可以让污水迅速通过,避免前端堵塞。后端小颗粒活性炭强化吸附效果。其他实施例可根据湿地大小,污染物浓度,灵活选择模块添加数量。活性炭达到吸附上限可整体更换。
实施例4
如图5所示,潜流人工湿地由砾石层18,表层土层21和芦苇20组成。活性炭由芦苇和鱼鳞的混合体制成。活性炭放置于直径12cm左右的填料球19内,浮球均匀打有直径1.5cm左右的孔。填料球19直接放置在砾石块缝隙之间,位于距填料表面约15cm处,并用 绳子14相连。填料球19两端用绳子固定于地钉12上,地钉12固定于湿地岸边。靠近进水口7的填料球19内,活性炭为块状,长约6cm。越往出水口靠近,填料球19内活性炭越小。污水从进水口进入,6出水口流出,依次流经越来越小的活性炭,吸附效果逐步增强,同时避免前端堵塞。活性炭吸附到达上限,直接拉出更换。
实施例5
如图6所示,表流人工湿地由底泥层1、水层4和黑藻5组成。人工湿地采用间歇流,水力停留时间为3天。基质层为小湄河底泥,取自表面以下10cm左右,取泥点距岸边约5m,过200目筛,除去杂质和大颗粒,厚度25cm左右。活性炭是由黑藻和蚯蚓混合体制备而成,并以1:1的比例与底泥混合。水层4是被污染物污染的水体,水层4高度为40cm左右。沉水植物为黑藻,选取长度在30cm左右长势良好的株,采用扦插法,根插入底泥中,植物主体部分在水中。
微生物燃料电池被引入,阳极22和阴极23的材料均是碳毡。阳极22埋入活性炭和底泥混合层2。阴极23悬于水体中。阴极23和阳极22用钛丝24连接,并与外电阻25相连。外电阻25阻值为1000Ω。活性炭的添加从两个方面有效提高污染物去除效果。一是提高吸附效果,吸附去除污染物。二是活性炭的加入提高了底泥的导电性,增强整个系统的产电量。阳极降解更多污染物污染物,实现更好的去除效果。
污水流入人工湿地,其中的污染物先被湿地植物体、动物体通过吸附、新陈代谢去除一小部分。随后,污水渗透进底泥中。底泥对于污染物吸附性更强,大量污染物存在于底泥孔隙水中。植物体、动物体残渣用于制备活性炭,回填于底泥中,吸附底泥孔隙水中污染物,实现一个生物质循环。另外,存在于孔隙水中的污染物被阳极表面产电微生物利用,释放质子和电子。电子通过外电路到达阴极,质子通过底泥到达阴极。在阴极,质子、电子以及氧气发生还原反应,完成微生物燃料电池的电路循环。两种过程同时进行,大大提高污染物去除率。同时实现产电,节约能源。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种基于生物质循环的人工湿地,其特征在于:其中回填有活性炭层,活性碳层中的活性炭由该人工湿地中的植物残体或/和动物残体经炭化制备而成。
  2. 根据权利要求1所述的人工湿地,其特征在于:表流人工湿地中活性炭层的回填方式包括直接混合添加法、模块法和浮球法;潜流人工湿地中活性炭层的回填方式包括模块法和浮球法。
  3. 根据权利要求2所述的人工湿地,其特征在于:所述直接混合添加法为将活性炭与底泥混合后回填,得到活性炭和底泥的混合层,该混合层的上方是覆盖层,下方是底泥层;
    优选的,所述覆盖层的厚度为4-8cm,混合层的厚度为25-40cm,水层高度为30-50cm;优选为,覆盖层的厚度为5-6cm,混合层的厚度为26-35cm,水层高度为35-45cm;
    优选的,所述混合层中的活性炭与底泥的质量比为1:0.8-1.2;
    优选的,所述覆盖层中的物质为底泥。
  4. 根据权利要求2所述的人工湿地,其特征在于:所述模块法为将盛放有活性碳的槽体埋填在底泥或填料中,槽体内的活性炭分为两层,上层为粒度为7-8cm的块状活性炭,下层为10-20目的活性炭,槽体的四周和底部均匀打孔;
    优选的,所述槽体的上表面与底泥或填料的上表面之间的距离为4-20cm;
    优选的,所述槽体上的开孔直径小于小颗粒活性炭的粒径;
    优选的,上层块状活性炭的厚度为7-8cm,下层小颗粒活性炭的厚度为8-10cm。
  5. 根据权利要求2所述的人工湿地,其特征在于:所述浮球法为将装有活性炭的中空球体埋于底泥或填料中,中空球体之间通过绳子连接固定,每个中空球体上均开设多个通孔。
  6. 根据权利要求5所述的人工湿地,其特征在于:靠近人工湿地进水口的中空球体中的活性炭的直径为5-8cm,自人工湿地进水口至出水口之间的活性炭的直径逐渐减小。
  7. 根据权利要求6所述的人工湿地,其特征在于:所述中空球体的直径为10-15cm,通孔直径为1-2cm。
  8. 一种人工湿地与微生物燃料电池的耦合系统,其特征在于:包括权利要求1-7任一所述人工湿地和微生物燃料电池,微生物燃料电池包括阳极、阴极和导线,阳极埋设于所述活性炭层,阴极固定于人工湿地的水层的溶氧区,阳极和阴极之间通过导线连接。
  9. 权利要求1-7任一所述基于生物质循环的人工湿地的污染物强化去除方法,其特征在于:包括如下步骤:
    回收人工湿地中的植物残体和/或动物残体,将其炭化,制备得到活性炭,然后将活性炭回填于该人工湿地的底泥或填料中。
  10. 根据权利要求9所述的方法,其特征在于:所述动物残体为虾、蟹壳或鱼鳞。
    优选的,回填的活性炭为植物残体炭化得到的活性炭或动物残体炭化得到的活性炭或两者的混合物;
    优选的,所述植物残体在植物的非生长期收割,利用水热炭化技术结合新型的活性剂将其转化为活性炭。
PCT/CN2018/101127 2017-11-09 2018-08-17 基于生物质循环的人工湿地及其污染物强化去除方法 WO2019091178A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH000553/2020A CH715708B9 (de) 2017-11-09 2018-08-17 Verfahren zur Verfüllung einer auf Biomassenzirkulation basierten Pflanzenkläranlage.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711097903.6A CN107720971A (zh) 2017-11-09 2017-11-09 基于生物质循环的人工湿地及其污染物强化去除方法
CN201711097903.6 2017-11-09

Publications (1)

Publication Number Publication Date
WO2019091178A1 true WO2019091178A1 (zh) 2019-05-16

Family

ID=61214153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101127 WO2019091178A1 (zh) 2017-11-09 2018-08-17 基于生物质循环的人工湿地及其污染物强化去除方法

Country Status (3)

Country Link
CN (1) CN107720971A (zh)
CH (1) CH715708B9 (zh)
WO (1) WO2019091178A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635015A (zh) * 2020-06-08 2020-09-08 江西省林业科学院 基于发泡孔式微生物净化的湿地生态修复人工复合型浮岛
CN111704243A (zh) * 2020-07-17 2020-09-25 河南宜居环境建设有限公司 一种人工湿地微生物燃料电池耦合装置及污水处理方法
US10968124B2 (en) * 2019-07-12 2021-04-06 Dalian University Of Technology Method for changing filler pollutant accumulation of constructed wetland
CN112777724A (zh) * 2020-12-18 2021-05-11 同济大学 一种人工湿地—微生物燃料电池耦合处理系统及应用方法
CN113716797A (zh) * 2021-08-23 2021-11-30 中国长江三峡集团有限公司 一种用于混排箱涵微污染水体的原位净化系统及方法
CN114634240A (zh) * 2022-03-28 2022-06-17 广州市怡地环保有限公司 一种污水处理系统及其污水分阶式净化的处理方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107720971A (zh) * 2017-11-09 2018-02-23 山东大学 基于生物质循环的人工湿地及其污染物强化去除方法
CN108706732A (zh) * 2018-06-15 2018-10-26 中国科学院水生生物研究所 一种利用沉水植物耦合微生物燃料电池削减富营养化水体内源氮的方法及装置
CN112573663B (zh) * 2020-10-22 2022-07-01 浙江科技学院 一种生物质炭基多功能漂浮湿地系统
CN113371956B (zh) * 2021-02-10 2022-03-04 中庆建设有限责任公司 一种地表水体底泥的处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915918B1 (ko) * 2009-03-31 2009-09-07 주식회사 수엔지니어링 상향류 생물활성탄 모듈을 이용한 정체수역의 수질개선장치
CN102092856A (zh) * 2010-12-17 2011-06-15 天津大学 用于人工湿地的中空球型多孔填料及原料
CN202164174U (zh) * 2011-07-13 2012-03-14 东南大学 一种同时实现污水生态处理与微生物燃料电池产电的结构
CN104761057A (zh) * 2015-03-25 2015-07-08 山东大学 一种生物炭模块化复合垂直流人工湿地系统
CN107720971A (zh) * 2017-11-09 2018-02-23 山东大学 基于生物质循环的人工湿地及其污染物强化去除方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994918A (zh) * 2006-12-08 2007-07-11 华中科技大学 一种填料模块化人工湿地
CN102263279A (zh) * 2011-07-06 2011-11-30 武汉理工大学 一种人工湿地水生植物电极的微生物燃料电池装置
CN102249423B (zh) * 2011-07-13 2012-09-19 东南大学 一种同时实现污水生态处理与微生物燃料电池产电的结构
CN102531179B (zh) * 2011-11-18 2014-02-26 北京东溪柳环保工程有限公司 一种稳定高效的人工湿地污水处理系统及方法
CN102659247B (zh) * 2012-05-09 2014-07-02 中国科学院南京地理与湖泊研究所 一种强化湿地生态系统中有机物去除性能的装置及方法
CN102964028A (zh) * 2012-11-19 2013-03-13 同济大学 一种用于村镇污水处理的地下水平流渗滤系统
CN103241838B (zh) * 2013-05-16 2014-12-24 西南大学 一种利用湿地收割植物强化人工湿地去除氨氮的方法
CN103253774B (zh) * 2013-06-04 2014-04-02 重庆大学 一种改良的利用湿地收割芦竹强化人工湿地去除氨氮的方法
CN204939090U (zh) * 2015-07-07 2016-01-06 北京市工业设计研究院 一种小型可拆卸模块式人工湿地系统
CN206210933U (zh) * 2016-11-25 2017-05-31 广州新碧海环保设备有限公司 人工湿地燃料电池以及餐厨垃圾压缩水的净化系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100915918B1 (ko) * 2009-03-31 2009-09-07 주식회사 수엔지니어링 상향류 생물활성탄 모듈을 이용한 정체수역의 수질개선장치
CN102092856A (zh) * 2010-12-17 2011-06-15 天津大学 用于人工湿地的中空球型多孔填料及原料
CN202164174U (zh) * 2011-07-13 2012-03-14 东南大学 一种同时实现污水生态处理与微生物燃料电池产电的结构
CN104761057A (zh) * 2015-03-25 2015-07-08 山东大学 一种生物炭模块化复合垂直流人工湿地系统
CN107720971A (zh) * 2017-11-09 2018-02-23 山东大学 基于生物质循环的人工湿地及其污染物强化去除方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10968124B2 (en) * 2019-07-12 2021-04-06 Dalian University Of Technology Method for changing filler pollutant accumulation of constructed wetland
CN111635015A (zh) * 2020-06-08 2020-09-08 江西省林业科学院 基于发泡孔式微生物净化的湿地生态修复人工复合型浮岛
CN111704243A (zh) * 2020-07-17 2020-09-25 河南宜居环境建设有限公司 一种人工湿地微生物燃料电池耦合装置及污水处理方法
CN112777724A (zh) * 2020-12-18 2021-05-11 同济大学 一种人工湿地—微生物燃料电池耦合处理系统及应用方法
CN113716797A (zh) * 2021-08-23 2021-11-30 中国长江三峡集团有限公司 一种用于混排箱涵微污染水体的原位净化系统及方法
CN113716797B (zh) * 2021-08-23 2023-07-18 中国长江三峡集团有限公司 一种用于混排箱涵微污染水体的原位净化系统及方法
CN114634240A (zh) * 2022-03-28 2022-06-17 广州市怡地环保有限公司 一种污水处理系统及其污水分阶式净化的处理方法

Also Published As

Publication number Publication date
CH715708B9 (de) 2023-06-30
CN107720971A (zh) 2018-02-23
CH715708B1 (de) 2023-04-28

Similar Documents

Publication Publication Date Title
WO2019091178A1 (zh) 基于生物质循环的人工湿地及其污染物强化去除方法
CN105906159B (zh) 一种用于灌区污水强化处理的双耦合系统
CN107540094B (zh) 人工湿地污水处理系统
CN106865900B (zh) 一种沼液处理系统及方法
CN104803552A (zh) 一种黑臭河道净化方法及净化装置
CN107162199B (zh) 一种节能生态资源回收型生态修复集成系统及其应用
CN103819004A (zh) 一种可移动组合的潜流式人工湿地装置及方法
CN102276110A (zh) 一种修复微污染水体的方法及潜流人工湿地系统
CN104829034A (zh) 一种水体修复系统及修复方法
CN112174329A (zh) 微电解强化型生态浮床耦合光催化的地表水生态修复装置
CN110668575A (zh) 一种全自动高效脱氮除磷潮汐流人工湿地及其使用方法
CN110803771A (zh) 一种河湖岸带生态缓冲系统
CN108975625B (zh) 一种具有氮磷回收作用的人工湿地系统
CN104829067A (zh) 活性铁净化器与岸坡湿地系统耦合净化养殖塘排水系统
CN102515363A (zh) 一种可净化水质的水上人工湿地及制造方法
CN108083426A (zh) 一种用于初期雨水高效处理的快速渗滤系统
CN105523640A (zh) 表流湿地与稳定塘复合型人工湿地水质净化系统及方法
CN109879565A (zh) 用于黑臭水体污染底泥修复的化学-微生物-生态原位组合方法
CN211445232U (zh) 一种河湖岸带生态缓冲系统
CN210085206U (zh) 一种潜流式人工湿地与微生物燃料电池组合装置
CN204265529U (zh) 水环境生态修复系统
CN210419636U (zh) 一种污水人工湿地耦合生态滤池循环处理系统
Muduli et al. A review on constructed wetlands for environmental and emerging contaminants removal from wastewater: traditional and recent developments
CN209797690U (zh) 一种水体净化系统
CN111807451A (zh) 一种降低湖库清淤对周边水体污染的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10202000000553

Country of ref document: CH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875216

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18875216

Country of ref document: EP

Kind code of ref document: A1