CN113705886A - 一种基于动态mtbf的航材备件需求分析预测方法 - Google Patents

一种基于动态mtbf的航材备件需求分析预测方法 Download PDF

Info

Publication number
CN113705886A
CN113705886A CN202110989134.0A CN202110989134A CN113705886A CN 113705886 A CN113705886 A CN 113705886A CN 202110989134 A CN202110989134 A CN 202110989134A CN 113705886 A CN113705886 A CN 113705886A
Authority
CN
China
Prior art keywords
mtbf
prediction
value
spare parts
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110989134.0A
Other languages
English (en)
Other versions
CN113705886B (zh
Inventor
朱建文
谭怀
徐彤
唐典荣
杨志锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Aircraft Industrial Group Co Ltd
Original Assignee
Chengdu Aircraft Industrial Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Aircraft Industrial Group Co Ltd filed Critical Chengdu Aircraft Industrial Group Co Ltd
Priority to CN202110989134.0A priority Critical patent/CN113705886B/zh
Publication of CN113705886A publication Critical patent/CN113705886A/zh
Application granted granted Critical
Publication of CN113705886B publication Critical patent/CN113705886B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于动态MTBF的航材备件需求分析预测方法,首先采用泊松分布为基础数学模型,其次,以航材备件故障次数期望作为模型的重要参数,构建航材备件分析预测模型,在保障率的条件约束下,预测航材备件的需求数量,最后通过分析预测的结果调整航材备件成熟度,进而调整动态MTBF,最终实现调整故障次数期望,有效提升了模型预测结果的准确率。本发明与传统经验分析方式相比,大幅度提升航材备件储备预测的准确率和效率,具有较好的实用性。

Description

一种基于动态MTBF的航材备件需求分析预测方法
技术领域
本发明属于基于数据分析的服务保障方法的技术领域,具体涉及一种基于动态MTBF的航材备件需求分析预测方法。
背景技术
航材备件供应与储备是影响装备完好率和任务完成率的重要因素之一,航材备件需求分析预测技术是航材备件供应与储备的关键技术,传统航材备件年度需求通常依赖于经验分析获得,容易造成航材备件“用而不备,备而不用”的问题,具体表现为:
“用而不备”:当飞机发生故障时,现场没有储备用于更换的服务备件,需要临时申请订货或调拨获取备件,导致飞机停飞影响用户任务执行和飞机完好率。
“备而不用”:为保障用户飞行任务执行,需尽可能的准备保障备件,未核算备件保障成本,只考虑保障飞机的完好率,忽视航材备件保障的经济性,导致外场服务备件利用率较低,服务保障成本较高。
出现此问题的主要原因如下:
1、“用而不备”即现场未储备所需保障备件:
(1)现场储备备件状态与机上需求状态不匹配;
(2)现场排故备件需求紧急,临时筹措难度大;
(3)密品和危化品需求,因运输周期长,延长排故周期。
2、“备而不用”即现场储备过多保障备件:
(1)手工数据维护质量差,数据可用度低,而且工作量大;
(2)飞机故障发生随机性强,可预测性差;
(3)经验法备件储备随意性大,精准度低;
(4)部份备件价值高,筹备不准确造成严重资源浪费。
航材备件的消耗量与其平均无故障间隔时间(Mean Time Between Failure)密切相关,因此,为提高服务备件需求的准确率,本发明提出一种基于动态MTBF的航材备件需求分析预测方法。
发明内容
本发明的目的在于提供一种基于动态MTBF的航材备件需求分析预测方法,旨在解决上述问题。
本发明主要通过以下技术方案实现:
一种基于动态MTBF的航材备件需求分析预测方法,包括以下步骤:
步骤S100:确定预测范围:确定用于分析预测的航材备件范围,选择不同成熟度的航材备件,并选择可修航材备件作为分析预测对象;
步骤S200:计算航材备件的动态MTBF:MTBF为航材备件两次发生故障的时间间隔时间,考虑航材备件成熟度对MTBF的影响,根据航材备件成熟度,以及历史MTBF值和近期MTBF值,计算得到动态MTBF;
步骤S300:构建分析预测模型:采用泊松分布为基础数据模型,以故障件次数期望值作为模型输入参数,通过步骤S200中的动态MTBF计算得到航材备件在返修周期内故障件次数期望值,构建得到分析预测模型,在保障率的约束下,得到航材备件需求的分析预测数量;
步骤S400:分析预测:使用构建的分析预测模型进行分析预测,在保障率约束下,得到航材备件分析预测值,将分析预测值与实际值作对比,评估预测结果的准确率,并根据预测结果调整步骤S200中的航材备件成熟度。
为了更好地实现本发明,进一步地,所述步骤S200中,MTBF的计算公式如下:
Figure BDA0003231709200000021
其中:
ZFH:外场总飞行时间;
QPA:单机数量;
QTY:航材故障次数。
为了更好地实现本发明,进一步地,所述步骤S200中,考虑航材备件成熟度对MTBF的影响,动态调整MTBF值的调整公式为:
Figure BDA0003231709200000022
其中:
Figure BDA0003231709200000023
航材备件成熟度,
MTBFd:动态MTBF值,
MTBFh:历史MTBF值,
MTBFc:近期MTBF值,
Figure BDA0003231709200000024
选取区间为(0,1),
Figure BDA0003231709200000025
的选取值根据预测结果不断优化调整,
MTBFh根据成熟度周期选取近1年或半年之前的历史MTBF值,
MTBFc根据成熟度周期选取近1年或半年的MTBF值。
为了更好地实现本发明,进一步地,通过动态MTBF调整故障次数期望,提升分析预测模型的预测准确率。
为了更好地实现本发明,进一步地,所述步骤S300中,构建的分析预测模型如下:
当用m只航材进行现场保障时,保障率PL(m)为:
Figure BDA0003231709200000031
其中k为0-m的取值,
航材备件故障次数期望λ值确定,
在一个送修周期内,某一航材的故障件次数期望值λ,计算公式为:
Figure BDA0003231709200000032
其中,
FH:年飞行小时,
FS:机队规模,
QPA:单机数量,
MTBFd:动态MTBF,即为动态平均无故障间隔时间,
TAT:航材备件的送修周期。
为了更好地实现本发明,进一步地,所述航材备件的送修周期由产品送修审批时间、往返路途时间、返修周期组成。
本发明的有益效果:
本发明首先采用泊松分布为基础数学模型,其次,以航材备件故障次数期望作为模型的重要参数,构建航材备件分析预测模型,在保障率的条件约束下,预测航材备件的需求数量,最后通过分析预测的结果调整航材备件成熟度,进而调整动态MTBF,最终实现调整故障次数期望,有效提升了模型预测结果的准确率,与传统经验分析方式相比大幅度提升航材备件储备预测的准确率和效率。
附图说明
图1为本发明的流程图。
具体实施方式
实施例1:
一种基于动态MTBF的航材备件需求分析预测方法,如图1所示,包括以下步骤:
步骤S100:确定预测范围:确定用于分析预测的航材备件范围,选择不同成熟度的航材备件,并选择可修航材备件作为分析预测对象;
步骤S200:计算航材备件的动态MTBF:MTBF为航材备件两次发生故障的时间间隔时间,考虑航材备件成熟度对MTBF的影响,根据航材备件成熟度,以及历史MTBF值和近期MTBF值,计算得到动态MTBF;
步骤S300:构建分析预测模型:采用泊松分布为基础数据模型,以故障件次数期望值作为模型输入参数,通过步骤S200中的动态MTBF计算得到航材备件在返修周期内故障件次数期望值,构建得到分析预测模型,在保障率的约束下,得到航材备件需求的分析预测数量;
步骤S400:分析预测:使用构建的分析预测模型进行分析预测,在保障率约束下,得到航材备件分析预测值,将分析预测值与实际值作对比,评估预测结果的准确率,并根据预测结果调整步骤S200中的航材备件成熟度。
本发明首先采用泊松分布为基础数学模型,其次,以航材备件故障次数期望作为模型的重要参数,构建航材备件分析预测模型,在保障率的条件约束下,预测航材备件的需求数量,最后通过分析预测的结果调整航材备件成熟度,进而调整动态MTBF,最终实现调整故障次数期望,有效提升了模型预测结果的准确率,与传统经验分析方式相比大幅度提升航材备件储备预测的准确率和效率。
实施例2:
本实施例是在实施例1的基础上进行优化,所述步骤S200中,MTBF的计算公式如下:
Figure BDA0003231709200000041
其中:
ZFH:外场总飞行时间;
QPA:单机数量;
QTY:航材故障次数。
进一步地,考虑航材备件成熟度对MTBF的影响,动态调整MTBF值的调整公式为:
Figure BDA0003231709200000042
其中:
Figure BDA0003231709200000051
航材备件成熟度,
MTBFd:动态MTBF值,
MTBFh:历史MTBF值,
MTBFc:近期MTBF值,
Figure BDA0003231709200000052
选取区间为(0,1),
Figure BDA0003231709200000053
的选取值根据预测结果不断优化调整,
MTBFh根据成熟度周期选取近1年或半年之前的历史MTBF值,
MTBFc根据成熟度周期选取近1年或半年的MTBF值。
本实施例的其他部分与实施例1相同,故不再赘述。
实施例3:
本实施例是在实施例1或2的基础上进行优化,所述步骤S300中,构建的分析预测模型如下:
当用m只航材进行现场保障时,保障率PL(m)为:
Figure BDA0003231709200000054
航材备件故障次数期望λ值确定,
在一个送修周期内,某一航材的故障件次数期望值λ,计算公式为:
Figure BDA0003231709200000055
其中,
FH:年飞行小时,
FS:机队规模,
QPA:单机数量,
MTBFd:动态MTBF,即为动态平均无故障间隔时间,
TAT:航材备件的送修周期。
进一步地,所述航材备件的送修周期由产品送修审批时间、往返路途时间、返修周期组成。
本实施例的其他部分与实施例1或2相同,故不再赘述。
实施例4:
一种基于动态MTBF的航材备件需求分析预测方法,如图1所示,包括以下步骤:
步骤一、确定预测范围。确定用于分析预测的航材备件范围。
步骤二、计算航材备件的动态MTBF。
平均无故障间隔时间(MTBF)表示在航材备件两次发生故障的时间间隔时间,计算公式为:
Figure BDA0003231709200000061
ZFH:外场总飞行时间
QPA:单机数量
QTY:航材故障次数
考虑航材备件成熟度对MTBF的影响,需根据航材备件成熟度,即设计及使用的稳定性情况,动态调整MTBF值,调整公式为:
Figure BDA0003231709200000062
Figure BDA0003231709200000063
航材备件成熟度
MTBFd:动态MTBF值
MTBFh:历史MTBF值
MTBFc:近期MTBF值
备件成熟度
Figure BDA0003231709200000066
选取区间为(0,1),MTBFh根据成熟度周期选取近1年或半年之前的历史MTBF值,MTBFc根据成熟度周期选取近1年或半年的MTBF值,此
Figure BDA0003231709200000067
的选取值可根据预测结果不断优化调整。
步骤三、构建分析预测模型。
当用m只航材进行现场保障时,保障率PL(m)为:
Figure BDA0003231709200000064
航材备件故障次数期望值λ确定:
在一个送修周期(TAT)内,某一航材的故障件次数期望值λ,计算公式为:
Figure BDA0003231709200000065
其中,
FH:年飞行小时
FS:机队规模
QPA:单机数量
MTBFd:动态平均无故障间隔时间
TAT:故障件送修周期(天)
步骤四、分析预测。使用构建预测模型进行分析预测,将分析预测值与实际值作对比,评估预测结果的准确率。
本发明首先采用泊松分布为基础数学模型,其次,以航材备件故障次数期望作为模型的重要参数,构建航材备件分析预测模型,在保障率的条件约束下,预测航材备件的需求数量,最后通过分析预测的结果调整航材备件成熟度,进而调整动态MTBF,最终实现调整故障次数期望,有效提升了模型预测结果的准确率,与传统经验分析方式相比大幅度提升航材备件储备预测的准确率和效率。
实施例5:
本实施例是在实施例4的基础上进行优化,具体包括以下步骤:
步骤一、确定预测范围。为保证分析预测结果的准确性和效率,选择不同成熟度的航材备件,并选择可修航材备件作为分析预测对象。
步骤二、计算航材备件的动态MTBF。
计算步骤一中确定的航材备件的动态MTBF,根据航材备件成熟度和成熟度周期情况,确定
Figure BDA0003231709200000071
值并按照公式(1)计算MTBFh、MTBFc,最后根据公式(2)计算动态平均无故障间隔时间(MTBFd)。
步骤三、构建分析预测模型。
采用泊松概率分布模型为基础模型,以故障件次数期望值作为模型输入参数,为保障航材备件的高利用率,需确定航材备件在某个返修周期内故障件次数期望值,其中航材备件送修周期(TAT)由产品送修审批时间、往返路途时间、返修周期组成。航材备件故障件次数期望值(λ)由公式(4)计算得出,其中动态平均无故障间隔时间由步骤二得出,年飞行小时、机队规模、单机数量、航材备件送修周期由实际情况得出。
由此,得出分析预测模型,如公式(3)所示,即在保障率PL(m)约束下,航材备件需求的分析预测数量为m。在保障率PL(m)固定且其他参数已知的情况下求解得到分析预测数量m。
步骤四、预测分析。使用构建预测模型进行分析预测,在保障率PL(m)约束下,将航材备件分析预测值m与实际航材备件的使用数量m′进行对比分析,实际航材备件的使用数量m′等于实际故障总次数,因为每发生一次故障需要使用一个航材备件。然后,根据预测结果调整
Figure BDA0003231709200000081
值,
Figure BDA0003231709200000082
值选取范围越大,模型预测结果受到历史经验的影响越大,
Figure BDA0003231709200000083
值选取范围越小,模型预测结果受到当前结果的影响越大。根据不同的
Figure BDA0003231709200000084
计算MTBFd,通过MTBFd动态调整故障次数期望λ,提升模型分析预测的准确率。
本发明首先,采用泊松概率分布为基础数学模型,其次,以航材备件故障次数期望作为模型的重要参数,构建航材备件分析预测模型,在保障率的条件约束下,预测航材备件需求的数量,最后通过动态MTBF调整故障次数期望,提升模型预测结果的准确率,较传统经验分析大幅度提升航材备件需求的准确率和效率。
本实施例的其他部分与实施例4相同,故不再赘述。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。

Claims (6)

1.一种基于动态MTBF的航材备件需求分析预测方法,其特征在于,包括以下步骤:
步骤S100:确定预测范围:确定用于分析预测的航材备件范围,选择不同成熟度的航材备件,并选择可修航材备件作为分析预测对象;
步骤S200:计算航材备件的动态MTBF:MTBF为航材备件两次发生故障的时间间隔时间,考虑航材备件成熟度对MTBF的影响,根据航材备件成熟度,以及历史MTBF值和近期MTBF值,计算得到动态MTBF;
步骤S300:构建分析预测模型:采用泊松分布为基础数据模型,以故障件次数期望值作为模型输入参数,通过步骤S200中的动态MTBF计算得到航材备件在返修周期内故障件次数期望值,构建得到分析预测模型,在保障率的约束下,得到航材备件需求的分析预测数量;
步骤S400:分析预测:使用构建的分析预测模型进行分析预测,在保障率约束下,得到航材备件分析预测值,将分析预测值与实际值作对比,评估预测结果的准确率,并根据预测结果调整步骤S200中的航材备件成熟度。
2.根据权利要求1所述的一种基于动态MTBF的航材备件需求分析预测方法,其特征在于,所述步骤S200中,MTBF的计算公式如下:
Figure FDA0003231709190000011
其中:
ZFH:外场总飞行时间;
QPA:单机数量;
QTY:航材故障次数。
3.根据权利要求1或2所述的一种基于动态MTBF的航材备件需求分析预测方法,其特征在于,所述步骤S200中,考虑航材备件成熟度对MTBF的影响,动态调整MTBF值的调整公式为:
Figure FDA0003231709190000012
其中:
Figure FDA0003231709190000013
:航材备件成熟度,
MTBFd:动态MTBF值,
MTBFh:历史MTBF值,
MTBFc:近期MTBF值,
Figure FDA0003231709190000021
选取区间为(0,1),
Figure FDA0003231709190000022
的选取值根据预测结果不断优化调整,
MTBFh根据成熟度周期选取近1年或半年之前的历史MTBF值,
MTBFc根据成熟度周期选取近1年或半年的MTBF值。
4.根据权利要求3所述的一种基于动态MTBF的航材备件需求分析预测方法,其特征在于,所述步骤S400中,通过动态MTBF调整故障次数期望,提升分析预测模型的预测准确率。
5.根据权利要求1所述的一种基于动态MTBF的航材备件需求分析预测方法,其特征在于,所述步骤S300中,构建的分析预测模型如下:
当用m只航材进行现场保障时,保障率PL(m)为:
Figure FDA0003231709190000023
其中,k取值范围为[0,m],
航材备件故障次数期望λ值确定,
在一个送修周期内,某一航材的故障件次数期望值λ,计算公式为:
Figure FDA0003231709190000024
其中,
FH:年飞行小时,
FS:机队规模,
QPA:单机数量,
MTBFd:动态MTBF,即为动态平均无故障间隔时间,
TAT:航材备件的送修周期。
6.根据权利要求5所述的一种基于动态MTBF的航材备件需求分析预测方法,其特征在于,所述航材备件的送修周期由产品送修审批时间、往返路途时间、返修周期组成。
CN202110989134.0A 2021-08-26 2021-08-26 一种基于动态mtbf的航材备件需求分析预测方法 Active CN113705886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110989134.0A CN113705886B (zh) 2021-08-26 2021-08-26 一种基于动态mtbf的航材备件需求分析预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110989134.0A CN113705886B (zh) 2021-08-26 2021-08-26 一种基于动态mtbf的航材备件需求分析预测方法

Publications (2)

Publication Number Publication Date
CN113705886A true CN113705886A (zh) 2021-11-26
CN113705886B CN113705886B (zh) 2023-10-10

Family

ID=78655316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110989134.0A Active CN113705886B (zh) 2021-08-26 2021-08-26 一种基于动态mtbf的航材备件需求分析预测方法

Country Status (1)

Country Link
CN (1) CN113705886B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114462513A (zh) * 2022-01-18 2022-05-10 山东航空股份有限公司 基于飞机故障发生数据的飞机故障预警方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100042455A1 (en) * 2008-08-12 2010-02-18 Gm Global Technology Operations, Inc. Model-based real-time cost allocation and cost flow
US20100286555A1 (en) * 2006-03-15 2010-11-11 Crosby Alfred J Methods and apparatus for modulus measurement
CN106920028A (zh) * 2017-01-18 2017-07-04 四川航空股份有限公司 飞机航材保障模式经济可行性评价模型
CN106934486A (zh) * 2017-01-18 2017-07-07 四川航空股份有限公司 飞机航材周转件备件需求预测模型
CN109754118A (zh) * 2018-12-26 2019-05-14 复旦大学 一种系统自适应的预测方法
CN111284679A (zh) * 2020-02-18 2020-06-16 吉林大学 一种基于记忆合金负泊松比单元体的无人机变形翼结构
CN112150071A (zh) * 2020-09-27 2020-12-29 中国人民解放军海军航空大学青岛校区 基于重要度和库存限额的航空装备维修器材订货决策方法
CN112528510A (zh) * 2020-12-17 2021-03-19 中国航空工业集团公司成都飞机设计研究所 一种基于生灭过程模型的可修航材备件预测方法
CN113077098A (zh) * 2021-04-15 2021-07-06 中国人民解放军海军航空大学青岛校区 大规模作战航材需求预测和储备决策方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100286555A1 (en) * 2006-03-15 2010-11-11 Crosby Alfred J Methods and apparatus for modulus measurement
US20100042455A1 (en) * 2008-08-12 2010-02-18 Gm Global Technology Operations, Inc. Model-based real-time cost allocation and cost flow
CN106920028A (zh) * 2017-01-18 2017-07-04 四川航空股份有限公司 飞机航材保障模式经济可行性评价模型
CN106934486A (zh) * 2017-01-18 2017-07-07 四川航空股份有限公司 飞机航材周转件备件需求预测模型
CN109754118A (zh) * 2018-12-26 2019-05-14 复旦大学 一种系统自适应的预测方法
CN111284679A (zh) * 2020-02-18 2020-06-16 吉林大学 一种基于记忆合金负泊松比单元体的无人机变形翼结构
CN112150071A (zh) * 2020-09-27 2020-12-29 中国人民解放军海军航空大学青岛校区 基于重要度和库存限额的航空装备维修器材订货决策方法
CN112528510A (zh) * 2020-12-17 2021-03-19 中国航空工业集团公司成都飞机设计研究所 一种基于生灭过程模型的可修航材备件预测方法
CN113077098A (zh) * 2021-04-15 2021-07-06 中国人民解放军海军航空大学青岛校区 大规模作战航材需求预测和储备决策方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONGSHENG PAN: ""Analysis of MTBF evaluation methods for small sample sizes"", 《11TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY AND SAFETY (ICRMS)》, pages 43 - 45 *
杨冰冰: ""B777飞机大修航材库存需求预测研究"", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》, pages 20 *
范尔宁: ""泊松分布在航材库存管理中的应用"", 《民航管理》, pages 27 - 39 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114462513A (zh) * 2022-01-18 2022-05-10 山东航空股份有限公司 基于飞机故障发生数据的飞机故障预警方法及系统

Also Published As

Publication number Publication date
CN113705886B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
Westerweel et al. Traditional or additive manufacturing? Assessing component design options through lifecycle cost analysis
Rødseth et al. Deep digital maintenance
Georgiadis et al. Real-time production planning and control system for job-shop manufacturing: A system dynamics analysis
CN101408769B (zh) 一种基于乘积arima模型的在线能源预测系统及方法
CN112150071B (zh) 基于重要度和库存限额的航空装备维修器材订货决策方法
Lowas III et al. Reliability and operations: Keys to lumpy aircraft spare parts demands
Liu et al. Stochastic airline fleet assignment with risk aversion
van der Weide et al. Robust long-term aircraft heavy maintenance check scheduling optimization under uncertainty
Delgado et al. A multistage stochastic programming model for the network air cargo allocation under capacity uncertainty
Zhou et al. Matching and selection of distributed 3D printing services in cloud manufacturing
CN113705886A (zh) 一种基于动态mtbf的航材备件需求分析预测方法
Rodrigues et al. Spare parts inventory control for non-repairable items based on prognostics and health monitoring information
Tusar et al. Developing the optimal vessel fleet size and mix model to minimize the transportation cost of offshore wind farms
Firat et al. Optimizing the workload of production units of a make-to-order manufacturing system
Nolte et al. Quantitative assessment of technology impact on aviation fuel efficiency
Zeng et al. Robust optimization model for resource allocation of container shipping lines
Ravindran Operations research applications
Sokolov et al. Combined models and algorithms on modern proactive intellectual scheduling under Industry 4.0 environment
Boev et al. Adaptive management of system parameters of maintenance, as well as repair and optimization of spare parts, tools and accessories of the integrated radar system on the basis of reliability model and control data
Truong et al. Modelling and application of joint maintenance grouping and workload smoothing for an automotive plant
Pang et al. Study on simulation modeling and evaluation of equipment maintenance
Omoleye et al. Impact of resources and monitoring effectiveness on prognostics enabled condition based maintenance policy
CHIOMA OPTIMIZATION OF AIRCRAFT MAINTENANCE PROCESSES FOR CONTINUING AIRWORTHINESS IN NIGERIA
Davis et al. An Analytics Framework for Structuring 3D Printing Deployment Decisions
Sutthibutr et al. A five-phase combinatorial approach for solving a fuzzy linear programming supply chain production planning problem

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant