CN113705776A - 一种基于asic实现激活函数的方法、系统、设备和存储介质 - Google Patents
一种基于asic实现激活函数的方法、系统、设备和存储介质 Download PDFInfo
- Publication number
- CN113705776A CN113705776A CN202110903047.9A CN202110903047A CN113705776A CN 113705776 A CN113705776 A CN 113705776A CN 202110903047 A CN202110903047 A CN 202110903047A CN 113705776 A CN113705776 A CN 113705776A
- Authority
- CN
- China
- Prior art keywords
- fitting
- activation function
- curve
- gradient
- curves
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004913 activation Effects 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 title claims abstract description 57
- 230000006870 function Effects 0.000 claims description 151
- 238000004590 computer program Methods 0.000 claims description 7
- 230000008901 benefit Effects 0.000 abstract description 9
- 230000003213 activating effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 17
- 238000013528 artificial neural network Methods 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 6
- 238000013473 artificial intelligence Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007477 logistic regression Methods 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Power Sources (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110903047.9A CN113705776B (zh) | 2021-08-06 | 2021-08-06 | 一种基于asic实现激活函数的方法、系统、设备和存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110903047.9A CN113705776B (zh) | 2021-08-06 | 2021-08-06 | 一种基于asic实现激活函数的方法、系统、设备和存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113705776A true CN113705776A (zh) | 2021-11-26 |
CN113705776B CN113705776B (zh) | 2023-08-08 |
Family
ID=78651864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110903047.9A Active CN113705776B (zh) | 2021-08-06 | 2021-08-06 | 一种基于asic实现激活函数的方法、系统、设备和存储介质 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113705776B (zh) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180373977A1 (en) * | 2015-12-21 | 2018-12-27 | Commissariat a l'énergie atomique et aux énergies alternatives | Optimized neuron circuit, and architecture and method for executing neural networks |
US20190114531A1 (en) * | 2017-10-13 | 2019-04-18 | Cambia Health Solutions, Inc. | Differential equations network |
US20190147323A1 (en) * | 2017-11-03 | 2019-05-16 | Imagination Technologies Limited | Activation Functions for Deep Neural Networks |
WO2019232965A1 (zh) * | 2018-06-07 | 2019-12-12 | 清华大学 | 一种模拟神经网络处理器的误差校准方法及装置 |
CN110837885A (zh) * | 2019-10-11 | 2020-02-25 | 西安电子科技大学 | 一种基于概率分布的Sigmoid函数拟合方法 |
CN111507465A (zh) * | 2020-06-16 | 2020-08-07 | 电子科技大学 | 一种可配置的卷积神经网络处理器电路 |
CN111625457A (zh) * | 2020-05-27 | 2020-09-04 | 多伦科技股份有限公司 | 基于改进的dqn算法的虚拟自动驾驶测试优化方法 |
CN111667063A (zh) * | 2020-06-30 | 2020-09-15 | 腾讯科技(深圳)有限公司 | 基于fpga的数据处理方法及装置 |
US20210064341A1 (en) * | 2019-08-30 | 2021-03-04 | Neuchips Corporation | Curve function device and operation method thereof |
CN112465106A (zh) * | 2020-10-18 | 2021-03-09 | 苏州浪潮智能科技有限公司 | 一种提高深度学习模型精度的方法、系统、设备及介质 |
CN112734023A (zh) * | 2021-02-02 | 2021-04-30 | 中国科学院半导体研究所 | 应用于循环神经网络的激活函数的可重构电路 |
-
2021
- 2021-08-06 CN CN202110903047.9A patent/CN113705776B/zh active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180373977A1 (en) * | 2015-12-21 | 2018-12-27 | Commissariat a l'énergie atomique et aux énergies alternatives | Optimized neuron circuit, and architecture and method for executing neural networks |
US20190114531A1 (en) * | 2017-10-13 | 2019-04-18 | Cambia Health Solutions, Inc. | Differential equations network |
US20190147323A1 (en) * | 2017-11-03 | 2019-05-16 | Imagination Technologies Limited | Activation Functions for Deep Neural Networks |
CN110009092A (zh) * | 2017-11-03 | 2019-07-12 | 畅想科技有限公司 | 用于深度神经网络的激活函数 |
WO2019232965A1 (zh) * | 2018-06-07 | 2019-12-12 | 清华大学 | 一种模拟神经网络处理器的误差校准方法及装置 |
US20210064341A1 (en) * | 2019-08-30 | 2021-03-04 | Neuchips Corporation | Curve function device and operation method thereof |
CN110837885A (zh) * | 2019-10-11 | 2020-02-25 | 西安电子科技大学 | 一种基于概率分布的Sigmoid函数拟合方法 |
CN111625457A (zh) * | 2020-05-27 | 2020-09-04 | 多伦科技股份有限公司 | 基于改进的dqn算法的虚拟自动驾驶测试优化方法 |
CN111507465A (zh) * | 2020-06-16 | 2020-08-07 | 电子科技大学 | 一种可配置的卷积神经网络处理器电路 |
CN111667063A (zh) * | 2020-06-30 | 2020-09-15 | 腾讯科技(深圳)有限公司 | 基于fpga的数据处理方法及装置 |
CN112465106A (zh) * | 2020-10-18 | 2021-03-09 | 苏州浪潮智能科技有限公司 | 一种提高深度学习模型精度的方法、系统、设备及介质 |
CN112734023A (zh) * | 2021-02-02 | 2021-04-30 | 中国科学院半导体研究所 | 应用于循环神经网络的激活函数的可重构电路 |
Non-Patent Citations (1)
Title |
---|
郜天柱;: "激活函数LeafSpring的构建及多数据集对比研究", 信息与控制, no. 03 * |
Also Published As
Publication number | Publication date |
---|---|
CN113705776B (zh) | 2023-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111414987B (zh) | 神经网络的训练方法、训练装置和电子设备 | |
TWI701612B (zh) | 用於神經網路中激勵函數的電路系統及其處理方法 | |
CN113273082A (zh) | 具有异常块浮点的神经网络激活压缩 | |
CN113348474A (zh) | 具有非均匀尾数的神经网络激活压缩 | |
US20230196202A1 (en) | System and method for automatic building of learning machines using learning machines | |
KR102655950B1 (ko) | 뉴럴 네트워크의 고속 처리 방법 및 그 방법을 이용한 장치 | |
CN111401550A (zh) | 神经网络模型量化方法、装置及电子设备 | |
CN109214502B (zh) | 神经网络权重离散化方法和系统 | |
CN108363559B (zh) | 神经网络的乘法处理方法、设备和计算机可读介质 | |
CN115577790B (zh) | 哈密顿量模拟方法、装置、设备及存储介质 | |
CN113592078A (zh) | 一种基于人工智能的深度学习网络训练方法 | |
CN112561050B (zh) | 一种神经网络模型训练方法及装置 | |
KR20240032039A (ko) | 이중 지수 바운딩 박스 부동 소수점 프로세서 | |
CN110337636A (zh) | 数据转换方法和装置 | |
CN110503182A (zh) | 深度神经网络中的网络层运算方法及装置 | |
Huai et al. | Latency-constrained DNN architecture learning for edge systems using zerorized batch normalization | |
US20200242445A1 (en) | Generic quantization of artificial neural networks | |
CN113822386B (zh) | 一种图像识别方法、装置、设备及介质 | |
CN113705776A (zh) | 一种基于asic实现激活函数的方法、系统、设备和存储介质 | |
US11068784B2 (en) | Generic quantization of artificial neural networks | |
CN115759209B (zh) | 神经网络模型的量化方法、装置、电子设备及介质 | |
Yang | Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems | |
CN116484959A (zh) | 量子电路处理方法、装置、设备以及存储介质 | |
CN111431540B (zh) | 一种基于神经网络模型的fpga配置文件算术压缩与解压方法 | |
CN115409159A (zh) | 对象操作方法、装置、计算机设备以及计算机存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240705 Address after: 2324, Building 1, Aosheng Building, No. 1166 Xinluo Street, High tech Zone, Jinan City, Shandong Province, 250000 Patentee after: Inspur Computer Technology Co.,Ltd. Country or region after: China Address before: 250000 floor 35, S01 building, Inspur Science Park, 1036 Inspur Road, Jinan area, China (Shandong) pilot Free Trade Zone, Jinan, Shandong Province Patentee before: Shandong Yunhai guochuang cloud computing equipment industry innovation center Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |
Effective date of registration: 20240923 Address after: Room 702, 7th Floor, Building 1, No. 15 Lingxiao Road, Haidian District, Beijing 100080 Patentee after: Beijing Senxinwei Computer Technology Co.,Ltd. Country or region after: China Address before: 2324, Building 1, Aosheng Building, No. 1166 Xinluo Street, High tech Zone, Jinan City, Shandong Province, 250000 Patentee before: Inspur Computer Technology Co.,Ltd. Country or region before: China |