CN113702816A - Boundary scanning-based register unit design method - Google Patents

Boundary scanning-based register unit design method Download PDF

Info

Publication number
CN113702816A
CN113702816A CN202110991352.8A CN202110991352A CN113702816A CN 113702816 A CN113702816 A CN 113702816A CN 202110991352 A CN202110991352 A CN 202110991352A CN 113702816 A CN113702816 A CN 113702816A
Authority
CN
China
Prior art keywords
data
pad
capture
output
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110991352.8A
Other languages
Chinese (zh)
Other versions
CN113702816B (en
Inventor
孙诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 58 Research Institute
Original Assignee
CETC 58 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 58 Research Institute filed Critical CETC 58 Research Institute
Priority to CN202110991352.8A priority Critical patent/CN113702816B/en
Publication of CN113702816A publication Critical patent/CN113702816A/en
Application granted granted Critical
Publication of CN113702816B publication Critical patent/CN113702816B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • G01R31/318583Design for test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • G01R31/318597JTAG or boundary scan test of memory devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

The invention relates to the technical field of integrated circuits, in particular to a boundary scanning-based register unit design method.A capture _ en signal and an update _ en signal are added on the basis of a traditional boundary scanning register unit structure to serve as enabling ends of a capture trigger and an update trigger, and in the process of gradually optimizing a circuit from a complex circuit structure, a gate circuit with optimal performance is combined as far as possible according to performance parameters of the gate circuit to form an optimized bc _2 unit; in addition, in the optimization process aiming at the bc _7 unit, a method of independent function data flow analysis is adopted, functions to be realized by a single circuit are separated one by one, a data flow path of each function is analyzed, and various independent data flows are finally combined, so that redundant signals or circuit structures in the original circuit structure are abandoned.

Description

Boundary scanning-based register unit design method
Technical Field
The invention relates to the technical field of integrated circuits, in particular to a register unit design method based on boundary scanning.
Background
Boundary scan, as an IEEE (1149.1) or jtag (joint Test Action group) standard, aims to realize controllability and observability of chip input and output pins, and further Test internal logic and interconnection of chips.
The basic boundary scan chain structure comprises a universal data port and a test data port, wherein the universal data port is used for interaction between an external Pin (PAD) and internal logic; the test data port is used for serial in of initial test data and serial out of test feedback data.
The boundary scan register is considered as the most important register in all registers in the IEEE 1149.1 standard and is placed at the boundary of the tested core logic circuit. Register cells enter between external Pins (PAD) and the core logic ports, which can improve the controllability and observability of core logic inputs and outputs. FIG. 1 shows a conventional boundary scan register unit structure, in which DataIn and DataOut are general data ports, and ScanIn and ScanOut are test data ports.
Disclosure of Invention
Aiming at the defects in the prior art, the invention provides a boundary scan-based register unit design method, and the technical problem to be solved is how to optimize a BC unit on the basis of a traditional boundary scan register unit according to the design change of signals and the number of gate circuits.
In order to solve the technical problems, the technical scheme provided by the invention is as follows: a register unit design method based on boundary scanning is characterized in that capture _ en and update _ en signals are added on the basis of the traditional boundary scanning register unit structure to serve as enabling ends of a capture trigger and an update trigger;
after the simulation mode is started, test data are serially shifted into a scan chain through bc _2 units of each stage in sequence under the control of a shift _ dr signal and a capture _ en signal, and captured test data are output from a data output port under the enabling of an update _ en signal and a mode signal. When the data output port is respectively connected with the OEN and the I end of the PAD, the output function simulation can be completed under the condition that the OEN value is 0;
under the condition that the value of the OEN end is 1, the PAD port is assigned, the value of the C port of the PAD is located at the D input end of the capture register, and then under the control of a capture _ en signal and a shift _ dr signal, data in a capture state are serially shifted out of a scan chain through ScanIn and ScanOut ports of each stage of bc _2 units, so that the data at the output end of the PAD are observed, and the input function simulation can be completed.
And analyzing the data flow direction of the input and output simulation process in the test mode by utilizing the bidirectional test function of the bc _2 unit on the PAD, and fusing the bc _7 unit and the input and output simulation process to form the bc _7 unit. After the test data is shifted, the updated output data in the bc _2 unit is used for controlling the OEN port value of the corresponding PAD, so that the simulation of the input or output function of the PAD is determined, and the bc _7 unit at the later stage simultaneously realizes the bidirectional access of the PAD port data and the internal logic data, so that the corresponding simulation is performed according to the OEN value.
The beneficial effect that this technical scheme brought is: in the technical scheme, in the process from a complex circuit structure to an optimized circuit, the gate circuits with optimal performance are combined as far as possible according to the performance parameters of the gate circuits; in addition, in the optimization process aiming at the bc _7 unit, a method of independent function data flow analysis is adopted, functions to be realized by a single circuit are separated one by one, a data flow path of each function is analyzed, and various independent data flows are finally combined, so that redundant signals or circuit structures in the original circuit structure are abandoned.
Drawings
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention and not to limit the invention. In the drawings:
FIG. 1 is a diagram of a conventional boundary scan register cell;
FIG. 2 is a diagram of the construction of the units of the Synopsys DW series DW _ bc _ 2;
FIG. 3 is a block diagram of a bc _2 cell with an active low enable signal D flip-flop;
FIG. 4 is a block diagram of a bc _2 cell with a 4-input multiplexer;
FIG. 5 is a diagram of the optimized bc _2 unit structure in the present invention;
FIG. 6 is a diagram of the construction of the units of the Synopsys DW series DW _ bc _ 7;
FIG. 7 is a simplified bc _7 unit structure diagram;
FIG. 8 is a flow chart of output function simulation data in the present invention;
FIG. 9 is a flow diagram of input function simulation data in the present invention;
FIG. 10 is a diagram of the optimized bc _7 unit structure in the present invention;
FIG. 11 is a circuit diagram of a boundary scan chain based on a single bc _2 cell;
FIG. 12 is a circuit diagram of a boundary scan chain based on the merging of bc _2 and bc _7 cells;
FIG. 13 is a circuit diagram of a boundary scan chain optimized in the present invention.
Detailed description of the preferred embodimentsthe following description of the preferred embodiments of the present invention, taken in conjunction with the accompanying drawings, is intended to illustrate and explain the present invention and not to limit the same.
As shown in FIG. 2, two multiplexers are added to a Synopsys DW series BC unit DW _ BC _2, and capture _ en and update _ en signals are used as respective selection ends and respectively used as D-end inputs of a capture flip-flop and an update flip-flop.
On the basis, a multiplexer under the control of capture _ en and a capture flip-flop under the control of capture _ clk are combined to form a D flip-flop with an active low-level enable signal, and two-input multiplexers under the control of capture _ en and shift _ dr can also be combined into a four-input multiplexer. The above deformation process is shown in fig. 3 and fig. 4, respectively, and these two unit structures are two boundary scan bc _2 unit structures appearing in the current DW series.
Therefore, the multiplexers and the flip-flops can be combined to the maximum extent based on the original DW _ bc _2 unit, namely, the multiplexers under the control of capture _ en and update _ en are respectively combined with the flip-flops under the control of capture _ clk and update _ clk, and the optimized circuit is as shown in FIG. 5.
To enable bi-directional interaction between external Pins (PAD) and internal logic, another Synopsys DW series BC element DW _ BC _7 is introduced here, as shown in FIG. 6.
For the purpose of simplifying the data path, the multiplexer under the control of mode2 can be omitted, and the cell structure is the boundary scan bc _7 cell appearing in the current DW series, as shown in fig. 7.
In the simulation mode, the flow of simulation data of the output function and the input function is as shown in fig. 8 and 9, and the intermediate redundant logic is omitted in the external pin and the internal logic data interaction path; the simulation mode realizes the control and observation of bidirectional data flow in the same boundary scan register unit according to the data path in the graph, and the optimized bc _7 unit circuit is shown in fig. 10.
The two boundary scan chain circuit structure designs used in the present stage are based on a single bc _2 unit and the combination of bc _2 and bc _7 units, respectively. The former circuit configuration is shown in fig. 11. After the simulation mode is started, test data are serially shifted into a scan chain through bc _2 units of each stage in sequence under the control of a shift _ dr signal and a capture _ en signal, and captured test data are output from a data output port under the enabling of an update _ en signal and a mode signal. When the data output port is respectively connected with the OEN and the I end of the PAD, the output function simulation can be completed under the condition that the OEN value is 0; under the condition that the value of the OEN end is 1, the PAD port is assigned, the value of the C port of the PAD is located at the D input end of the capture register, and then under the control of a capture _ en signal and a shift _ dr signal, data in a capture state are serially shifted out of a scan chain through ScanIn and ScanOut ports of each stage of bc _2 units, so that the data at the output end of the PAD are observed, and the input function simulation can be completed.
In another circuit structure of the scan chain as shown in fig. 12, after the test data is shifted, the updated output data in the bc _2 unit controls the value of the OEN port corresponding to the PAD, thereby determining the simulation of the input or output function of the PAD. And the bc _7 unit of the later stage can simultaneously realize bidirectional access of the PAD port data and the internal logic data.
According to the BC unit optimization analysis before, the multiplexer selection signal of the BC _7 unit controlled by the OEN port of the PAD can be ignored, so that the boundary scan chain circuit after the final optimization is shown in FIG. 13 by combining the optimized BC _2 and BC _7 units.
In the technical scheme, in the process from a complex circuit structure to an optimized circuit, the gate circuits with optimal performance are combined as far as possible according to the performance parameters of the gate circuits; in addition, in the optimization process aiming at the bc _7 unit, a method of independent function data flow analysis is adopted, functions to be realized by a single circuit are separated one by one, a data flow path of each function is analyzed, and various independent data flows are finally combined, so that redundant signals or circuit structures in the original circuit structure are abandoned.
Finally, it should be noted that: although the present invention has been described in detail with reference to the foregoing embodiments, it will be apparent to those skilled in the art that changes may be made in the embodiments and/or equivalents thereof without departing from the spirit and scope of the invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (2)

1. A register unit design method based on boundary scan is characterized in that on the basis of a traditional boundary scan register unit structure, capture _ en and update _ en signals are added to serve as enabling ends of a capture trigger and an update trigger;
after the simulation mode is started, test data are serially shifted into a scan chain through bc _2 units of each stage under the control of a shift _ dr signal and a capture _ en signal, and the captured test data are output from a data output port under the enabling of an update _ en signal and a mode signal; when the data output port is respectively connected with the OEN and the I end of the PAD, the output function simulation can be completed under the condition that the OEN value is 0;
under the condition that the value of the OEN end is 1, the PAD port is assigned, the value of the C port of the PAD is located at the D input end of the capture register, and then under the control of a capture _ en signal and a shift _ dr signal, data in a capture state are serially shifted out of a scan chain through ScanIn and ScanOut ports of each stage of bc _2 units, so that the data at the output end of the PAD are observed, and the input function simulation can be completed.
2. The method for designing the register unit based on the boundary scan as recited in claim 1, wherein the bi-directional test function of the bc _2 unit on the PAD is utilized to analyze the data flow direction of the input and output simulation processes in the test mode, and then the data flow direction and the input and output simulation processes are fused to form a bc _7 unit;
after the test data is shifted, the updated output data in the bc _2 unit is used for controlling the OEN port value of the corresponding PAD, so that the simulation of the input or output function of the PAD is determined, and the bc _7 unit at the later stage simultaneously realizes the bidirectional access of the PAD port data and the internal logic data, so that the corresponding simulation is performed according to the OEN value.
CN202110991352.8A 2021-08-26 2021-08-26 Register unit design method based on boundary scanning Active CN113702816B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110991352.8A CN113702816B (en) 2021-08-26 2021-08-26 Register unit design method based on boundary scanning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110991352.8A CN113702816B (en) 2021-08-26 2021-08-26 Register unit design method based on boundary scanning

Publications (2)

Publication Number Publication Date
CN113702816A true CN113702816A (en) 2021-11-26
CN113702816B CN113702816B (en) 2024-05-10

Family

ID=78655553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110991352.8A Active CN113702816B (en) 2021-08-26 2021-08-26 Register unit design method based on boundary scanning

Country Status (1)

Country Link
CN (1) CN113702816B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117272893A (en) * 2023-11-21 2023-12-22 芯来智融半导体科技(上海)有限公司 Chip signal receiving circuit and method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141790A (en) * 1997-10-30 2000-10-31 Synopsys, Inc. Instructions signature and primary input and primary output extraction within an IEEE 1149.1 compliance checker
KR20030030519A (en) * 2001-10-11 2003-04-18 엘지전자 주식회사 Register scan cell for debugging processor
US6658632B1 (en) * 2000-06-15 2003-12-02 Sun Microsystems, Inc. Boundary scan cell architecture with complete set of operational modes for high performance integrated circuits
US20040098648A1 (en) * 2002-11-14 2004-05-20 Sunter Stephen K. Boundary scan with strobed pad driver enable
CN1501090A (en) * 2002-09-05 2004-06-02 �����ɷ� Scanning device of boundary
KR100669073B1 (en) * 2005-11-14 2007-01-16 (주)알파칩스 Boundary scan method considering package option
CN102419415A (en) * 2011-08-31 2012-04-18 北京时代民芯科技有限公司 TAP (Test Access Port) interface optimization circuit based on boundary scanning circuit
US20140208178A1 (en) * 2010-02-15 2014-07-24 Mentor Graphics Corporation Circuit and Method for Measuring Delays between Edges of Signals of a Circuit
CN110007217A (en) * 2019-05-22 2019-07-12 哈尔滨工业大学(威海) A kind of low-power consumption boundary scanning test method
CN110020558A (en) * 2019-04-09 2019-07-16 长沙理工大学 A kind of safe crypto chip Testability Design structure under boundary scan design environment
CN111722096A (en) * 2020-07-01 2020-09-29 无锡中微亿芯有限公司 Silicon connection layer with built-in test circuit and general structure
CN112526328A (en) * 2020-10-28 2021-03-19 深圳市紫光同创电子有限公司 Boundary scan test method
CN112526327A (en) * 2020-10-28 2021-03-19 深圳市紫光同创电子有限公司 Boundary scan test method and storage medium
CN112763898A (en) * 2020-12-22 2021-05-07 中国电子科技集团公司第五十八研究所 System-level boundary scan chain integrated design method based on BSC unit characteristics

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141790A (en) * 1997-10-30 2000-10-31 Synopsys, Inc. Instructions signature and primary input and primary output extraction within an IEEE 1149.1 compliance checker
US6658632B1 (en) * 2000-06-15 2003-12-02 Sun Microsystems, Inc. Boundary scan cell architecture with complete set of operational modes for high performance integrated circuits
KR20030030519A (en) * 2001-10-11 2003-04-18 엘지전자 주식회사 Register scan cell for debugging processor
CN1501090A (en) * 2002-09-05 2004-06-02 �����ɷ� Scanning device of boundary
US20040098648A1 (en) * 2002-11-14 2004-05-20 Sunter Stephen K. Boundary scan with strobed pad driver enable
KR100669073B1 (en) * 2005-11-14 2007-01-16 (주)알파칩스 Boundary scan method considering package option
US20140208178A1 (en) * 2010-02-15 2014-07-24 Mentor Graphics Corporation Circuit and Method for Measuring Delays between Edges of Signals of a Circuit
CN102419415A (en) * 2011-08-31 2012-04-18 北京时代民芯科技有限公司 TAP (Test Access Port) interface optimization circuit based on boundary scanning circuit
CN110020558A (en) * 2019-04-09 2019-07-16 长沙理工大学 A kind of safe crypto chip Testability Design structure under boundary scan design environment
CN110007217A (en) * 2019-05-22 2019-07-12 哈尔滨工业大学(威海) A kind of low-power consumption boundary scanning test method
CN111722096A (en) * 2020-07-01 2020-09-29 无锡中微亿芯有限公司 Silicon connection layer with built-in test circuit and general structure
CN112526328A (en) * 2020-10-28 2021-03-19 深圳市紫光同创电子有限公司 Boundary scan test method
CN112526327A (en) * 2020-10-28 2021-03-19 深圳市紫光同创电子有限公司 Boundary scan test method and storage medium
CN112763898A (en) * 2020-12-22 2021-05-07 中国电子科技集团公司第五十八研究所 System-level boundary scan chain integrated design method based on BSC unit characteristics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙诚,邵健: ""边界扫描寄存器电路的性能分析和优化设计"", 《电子与封装》, vol. 22, no. 3, 15 March 2022 (2022-03-15), pages 030302 - 1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117272893A (en) * 2023-11-21 2023-12-22 芯来智融半导体科技(上海)有限公司 Chip signal receiving circuit and method
CN117272893B (en) * 2023-11-21 2024-03-15 芯来智融半导体科技(上海)有限公司 Chip signal receiving circuit and method

Also Published As

Publication number Publication date
CN113702816B (en) 2024-05-10

Similar Documents

Publication Publication Date Title
US5592493A (en) Serial scan chain architecture for a data processing system and method of operation
KR0156547B1 (en) Integrated test cell
JP3691170B2 (en) Test circuit
US20080005634A1 (en) Scan chain circuitry that enables scan testing at functional clock speed
EP0822497B1 (en) Boundary scan cell
US7082560B2 (en) Scan capable dual edge-triggered state element for application of combinational and sequential scan test patterns
JP3996055B2 (en) Test access port (TAP) controller system and method for debugging internal intermediate scan test failures
US7779322B1 (en) Compacting test responses using X-driven compactor
CN116594692B (en) Quick register configuration method based on standard state machine function extension
CN113702816B (en) Register unit design method based on boundary scanning
US20080195991A1 (en) Methods for forming area-efficient scan chains in integrated circuits, and integrated circuits embodying the same
US7284174B2 (en) Enhanced JTAG interface
US7219281B2 (en) Boundary scan of integrated circuits
US10288682B2 (en) Integrated electronic device having a test architecture, and test method thereof
US7761760B2 (en) Integrated circuit and a method for designing a boundary scan super-cell
JP4549701B2 (en) Semiconductor circuit device and scan test method for semiconductor circuit
JPH05180911A (en) Circuit for jtag architecture
JP2006058273A (en) Semiconductor integrated circuit
US6381720B1 (en) Test circuit and method for system logic
US20170329884A1 (en) Scan Logic For Circuit Designs With Latches And Flip-Flops
US7437635B1 (en) Testing hard-wired IP interface signals using a soft scan chain
KR100571633B1 (en) System-on-chip having shift register chain for test embedded core
JP4416469B2 (en) Semiconductor integrated circuit and design method thereof
Guo et al. A novel configurable boundary-scan circuit design of SRAM-based FPGA
US20220187370A1 (en) Circuits And Methods For Configurable Scan Chains

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant