CN113699383B - 一种基于热浮力净化铝合金熔体的方法 - Google Patents

一种基于热浮力净化铝合金熔体的方法 Download PDF

Info

Publication number
CN113699383B
CN113699383B CN202111058383.4A CN202111058383A CN113699383B CN 113699383 B CN113699383 B CN 113699383B CN 202111058383 A CN202111058383 A CN 202111058383A CN 113699383 B CN113699383 B CN 113699383B
Authority
CN
China
Prior art keywords
melt
row
crucible
aluminum alloy
resistance wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111058383.4A
Other languages
English (en)
Other versions
CN113699383A (zh
Inventor
向林
陶健全
李明
陈强
彭菲菲
邢志辉
黄志伟
赵高瞻
孙际鹏
刘鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
No 59 Research Institute of China Ordnance Industry
Original Assignee
No 59 Research Institute of China Ordnance Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by No 59 Research Institute of China Ordnance Industry filed Critical No 59 Research Institute of China Ordnance Industry
Priority to CN202111058383.4A priority Critical patent/CN113699383B/zh
Publication of CN113699383A publication Critical patent/CN113699383A/zh
Application granted granted Critical
Publication of CN113699383B publication Critical patent/CN113699383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/066Treatment of circulating aluminium, e.g. by filtration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供了一种基于热浮力净化铝合金熔体的方法,包括用于熔化铝合金的坩埚,坩埚设置在炉体上,其特征在于:铝合金熔体净化过程中,始终控制坩埚内的熔体按区域产生梯度温度,且熔体的最低温度不小于铝合金熔点,熔体的最高温度不大于熔体中悬浮杂质的熔点。采用本发明方案净化后的铝合金熔体,其纯度高;采用本发明方案净化铝合金熔体,不仅所需设施非常简单,只需要采用常规的坩埚、加热炉、滤网和加热丝,而且熔体净化成本低,还便于控制熔体温度场;采用本发明方案净化后铝合金熔体,整个操作过程无任何污染。

Description

一种基于热浮力净化铝合金熔体的方法
技术领域
本发明涉及铝合金熔铸技术领域,具体涉及一种基于热浮力净化铝合金熔体的方法,所述热浮力是指熔体因存在温度差而产生的使熔体从高温层流向低温层的作用力。
背景技术
传统铝合金熔体净化包含精炼剂精炼、六氯乙烷精炼、惰性气体净化等方式,在此基础上,有学者提出了气-粉复合净化、外置磁场净化、超声波净化等净化方法,使得铝合金熔体的净化效果得到了显著的提升。例如,文献CN107805723A公开的铝合金熔体净化方法包括:将坩埚熔炉内的铝合金原料加热至720-740℃制成熔体,使旋转臂在铝合金熔体中匀速旋转搅拌,同时通入N2、Cl2混合气体和精炼剂,同时对铝合金熔体表面的浮渣进行清除;再如文献CN1168839C公开的高纯铝的真空连续提纯净化方法,对提纯炉体抽真空,利用提纯炉和电解槽之间的空气压力差,经管路和截止阀将铝液导入到炉体内的提纯坩埚中,对废液回收炉抽真空,对提纯炉体充入一定量的保护气体,在回收炉与提纯炉之间产生压力差;每隔0.5-3h,利用压力差通过吸液管把富集杂质元素的液层。
然而,现有这些熔体净化方法效果仍然有待提升,一些净化方法所需设施复杂,成本高昂,个别净化方法还存在污染问题,如采用六氯乙烷精炼时会产生氯气,对环境造成污染,损害工人身体健康。考虑到环保要求,精炼时,应尽量采用物理精炼法。
发明内容
本发明目的在于提供一种基于热浮力净化铝合金熔体的方法,该方法具有熔体净化效果好,所需设施简单,净化成本低,环保无污染等优点。
为了实现上述目的,本发明采用如下所述技术方案。
一种基于热浮力净化铝合金熔体的方法,包括用于熔化铝合金的坩埚,坩埚设置在炉体上,炉体的作用是通过电阻丝通电产生热量,进而使坩埚内的铝合金锭料融化成熔体,在炉体不同区域设置热电偶,热电偶的另一端连接控制系统,实时反馈各个区域的温度,并能够计算出温度梯度,其特征在于:铝合金熔体净化过程中,始终控制坩埚内的熔体按区域产生梯度温度,且熔体的最低温度不小于铝合金熔点,熔体的最高温度不大于熔体中悬浮杂质的熔点。
作为本发明的优选方案,始终控制坩埚内的熔体自下而上形成温度逐级递减的温度梯度;铝合金熔体净化结束后,弃掉表层熔体和底层熔体。
为进一步提高铝合金熔体净化效果,简化熔体净化设施,将坩埚内的熔体沿轴线方向分为三个区域,上部区域对应的炉体上设置有两排电阻丝坩埚外壁,中部、下部区域对应的炉体上分别设置有四排电阻丝,中部区域相邻电阻丝轴向间距大于下部区域相邻电阻丝轴向间距;熔化时,自下往上的第1排和第5排电阻丝处于断电状态;熔体完全熔化并达到730±5℃后,开启自下往上的第1排和第5排电阻丝进行加热,使上部区域熔体温度小于中部区域熔体温度、中部区域熔体温度小于下部区域熔体温度。
为更进一步提高铝合金熔体净化效果,上部区域对应的两排电阻丝轴向间距为30mm,中部区域对应的相邻电阻丝轴向间距为20mm,下部区域对应的相邻电阻丝轴向间距为10mm。
为更进一步提高铝合金熔体净化效果,铝合金完全熔化后且在开启自下往上的第1排和第5排电阻丝之前,在坩埚内壁铺设多层带拉线的滤网;铝合金熔体净化过程中,每间隔3-5分钟缓慢拉出一层滤网。
作为本发明的另一优选方案,控制坩埚内的熔体自下而上形成温度逐级递增的温度梯度,并在坩埚内放入滤网,下压滤网使其贴靠在坩埚内壁。
为进一步提高铝合金熔体净化效果,将坩埚内的熔体沿轴线方向分为三个区域,上部、中部区域、下部区域对应的炉体上分别设置有五排电阻丝,相邻电阻丝轴向间距为10mm;熔化时,开启所有的电阻丝;完全熔化并达到730±5℃时,先关闭自下往上的第7排、第9排、第11排、第13排和第15排电阻丝后进行加热,使上部区域熔体温度小于中部区域熔体温度、中部区域熔体温度小于下部区域熔体温度;当熔体温度达到810±5℃时,捞出熔体表层的杂质,并关闭所有电阻丝直到熔体冷却至730±5℃;随后,关闭自下往上的第1排、第3排、第5排、第7排和第9排电阻丝,并开启其余所有电阻丝后进行加热,使上部区域熔体温度大于中部区域熔体温度、中部区域熔体温度大下部区域熔体温度。
为更进一步提高铝合金熔体净化效果,关闭自下往上的第1排、第2排、第5排、第7排和第9排电阻丝后,每间隔3-5分钟向坩埚内投放一层滤网,投放过程中确保滤网与坩埚同轴;铝合金熔体净化结束后,弃掉表层熔体和底层熔体。
在本发明中,铝合金熔体中悬浮杂质主要是直径小于50μm的Al2O3和/或CuO和/或TiO;相邻区域的熔体温度差不小于25℃,铝合金熔体净化在惰性氛围下进行。
作为更优选方案,滤网为匹配于坩埚内壁的筒形结构,滤网外径等于坩埚内径。
有益效果:采用本发明方案净化铝合金熔体,其除渣率可达到95%;采用本发明方案净化铝合金熔体,不仅所需设施非常简单,只需要采用常规的坩埚、加热炉、滤网和加热丝,而且熔体净化成本低,其净化成本不到气-粉复合净化、外置磁场净化、超声波净化等常规方法净化成本的50%,还便于控制熔体温度场,具有操作过程简单、容易等优点;采用本发明方案净化后铝合金熔体,整个操作过程无任何污染。
附图说明
图1是实施例1中铝合金熔体净化设施示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,但以下实施例的说明只是用于帮助理解本发明的原理及其核心思想,并非对本发明保护范围的限定。应当指出,对于本技术领域普通技术人员来说,在不脱离本发明原理的前提下,针对本发明进行的改进也落入本发明权利要求的保护范围内。
实施例1
一种基于热浮力净化铝合金熔体的方法,如图1所示,包括用于熔化铝合金的坩埚4,坩埚4为圆筒形,其底部为半球形,坩埚4可容纳1000kg铝合金熔体,熔化率为500kg/h,坩埚4设置在炉体上,炉体的作用是通过电阻丝5通电产生热量,进而使坩埚4内的铝合金锭料融化成熔体,在炉体不同区域设置热电偶,热电偶的另一端连接控制系统,实时反馈各个区域的温度,并能够计算出温度梯度;铝合金熔体净化过程中,始终控制坩埚4内的熔体自下而上形成温度逐级递减的温度梯度,且熔体的最低温度不小于铝合金熔点,熔体的最高温度不大于熔体中悬浮杂质的熔点,铝合金熔体中悬浮杂质主要是直径小于50μm的Al2O3和/或CuO和/或TiO。具体来说:将坩埚4内的熔体沿轴线方向分为三个区域,上部区域3对应的炉体上设置有两排电阻丝5,上部区域3对应的两排电阻丝5轴向间距3d为30mm,中部、下部区域1对应的炉体上分别设置有四排电阻丝5,每排电阻丝通过控制系统实现单独启停, 中部区域2对应的相邻电阻丝5轴向间距2d为20mm,下部区域1对应的相邻电阻丝5轴向间距1d为10mm;熔化时,自下而上的第1排和第5排电阻丝5处于断电状态;熔体完全熔化并达到730±5℃后,开启自下而上的第1排和第5排电阻丝5进行加热,使上部区域3熔体温度小于中部区域2熔体温度、中部区域2熔体温度小于下部区域1熔体温度,此过程中,熔体中悬浮杂质在热浮力作用下上浮至熔体表层。
实施例2
一种基于热浮力净化铝合金熔体的方法,参照实施例1,其与实施例1的主要区别在于:在熔体完全熔化后且开启自下而上的第1排和第5排电阻丝5之前,在熔体内壁铺设五层带拉线的滤网,滤网为匹配于坩埚4内壁的筒形结构,滤网直径等于坩埚4内径,拉线采用钛合金丝;铝合金熔体净化10分钟后,每间隔3-5分钟缓慢拉出一层滤网;铝合金熔体净化结束后,弃掉表层熔体和底层熔体。
实施例3
一种基于热浮力净化铝合金熔体的方法,包括用于熔化铝合金的坩埚,坩埚为圆筒形,其底部为半球形,坩埚可容纳1500kg铝合金熔体,熔化率为500kg/h,坩埚设置在炉体上,坩埚和炉体的布置方式参照图1,炉体的作用是通过电阻丝(电阻丝环绕坩埚布置)通电产生热量,进而使坩埚内的铝合金锭料融化成熔体,在炉体不同区域设置热电偶,热电偶的另一端连接控制系统,实时反馈各个区域的温度,并能够计算出温度梯度;铝合金熔体净化过程中在惰性氛围下进行;熔体的最低温度不小于铝合金熔点,熔体的最高温度不大于熔体中悬浮杂质的熔点,铝合金熔体中悬浮杂质主要是直径小于50μm的Al2O3和/或CuO和/或TiO。具体来说:将坩埚内的熔体沿轴线方向分为三个区域,上部、中部区域、下部区域对应的炉体上分别设置有五排电阻丝,相邻电阻丝轴向间距为10mm;熔化时,开启所有的电阻丝;坩埚内铝合金完全熔化并达到730±5℃时,先关闭自下往上的第7排、第9排、第11排、第13排和第15排电阻丝后进行加热,使上部区域熔体温度小于中部区域熔体温度、中部区域熔体温度小于下部区域熔体温度,此过程中,熔体中悬浮杂质在热浮力作用下上浮至熔体表层;当熔体温度甚至810±5℃时,捞出熔体表层的杂质,并关闭所有电阻丝直到熔体冷却至730±5℃;随后,关闭自下往上的第1排、第3排、第5排、第7排和第9排电阻丝,并开启其余所有电阻丝后进行加热,使上部区域熔体温度大于中部区域熔体温度、中部区域熔体温度大下部区域熔体温度,此过程中,热力克服熔体自身粘度阻力,熔体中悬浮杂质在热力和重力作用下下沉;关闭自下往上的第1排、第3排、第5排、第7排和第9排电阻丝后,每间隔3-5分钟向坩埚内投放一层滤网(滤筒),共投放五层滤网,下压滤网使其贴靠在坩埚内壁,投放过程中确保滤网(滤筒)与坩埚同轴;铝合金熔体净化结束后,弃掉表层熔体和底层熔体。
对实施1-3中净化后的熔体分别进行除渣率检测,结果显示,实施例1中除渣率为85-89.5%,实施例2中除渣率为93.1-94.2%,实施例3中除渣率为93.5-95.7%。
采用本发明方案净化铝合金熔体,其除渣率高,不仅所需设施非常简单,只需要采用常规的坩埚、加热炉、滤网和加热丝,而且熔体净化成本低,其净化成本不到气-粉复合净化、外置磁场净化、超声波净化等常规方法净化成本的50%,还便于控制熔体温度场,具有操作过程简单、容易等优点;采用本发明方案净化后铝合金熔体,整个操作过程无任何污染。

Claims (3)

1.一种基于热浮力净化铝合金熔体的方法,包括用于熔化铝合金的坩埚,坩埚设置在炉体上,其特征在于:铝合金熔体净化过程中,始终控制坩埚内的熔体按区域产生梯度温度,且熔体的最低温度不小于铝合金熔点,熔体的最高温度不大于熔体中悬浮杂质的熔点;
(1)、始终控制坩埚内的熔体自下而上形成温度逐级递减的温度梯度;铝合金熔体净化结束后,弃掉表层熔体和底层熔体;将坩埚内的熔体沿轴线方向分为三个区域,上部区域对应的炉体上设置有两排电阻丝,中部、下部区域对应的炉体上分别设置有四排电阻丝,中部区域相邻电阻丝轴向间距大于下部区域相邻电阻丝轴向间距;熔化时,自下往上的第1排和第5排电阻丝处于断电状态;完全熔化并达到730±5℃后,开启自下往上的第1排和第5排电阻丝进行加热,使上部区域熔体温度小于中部区域熔体温度、中部区域熔体温度小于下部区域熔体温度,上部区域对应的两排电阻丝轴向间距为30mm,中部区域对应的相邻电阻丝轴向间距为20mm,下部区域对应的相邻电阻丝轴向间距为10mm;完全熔化后且在开启自下往上的第1排和第5排电阻丝之前,在坩埚内壁铺设多层带拉线的滤网;铝合金熔体净化过程中,每间隔3-5分钟缓慢拉出一层滤网;
或者,
(2)、控制坩埚内的熔体自下而上形成温度逐级递增的温度梯度;将坩埚内的熔体沿轴线方向分为三个区域,上部、中部区域、下部区域对应的炉体上分别设置有五排电阻丝,相邻电阻丝轴向间距为10mm;熔化时,开启所有的电阻丝;完全熔化并达到730±5℃时,先关闭自下往上的第7排、第9排、第11排、第13排和第15排电阻丝后进行加热,使上部区域熔体温度小于中部区域熔体温度、中部区域熔体温度小于下部区域熔体温度;当熔体温度达到810±5℃时,捞出熔体表层的杂质,并关闭所有电阻丝直到熔体冷却至730±5℃;
随后,关闭自下往上的第1排、第3排、第5排、第7排和第9排电阻丝,并开启其余所有电阻丝后进行加热,使上部区域熔体温度大于中部区域熔体温度、中部区域熔体温度大下部区域熔体温度;关闭自下往上的第1排、第3排、第5排、第7排和第9排电阻丝后,每间隔3-5分钟向坩埚内投放一层滤网,投放过程中确保滤网与坩埚同轴,下压滤网使其贴靠在坩埚内壁;铝合金熔体净化结束后,弃掉表层熔体和底层熔体。
2.根据权利要求1所述的方法,其特征在于:铝合金熔体中悬浮杂质主要是直径小于50μm的Al2O3和/或CuO和/或TiO;相邻区域的熔体温度差不小于25℃;铝合金熔体净化在惰性氛围下进行。
3.根据权利要求2所述的方法,其特征在于:滤网为匹配于坩埚内壁的筒形结构,滤网外径等于坩埚内径。
CN202111058383.4A 2021-09-09 2021-09-09 一种基于热浮力净化铝合金熔体的方法 Active CN113699383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111058383.4A CN113699383B (zh) 2021-09-09 2021-09-09 一种基于热浮力净化铝合金熔体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111058383.4A CN113699383B (zh) 2021-09-09 2021-09-09 一种基于热浮力净化铝合金熔体的方法

Publications (2)

Publication Number Publication Date
CN113699383A CN113699383A (zh) 2021-11-26
CN113699383B true CN113699383B (zh) 2022-12-20

Family

ID=78659799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111058383.4A Active CN113699383B (zh) 2021-09-09 2021-09-09 一种基于热浮力净化铝合金熔体的方法

Country Status (1)

Country Link
CN (1) CN113699383B (zh)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101463428B (zh) * 2009-01-08 2010-06-30 上海交通大学 高纯铝超声波提纯方法
CN101762158B (zh) * 2009-04-17 2012-06-06 南安市三晶阳光电力有限公司 一种采用液态滤网冶金提纯的方法和装置
CN102676823A (zh) * 2011-03-11 2012-09-19 赵凯志 铝屑回熔净化工艺
CN102181658B (zh) * 2011-03-23 2012-12-19 广西大学 一种去除铝熔体中夹杂物的装置和方法
CN104651934B (zh) * 2014-10-17 2017-12-01 洛阳西格马炉业股份有限公司 一种节能型蓝宝石晶体生长炉
CN104561591B (zh) * 2014-11-28 2016-08-24 河南中孚实业股份有限公司 高纯铝定向凝固短流程提纯设备以及提纯方法
CN106825410A (zh) * 2017-01-16 2017-06-13 沈阳工业大学 制备定向镁合金的设备及方法
CN106868316A (zh) * 2017-02-10 2017-06-20 上海交通大学 一种再生铝多元杂质元素同步净化方法及装置
CN107805723A (zh) * 2017-09-15 2018-03-16 广西平果铝合金精密铸件有限公司 一种铝合金熔体净化方法
GB201811413D0 (en) * 2018-07-12 2018-08-29 Univ Birmingham Aluminium purification

Also Published As

Publication number Publication date
CN113699383A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN101423220B (zh) 一种多温区硅材料提纯与铸锭的方法及其装置
CN1873062A (zh) 一种太阳能电池用高纯多晶硅的制备方法和装置
CN104561591B (zh) 高纯铝定向凝固短流程提纯设备以及提纯方法
CN101824650B (zh) 高纯多晶硅的提纯系统及提纯方法
CN201201903Y (zh) 多温区硅料提纯与铸锭真空炉
CN102191542B (zh) 制备高纯定向结晶多晶硅的设备及其制备方法
CN102153088B (zh) 一种金属硅的造渣酸洗除硼方法
CN101798705A (zh) 一种从低温熔体中连续拉晶提纯多晶硅的方法及专用装置
CN111378850A (zh) 一种偏析提纯高纯铝的方法
CN102586623B (zh) 高纯铝的提取方法和设备
CN101966562B (zh) 非电渣重熔式洁净金属锭模
CN109911902B (zh) 一种硅的提纯装置及方法
CN113699383B (zh) 一种基于热浮力净化铝合金熔体的方法
CN104724710B (zh) 一种电渣重熔与合金熔析精炼同步提纯工业硅的方法
CN106048262A (zh) 一种镓的提纯方法及装置
CN203768482U (zh) 一种新型真空电子束熔炼炉
CN101240448A (zh) 特别用于金属硅/二氧化硅的真空纯化炉及纯化方法
CN204224679U (zh) 高纯铝定向凝固短流程提纯设备
CN102534246B (zh) 一种高纯铝的制备方法
CN104232932B (zh) 一种高纯铝的提纯装置及其使用方法
CN101792143B (zh) 提纯硅的方法
CN101941698B (zh) 电子束熔炼高效去除硅中杂质磷的方法及装置
CN202116323U (zh) 硅晶体的提纯设备
CN103539125B (zh) 介质熔炼与初步定向凝固衔接提纯多晶硅的方法
CN201138138Y (zh) 一种无需移动部件的多晶硅分凝铸锭炉

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant