CN113699130B - 聚酮合酶PreuA-TEPreu3的构建及其在制备苔色酸中的应用 - Google Patents

聚酮合酶PreuA-TEPreu3的构建及其在制备苔色酸中的应用 Download PDF

Info

Publication number
CN113699130B
CN113699130B CN202110989776.0A CN202110989776A CN113699130B CN 113699130 B CN113699130 B CN 113699130B CN 202110989776 A CN202110989776 A CN 202110989776A CN 113699130 B CN113699130 B CN 113699130B
Authority
CN
China
Prior art keywords
ala
leu
ser
val
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110989776.0A
Other languages
English (en)
Other versions
CN113699130A (zh
Inventor
刘庆培
杨小龙
徐瑶
张丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South Central Minzu University
Original Assignee
South Central University for Nationalities
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South Central University for Nationalities filed Critical South Central University for Nationalities
Priority to CN202110989776.0A priority Critical patent/CN113699130B/zh
Publication of CN113699130A publication Critical patent/CN113699130A/zh
Application granted granted Critical
Publication of CN113699130B publication Critical patent/CN113699130B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/36Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
    • A01N37/38Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system
    • A01N37/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system having at least one carboxylic group or a thio analogue, or a derivative thereof, and one oxygen or sulfur atom attached to the same aromatic ring system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种聚酮合酶PreuA‑TEPreu3的构建及其在制备苔色酸中的应用,属于分子生物学与生物化学技术领域。本发明首次以光黑壳属真菌来源的聚酮合酶Preu3与PreuA为材料,基于组合生物合成技术构建了新型“非天然”聚酮合酶PreuA‑TEPreu3;将其转入酿酒酵母,成功获得可高效生产苔色酸的突变株;并以制备的苔色酸为对象,研究了其对八种临床耐药细菌以及七种农作物病原真菌的抑制活性,发现其对耐碳青霉烯铜绿假单胞菌有很强的拮抗作用(MIC,12.5μg/mL)。本发明极大地丰富了苔色酸的生产来源,对于拓展其衍生化途径,研发新型抗菌剂有重要的科学价值和应用前景。

Description

聚酮合酶PreuA-TEPreu3的构建及其在制备苔色酸中的应用
技术领域
本发明属于分子生物学与生物化学技术领域,具体涉及一种新型“非天然”聚酮合酶PreuA-TEPreu3的构建及其在制备苔色酸中的应用。
背景技术
真菌聚酮化合物(polyketides, PKs)是一大类重要的天然产物类群,具有化学结构和生物活性多样性,是新型药物先导化合物发现的优质资源库。代表性的真菌PKs有降低胆固醇功效的洛伐他汀(lovastatin)、真菌抑制剂灰黄霉素(griseofulvin)、细菌抑制剂利福霉素(rifamycin)、免疫抑制剂霉酚酸(mycophenolic acid)、肌动蛋白和血管生成抑制剂细胞松弛素E(cytochalasin E)等。PKs生物合成的关键酶——真菌聚酮合酶(polyketide synthase,PKS)为迭代(iterative)
Figure 619451DEST_PATH_IMAGE001
型PKS,结构域通常包括:起始单元ACP转酰酶(starter unit ACP transacylase,SAT)、β-酮酰基合成酶(β-ketoacylsynthase,KS)、酰基转移酶(acyltransferase, AT)、产物模板(product template, PT)、酰基载体蛋白(acyl carrier protein, ACP)、酮基还原酶(ketoreductase, KR)、脱水酶(dehydratase, DH)、烯基还原酶(enoylreductase, ER)、甲基转移酶(methyltransferase, CMeT)以及硫酯酶(thioesterase, TE)或还原酶(reductase, R)。其中,TE负责将聚酮合酶合成的产物进行释放。
苔色酸(orsellinic acid,结构见图1)是一种芳香聚酮小分子化合物,其是在聚酮合酶催化下,由一分子乙酰辅酶A与三分子丙二酰辅酶A逐步缩合而成。目前,已在草本植物、地衣、真菌和细菌中分离鉴定了200余种苔色酸衍生物,包括单体和聚合物。经研究报道,苔色酸及其衍生物具有抗炎、抗菌、抗肿瘤、抗氧化和抗糖尿病等生物活性,故其可作为食品与医药行业天然抗菌剂、抗氧化剂及新型药物等的潜在生物资源。但目前,市售苔色酸(CAS: 480-64-8)均通过化学合成方式生产,售价约1000元/100mg,产量低,售价高,故导致其在食品、医药等领域应用受限。因此如何克服苔色酸现有制备技术的不足是目前微生物化学技术领域亟需解决的问题。
发明内容
本发明的目的是为了解决现有技术的不足,提供一种新型“非天然”聚酮合酶PreuA-TEPreu3的构建及其在制备苔色酸中的应用。本发明以光黑壳属真菌来源的聚酮合酶Preu3(合成3-甲基苔色酸)与PreuA(合成红粉苔酸)为材料,基于组合生物合成技术构建了新型“非天然”聚酮合酶PreuA-TEPreu3;将其转入酿酒酵母,成功获得可高效生产苔色酸的突变株。本发明极大地丰富了苔色酸的生产来源,对于拓展其衍生化途径,研发新型抗菌剂有重要的科学价值和应用前景。
为实现上述目的,本发明采用的技术方案如下:
本发明第一方面提供聚酮合酶PreuA-TEPreu3,所述聚酮合酶PreuA-TEPreu3的氨基酸序列如SEQ ID NO.1所示。
本发明第二方面提供编码所述聚酮合酶PreuA-TEPreu3的基因。
进一步,优选的是,所述基因的编码序列是SEQ ID NO.2所示的核苷酸序列。
本发明第三方面提供含有上述所示的基因的重组载体。
本发明第四方面提供一种用上述重组载体转化得到的重组基因工程菌。
本发明第五方面提供上述的聚酮合酶PreuA-TEPreu3在制备苔色酸中的应用。
本发明第六方面提供一株可高效生产苔色酸的酵母突变株的构建方法,包括如下步骤:
采用LiAc/PEG4000介导的转化法利用权利要求4所述的重组载体转化酿酒酵母,将转化液均匀涂布于SC-Ura固体平板上,30℃培养箱中培养,即得到酵母突变株。
本发明第七方面提供苔色酸的制备方法,采用上述的构建方法构建的酵母突变株,包括如下步骤:
步骤(1),将酵母突变株接种于SC-Ura液体培养基中,30℃,摇床培养;培养的第2d,加入1%YPD培养基继续培养3-4d,得到发酵液;
其中,1%YPD培养基和SC-Ura液体培养基体积相同;
步骤(2),对步骤(1)培养得到的发酵液,用等体积的乙酸乙酯萃取,对萃取液浓缩,得到粗浸膏;
步骤(3),对步骤(2)得到的粗浸膏提纯,得到苔色酸。
进一步,优选的是,步骤(3)中,对步骤(2)得到的粗浸膏进行提纯,提纯方法为:将粗浸膏用少量甲醇溶解后,通过ODS C18反相硅胶柱层析法,选用甲醇-水为流动相对粗浸膏进行梯度洗脱,共得到五个组分段Fr.A-Fr.E;目标代谢物苔色酸集中在Fr. E组分中,将Fr. E组分通过高效液相制备得到苔色酸;
其中,梯度洗脱流动相采用的甲醇:水的体积比依次为5:95、10:90、15:85、20:80、25:75,各梯度洗脱所用的流动相总体积均为SC-Ura液体培养基体积的十分之一。
本发明第八方面提供所述的苔色酸的制备方法制得的苔色酸在制备抗农作物病原真菌药物或临床耐药细菌药物中的应用,其特征在于,所述的农作物病原真菌为苹果轮纹病菌、棉花枯萎病菌、玉米小斑病菌、马铃薯黄萎病菌、油菜菌核菌、水稻纹枯病菌、草莓黑斑病菌;所述的临床耐药细菌为耐甲氧西林金黄色葡萄球菌、耐碳青霉烯大肠埃希菌、耐碳青霉烯铜绿假单胞菌、耐碳青霉烯鲍曼不动杆菌、多耐药性屎肠球菌、多耐药性粪肠球菌、耐碳青霉烯肺炎克雷伯菌、多耐药性表皮葡萄球菌。
本发明人前期从光黑壳属真菌(Preussia isomera, GenBank编号为MK300824.1)中克隆到与聚酮分子3-甲基苔色酸(3-methylorsellinic acid,结构见图1)合成相关的聚酮合酶Preu3(ZL202110910678.3),其结构域组成为SAT-KS-AT-PT-ACP-CMeT-TE;克隆到与红粉苔酸(lecanoric acid,结构见图1)合成相关的聚酮合酶PreuA(ZL202110820221.3),其结构域组成为SAT-KS-AT-PT-ACP-ACP-TE。3-甲基苔色酸与红粉苔酸从化学结构来说均为苔色酸的类似物或衍生物,且相应的聚酮合酶Preu3与PreuA的结构域组成也比较相似。因此,本发明拟以聚酮合酶Preu3与PreuA为对象,基于组合生物合成技术构建可高产苔色酸的新型“非天然”聚酮合酶。
在本发明中,我们首次基于组合生物合成技术将聚酮合酶PreuA的TE结构域替换为Preu3的TE结构域,构建了新型“非天然”聚酮合酶PreuA-TEPreu3;将其转入酿酒酵母,成功获得可高效生产苔色酸的突变株(~0.1 g/L);并以制备的苔色酸为对象,研究了其对八种临床耐药细菌以及七种农作物病原真菌的抑制活性。研究发现,苔色酸对耐碳青霉烯铜绿假单胞菌一种临床耐药细菌以及苹果轮纹病菌、玉米小斑病菌、马铃薯黄萎病菌、油菜菌核菌四种农作物病原真菌均有不同程度的抑制作用,其中对耐碳青霉烯铜绿假单胞菌有很强的拮抗作用(MIC,12.5 μg/mL)。本发明极大地丰富了苔色酸的生产来源,对于拓展其衍生化途径,研发新型抗菌剂有重要的科学价值和应用前景。
本发明与现有技术相比,其有益效果为:
1.目前,市售苔色酸(CAS: 480-64-8)均通过化学合成方式生产,售价约1000元/100mg,产量低,售价高。本发明基于组合生物合成技术构建了新型“非天然”聚酮合酶PreuA-TEPreu3,并基于异源表达技术,成功获得可高效生产苔色酸的酵母突变株(~0.1 g/L),提供了新的微生物发酵途径来生产苔色酸,工艺简单,产量高,且绿色环保,具有可观的应用前景。
2.本发明同时也首次研究了苔色酸对七种农作物病原真菌(苹果轮纹病菌、棉花枯萎病菌、玉米小斑病菌、马铃薯黄萎病菌、油菜菌核菌、水稻纹枯病菌、草莓黑斑病菌)及八种临床耐药细菌(耐甲氧西林金黄色葡萄球菌、耐碳青霉烯大肠埃希菌、耐碳青霉烯铜绿假单胞菌、耐碳青霉烯鲍曼不动杆菌、多耐药性屎肠球菌、多耐药性粪肠球菌、耐碳青霉烯肺炎克雷伯菌、多耐药性表皮葡萄球菌)的抑制活性。研究发现,苔色酸对耐碳青霉烯铜绿假单胞菌有很强的拮抗作用(MIC,12.5 μg/mL),有望研发新型抗生素。
附图说明
图1为红粉苔酸(lecanoric acid)、苔色酸(orsellinic acid)与3-甲基苔色酸(3-methylorsellinic acid)的化学结构式;其中,(a)为红粉苔酸;(b)为苔色酸;(c)为3-甲基苔色酸;
图2为聚酮合酶PreuA-TEPreu3及其异源表达载体YEpADH2p-URA-PreuA-TEPreu3;其中,(a)为聚酮合酶PreuA-TEPreu3的结构域组成;(b)为异源表达载体YEpADH2p-URA-PreuA-TEPreu3的质粒图谱;
图3为聚酮合酶PreuA-TEPreu3异源表达载体YEpADH2p-URA-PreuA-TEPreu3的酶切验证图;M,Trans 2K plus marker;Line 1,载体YEpADH2p-URA-PreuA-TEPreu3
图4为聚酮合酶PreuA-TEPreu3酿酒酵母异源表达突变株的代谢产物分析;其中,(a)为空载体酿酒酵母;(b)为聚酮合酶Preu3酿酒酵母突变株;(c)为聚酮合酶PreuA酿酒酵母突变株;(d)为聚酮合酶PreuA-TEPreu3酿酒酵母突变株;
图5为聚酮合酶PreuA-TEPreu3酿酒酵母突变株目标代谢产物的紫外吸收图;
图6为聚酮合酶PreuA-TEPreu3酿酒酵母突变株目标代谢产物的高分辨质谱图;其中,(a)为负离子模式,(b)为正离子模式;
图7为化合物苔色酸的1H核磁光谱图(氘代甲醇,500 MHz);
图8为化合物苔色酸的13C核磁光谱图(氘代甲醇,125 MHz)。
具体实施方式
下面结合实施例对本发明作进一步的详细描述。
本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用材料或设备未注明生产厂商者,均为可以通过购买获得的常规产品。
本发明中以光黑壳属真菌(Preussia isomera,GenBank编号为MK300824.1)来源的聚酮合酶Preu3(合成3-甲基苔色酸,ZL202110910678.3)与PreuA(合成红粉苔酸,ZL202110820221.3)为材料,基于组合生物合成技术构建了新型“非天然”聚酮合酶PreuA-TEPreu3;将其转入酿酒酵母,成功获得可高效生产苔色酸(orsellinic acid,结构见图1)的酵母突变株。本实验的大致步骤为:首先基于同源重组原理,将PreuA的TE结构域替换为Preu3的TE结构域,构建聚酮合酶PreuA-TEPreu3,并构建其异源表达载体YEpADH2p-URA-PreuA-TEPreu3(质粒图谱见图2);然后采用PEG4000/LiAc转化法,将构建的异源表达载体转化酿酒酵母,获得阳性酵母转化株,分析其代谢产物并进行结构鉴定,发现构建的酵母突变株可高产苔色酸(苔色酸产量约0.1 g/L);最后,以制备的苔色酸为对象,研究了其对七种农作物病原真菌(苹果轮纹病菌、棉花枯萎病菌、玉米小斑病菌、马铃薯黄萎病菌、油菜菌核菌、水稻纹枯病菌、草莓黑斑病菌)及八种临床耐药细菌(耐甲氧西林金黄色葡萄球菌、耐碳青霉烯大肠埃希菌、耐碳青霉烯铜绿假单胞菌、耐碳青霉烯鲍曼不动杆菌、多耐药性屎肠球菌、多耐药性粪肠球菌、耐碳青霉烯肺炎克雷伯菌、多耐药性表皮葡萄球菌)的抑制活性(实验结果见表3、4)。具体实验过程如下。
1. 聚酮合酶PreuA-TEPreu3及其异源表达载体YEpADH2p-URA-PreuA-TEPreu3的构建
1.1 聚酮合酶基因preuA-TE Preu3 (结构域组成见图2)的构建:将聚酮合酶preuA的TE结构域(A1820-A2205,对应碱基G5458-A6618)替换为聚酮合酶preu3的TE结构域(R2115-A2523,对应碱基C6343-G7572),构建新型聚酮合酶基因preuA-TE Preu3 ,其mRNA序列全长6687-bp,如SEQID NO.2,克隆引物见表1。
PCR反应体系配置(100 μL):ddH2O 55.5 μL;5× Phusion HF buffer 20 μL;dNTPs(2.5 mmol/L) 8 μL;正向引物(10 pmol/μL)5 μL;反向引物(10 pmol/μL) 5 μL;DMSO 3 μL;Phusion DNA Ploymerase(2 U/μL)1 μL;cDNA 2.5 μL。PCR程序是:98℃ 3min;98℃ 30 s,58℃ 30 s,72℃ 1 min,共 34 cycles;72℃ 10 min。
注:基因构建的片段1用引物PreuA-TEPreu3-1F、PreuA-TEPreu3-1R;基因构建的片段2用引物PreuA-TEPreu3-2F、PreuA-TEPreu3-2R。
其中,片段1为基因preuABgl II酶切位点开始到ACP结构域结束对应的基因片段(G4707-T5457);片段2为基因preu3的TE结构域对应的基因片段(C6343-G7572)。
DNA片段回收采用Thermo Scientific GeneJET凝胶回收试剂盒(K0692),具体步骤参见其说明书。
表1 聚酮合酶基因preuA-TE preu3 的克隆相关引物信息
Figure 749081DEST_PATH_IMAGE002
1.2异源表达载体片段的制备:片段3(11.0-kb)通过限制性内切酶Bgl II/Pme I酶切质粒YEpADH2p-URA-PreuA(ZL202110820221.3)获得。
酶切体系配置(180 μL):ddH2O 132 μL,10× FastDigest Green Buffer 18 μL,质粒YEpADH2p-URA-PreuA 18 μL,限制性内切酶①(Bgl II) 6 μL,限制性内切酶②(PmeI) 6 μL。37℃酶切2h后,采用Thermo Scientific GeneJET凝胶回收试剂盒(K0692)进行切胶回收,具体步骤参见其说明书。
1.3 异源表达载体的构建与转化:采用SE无缝克隆和组装试剂盒(庄盟生物,ZC231)将1.1制备的preuA-TE Preu3 基因片段1、2与1.2制备的载体片段3进行重组构建异源表达载体YEpADH2p-URA-PreuA-TEPreu3
重组反应体系配置(10 μL):5× SE Cloning Buffer 2 μL;片段1 3 μL;片段2 3μL;片段3 1 μL;SE Recombinase 1 μL。37℃反应0.5 h,冰上2 min,然后转化T1 PhageResistant感受态细胞(庄盟生物,ZC102),具体步骤参见其说明书。
1.4 异源表达质粒的提取及验证:大肠杆菌质粒的提取采用Axygen
Figure 969978DEST_PATH_IMAGE003
AxyPrepPlasmid Miniprep Kit(AP-MN-P-250),具体步骤参见其说明书。对构建的异源表达载体进行Nde I/Xba I双酶切验证(7243/4844/862-bp)并测序,确证载体序列的正确性(载体酶切验证见图3)。
酶切验证体系配置(10 μL):ddH2O 5 μL,10× FastDigest Green Buffer 1 μL,异源表达载体3 μL,限制性内切酶①(Nde I) 0.5 μL,限制性内切酶②(Xba I) 0.5 μL。37℃酶切反应0.5 h后跑胶。
2. 聚酮合酶PreuA-TEPreu3酿酒酵母异源表达突变株的构建及其代谢产物分析鉴定
2.1 聚酮合酶PreuA-TEPreu3酿酒酵母异源表达突变株的构建:采用LiAc/PEG4000介导的转化法将载体YEpADH2p-URA-PreuA-TEPreu3转化酿酒酵母。
将制备的100 μL酵母感受态细胞3600 r/min,离心5 min,弃上清,然后依次向管中加入78 μL ddH2O,36 μL LiAc(1 mol/L),240 μL PEG4000溶液(50% (w/v)),3 μL异源表达载体(YEpADH2p-URA-PreuA-TEPreu3),将混合液混合均匀;30℃放置30 min,然后转移至42℃放置30 min;将得到的转化液3600 r/min,离心5 min,弃上清,用200 μL无菌水重悬菌体,然后均匀涂布于SC-Ura固体平板上,30℃培养箱中培养2-4d。待酵母转化菌株长出后,将其进行发酵及代谢产物分析。
SC-Ura固体平板的配置:YNB 6.7 g/L,葡糖糖20 g/L,0.77 g/L -ura DoSupplement(美国Clontech公司),15 g琼脂,121℃灭菌15min。
2.2 酵母突变株的小量发酵:在转化的平板上随机挑取两个克隆,在SC-Ura固体平板上划线,平板置于30℃培养箱过夜培养。取适量菌体接种于25 mL SC-Ura液体培养基中(用125 mL三角瓶)(优选为接种1mL OD600nm=0.5的菌液),30℃,220r/min,培养1d;第2d,加入25 mL 1%YPD培养基,继续培养3d后进行次级代谢产物分析。
SC-Ura液体培养基的配置:YNB 6.7 g/L,葡糖糖20 g/L,0.77 g/L -ura DoSupplement(美国Clontech公司),121℃灭菌15min。
1%YPD培养基的配置:酵母提取物10 g/L,蛋白胨20 g/L,葡萄糖10 g/L,121℃灭菌15 min。
2.3 酵母突变株代谢产物分析(色谱图见图4):用等体积的乙酸乙酯萃取酿酒酵母发酵液,取乙酸乙酯相装入圆底烧瓶中旋蒸。待溶剂悬干后,加入800 μL甲醇溶解代谢产物,进行LC-MS分析。色谱条件是:Reverse-phase C18 column(Kromasil 100-5-C18,4.6×250 mm,5μm);流动相是水(A)/甲醇(B,加体积百分数为0.1%冰醋酸);流速0.8 mL/min;进样体积5 μL;DAD检测器,检测波长为300 nm;柱温25℃;采用梯度洗脱,程序是起始流动相比例5% B保持5 min,30 min内B从5%线性升至100%,保持100% B 10 min,然后1 min内B从100%线性降至5%,并保持5%B 4 min。质谱条件是:Q Exactive检测器;电喷雾离子(ESI)源;正、负离子切换采集;一级质谱全扫描(150-1000 m/z);喷雾电压3.8 kv;离子传输管温度325℃;鞘气流速40 arb;辅助气流速20 arb;辅助气加热温度350℃。
2.4 酵母突变株目标代谢产物的分离纯化:将可产生目标代谢产物的酵母突变株大规模发酵2 L,发酵及萃取方法分别同2.2,2.3,制得粗浸膏1.1g。将粗浸膏用少量甲醇(约1 mL,粗浸膏可溶解的量即可)溶解后,通过ODS C18反相硅胶柱层析法,选用甲醇-水(MeOH-H2O)对粗浸膏进行梯度洗脱(流动相梯度配比(甲醇:水的体积比)分别为5:95、10:90、15:85、20:80、25:75,各梯度洗脱所用的流动相均为100 mL),共得到五个组分段(Fr.A-E),其中目标代谢物集中在Fr.E组分中,将其通过高效液相制备(色谱条件同2.3,tR=24.1min)得到目标单体化合物约0.2g。
2.5 酵母突变株目标代谢产物的结构解析:目标代谢产物为白色晶体,最大紫外吸收波长为300 nm(图5),其结构经高分辨质谱(HRMS)及一维核磁共振波谱(1H-NMR、13C-NMR)鉴定,HRMS测得其分子离子峰m/z为167.03467 [M-H]-以及169.04959 [M+H]+(图6),分子式为C8H8O4,其结构解析所需的核磁数据见图7-图8以及表2,最终解析其结构为苔色酸(分子结构见图1)。
表2:化合物苔色酸的1H与13C核磁数据
(500 MHz, CD3OD, δ in ppm, J in Hz)
Figure 323599DEST_PATH_IMAGE004
3. 苔色酸抗菌活性实验
3.1 苔色酸抗农作物病原真菌活性实验:将苔色酸以及酮康唑(阳性对照)作为目标化合物用DMSO配制成1 mg/mL的母液。
将目标农作物病原真菌(苹果轮纹病菌、棉花枯萎病菌、玉米小斑病菌、马铃薯黄萎病菌、油菜菌核菌、水稻纹枯病菌、草莓黑斑病菌)在PDB(马铃薯葡糖糖肉汤)培养基中活化2-3d,活化好后取1 mL菌液加入到100 mL PDB培养基中得到稀释菌液。以酮康唑为阳性对照,取2 μL目标化合物母液加入到198 μL的目标稀释菌液里面,采用二倍稀释法测试苔色酸对以上七种农作物病原真菌的拮抗活性(活性结果见表3)。
PDB培养基配制:取23 g PDB粉末(北京奥博星生物技术有限责任公司),加入1000mL蒸馏水,121℃高压灭菌15min。
表3:苔色酸对七种农作物病原真菌的抑制活性(以酮康唑为阳性对照)
Figure 997157DEST_PATH_IMAGE005
3.2 苔色酸抗临床耐药细菌活性实验:将苔色酸以及环丙沙星(阳性对照)作为目标化合物用DMSO配制成1 mg/mL的母液。
将目标临床耐药细菌(耐甲氧西林金黄色葡萄球菌、耐碳青霉烯大肠埃希菌、耐碳青霉烯铜绿假单胞菌、耐碳青霉烯鲍曼不动杆菌、多耐药性屎肠球菌、多耐药性粪肠球菌、耐碳青霉烯肺炎克雷伯菌、多耐药性表皮葡萄球菌)在LB(溶菌肉汤)培养基中活化8h,活化好后取50 μL菌液加入到50 ml LB培养基中得到稀释菌液。以环丙沙星为阳性对照,取2 μL目标化合物母液加入到198 μL的目标稀释菌液里面,采用二倍稀释法测试苔色酸对以上八种临床耐药细菌的拮抗活性(活性结果见表4)。
LB培养基配制:取25 g LB粉末(北京酷来搏公司),加入1000 mL蒸馏水,121℃高压灭菌20min。
表4:苔色酸对八种临床耐药细菌的抑制活性(以环丙沙星为阳性对照)
Figure 992795DEST_PATH_IMAGE007
4. 结论
实验结果表明,我们首次以光黑壳属真菌来源聚酮合酶Preu3(合成3-甲基苔色酸)与PreuA(合成红粉苔酸)为材料,基于组合生物合成技术构建了新型“非天然”聚酮合酶PreuA-TEPreu3,将其转入酿酒酵母,成功获得可高效生产苔色酸的突变株(~0.1 g/L);并且制备的苔色酸对耐碳青霉烯铜绿假单胞菌一种临床耐药细菌以及苹果轮纹病菌、玉米小斑病菌、马铃薯黄萎病菌、油菜菌核菌四种农作物病原真菌均有不同程度的抑制作用,其中对耐碳青霉烯铜绿假单胞菌有很强的拮抗作用(MIC,12.5 μg/mL)。
苔色酸及其衍生物具有抗炎、抗菌、抗肿瘤、抗氧化和抗糖尿病等生物活性,故其可作为食品与医药行业天然抗菌剂、抗氧化剂及新型药物等的潜在生物资源。但目前,市售苔色酸(CAS: 480-64-8)均通过化学合成方式生产,售价约1000元/100mg,产量低,售价高,故导致其在食品、医药等领域应用受限。在本发明中,我们首次以光黑壳属真菌来源的聚酮合酶Preu3(合成3-甲基苔色酸)与PreuA(合成红粉苔酸)为材料,基于组合生物合成技术构建了新型“非天然”聚酮合酶PreuA-TEPreu3,将其转入酿酒酵母,成功获得可高效生产苔色酸的突变株;并以制备的苔色酸为对象,研究了其对七种农作物病原真菌(苹果轮纹病菌、棉花枯萎病菌、玉米小斑病菌、马铃薯黄萎病菌、油菜菌核菌、水稻纹枯病菌、草莓黑斑病菌)及八种临床耐药细菌(耐甲氧西林金黄色葡萄球菌、耐碳青霉烯大肠埃希菌、耐碳青霉烯铜绿假单胞菌、耐碳青霉烯鲍曼不动杆菌、多耐药性屎肠球菌、多耐药性粪肠球菌、耐碳青霉烯肺炎克雷伯菌、多耐药性表皮葡萄球菌)的抑制活性。研究发现,苔色酸对耐碳青霉烯铜绿假单胞菌一种临床耐药细菌以及苹果轮纹病菌、玉米小斑病菌、马铃薯黄萎病菌、油菜菌核菌四种农作物病原真菌均有不同程度的抑制作用,其中对耐碳青霉烯铜绿假单胞菌有很强的拮抗作用(MIC,12.5 μg/mL)。本发明极大地丰富了苔色酸的生产来源,对于拓展其衍生化途径,研发新型抗菌剂有重要的科学价值和应用前景。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
序列表
<110> 中南民族大学
<120> 聚酮合酶PreuA-TEPreu3的构建及其在制备苔色酸中的应用
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2228
<212> PRT
<213> 人工序列()
<400> 1
Met Ser Asn Ser Thr Arg Asp Tyr Pro Ile Ser Ala Ala Phe Phe Cys
1 5 10 15
Pro Gln Ser Arg Ala Pro Pro Ala Glu Tyr Leu His Ala Leu Tyr Ser
20 25 30
Phe Leu Ser Gln Asn Thr Leu Gly Lys Ala Phe Leu Arg His Ile Ala
35 40 45
Ser Leu Asp Glu Val Trp Pro Ile Phe Ser Glu Ala Arg Asp Asp Ile
50 55 60
Leu Arg Leu Pro Asp Ala Arg Gln Asn Ile Asn Val Leu Val Asp Trp
65 70 75 80
Ala Lys Gly Gly Ser Ser Thr Pro Ile Ala Glu Ala Arg Ser Gly Val
85 90 95
Ile Ala Leu Pro Ser Val Phe Ile Val Gln Leu Gly Gln Tyr Phe Arg
100 105 110
Tyr Leu Glu Ala Asn Arg Leu Ser His Gly Asp Phe Ile Gly Gln Leu
115 120 125
Lys Asp Ile Gly Gly Val His Gly Tyr Cys Gly Gly Ala Ala Ala Ala
130 135 140
Leu Ser Val Ala Cys Ala Ala Asp Glu Thr Gln Leu Ile Asp His Ala
145 150 155 160
Ala Val Leu Leu Arg Leu Phe Val Gly Ile Gly Cys Cys Ile Glu Ala
165 170 175
Val Asp Asp Trp Thr Thr Thr Glu Ser Thr Val Ile Ala Cys Arg Leu
180 185 190
Lys Tyr Glu Gly Gln Gly Asp Glu Leu Cys Ser Arg Phe Pro Gly Thr
195 200 205
Tyr Val Ser Ala Ile Thr Glu Pro Lys Ser Ile Ser Ile Thr Gly Asn
210 215 220
Ala Arg Thr Leu Ser Glu Leu Phe Asp Tyr Ala Val Gly Leu Gly Leu
225 230 235 240
Pro Thr His Lys Met Glu Ile Thr Gly Lys Ala His Asn Pro Glu Asn
245 250 255
Ala Glu Leu Ala Lys Asp Phe Ile Asn Leu Tyr Arg Arg Thr Pro Ala
260 265 270
Leu Gln Leu Pro Pro Thr Phe Lys Leu Gln Ala Thr Val Arg Ser Asn
275 280 285
Arg Thr Ala Glu Lys Leu Thr Asn Glu Gly Ile Ile Glu Asp Met Ile
290 295 300
Thr Met Ile Ile Ala Ser Gln Cys Asp Trp Asn Thr Leu Leu Thr Arg
305 310 315 320
Val Ala Glu Asp Met Lys Val Ser Gly Arg Pro Phe His Lys Met Val
325 330 335
Ser Phe Gly Met Asn Asp Cys Val Pro Val Thr Pro Phe Asn Arg Gln
340 345 350
Arg Leu Lys Thr Thr Lys Phe Glu Ala His Val Leu Ile Glu Pro Leu
355 360 365
Lys Pro Ser Arg Ile Ser Ala Ala Gln Tyr Pro Thr Phe Ser Asp Asp
370 375 380
Ala Ile Ala Ile Thr Gly Ala Ser Leu Arg Leu Pro Gly Ala Asn Asn
385 390 395 400
Leu Asp Glu Leu Trp Asp Leu Ile Ser Lys Gly Thr Asp Cys His Arg
405 410 415
Glu Ile Pro Lys Asp Arg Phe Asp Pro His Asn Ile Tyr Arg Thr Ser
420 425 430
Gln Ser Gly Phe Ser Lys Ala Gln Lys Tyr Phe Gly Asn Phe Leu Glu
435 440 445
Asp Ile Lys Gly Phe Asp Arg Ala Tyr Phe Ser Met Gly Val Arg Glu
450 455 460
Ala Ala Asn Ile Asp Pro Gln Gln Arg Leu Leu Leu Glu Leu Ala Val
465 470 475 480
Glu Ala Leu Glu Ala Ser Gly Tyr Leu Ala Asn His Val Arg Glu Ala
485 490 495
Gly Asp Pro Val Gly Cys Phe Val Gly Ala Ser Phe Ile Glu Tyr Leu
500 505 510
Glu Asn Thr Gly Ala His Pro Pro Thr Ala Tyr Thr Ala Pro Gly Thr
515 520 525
Ile Arg Ala Phe Leu Cys Gly Arg Leu Ser Tyr Tyr Phe Gly Trp Thr
530 535 540
Ala Pro Ala Glu Val Ile Asp Thr Ala Cys Ser Ala Ser Met Val Ala
545 550 555 560
Ile Asn Arg Ala Val Lys Ser Ile Gln Ala Gly Glu Cys Glu Met Ala
565 570 575
Leu Ala Gly Gly Val Asn Leu Ile Thr Gly Met Asn Asn Tyr Leu Asp
580 585 590
Leu Ala Lys Ala Gly Phe Leu Ser Pro Thr Gly Gln Cys Lys Pro Phe
595 600 605
Asp Gln Ser Gly Asp Gly Tyr Cys Arg Ser Asp Gly Ala Gly Phe Val
610 615 620
Val Leu Lys Lys Leu Ser Gln Ala Leu Val Asn Gly Asp Pro Ile Met
625 630 635 640
Gly Val Ile Pro Ser Ile Glu Thr Asn Gln Gly Gly Leu Ser Gly Ser
645 650 655
Leu Thr Val Pro Ser Ser Thr Ala Leu Gln Ala Leu Tyr Lys Arg Val
660 665 670
Leu Ser Lys Ser Gly Leu Glu Pro Ala Gln Ile Thr Tyr Val Glu Ala
675 680 685
His Gly Thr Gly Thr Gln Ala Gly Asp Pro Ile Glu Val Glu Ser Val
690 695 700
Arg Ala Val Leu Gly Asp Pro Thr Arg Ala His Ser Leu Ser Leu Gly
705 710 715 720
Ser Val Lys Gly Asn Ile Gly His Cys Glu Thr Gly Ala Gly Val Ala
725 730 735
Gly Leu Leu Lys Val Leu Ala Met Ile Lys His Gly Gly Ile Pro Pro
740 745 750
Leu Ala Ser His Lys Ala Leu Asn Pro Lys Ile Pro Ala Leu Glu Thr
755 760 765
His His Met Glu Ile Ala Lys Gln Leu Lys Pro Trp Asp Val Pro Leu
770 775 780
Arg Ala Ala Phe Val Asn Ser Tyr Gly Ala Ala Gly Ser Asn Ala Ala
785 790 795 800
Val Ile Cys Val Glu Pro Pro Pro Val Val Thr Asp Gly Ser Ser Leu
805 810 815
Ile Gly Thr Glu Pro Gln Lys Val Thr Leu Pro Val Ile Val Ser Gly
820 825 830
Ala Thr Arg Lys Ser Leu Val Leu Asn Ala Arg Ala Leu Ala Ser Tyr
835 840 845
Leu Ser Gln Asp Gly Ser His Leu Ser Ile His Asp Val Ala Phe Thr
850 855 860
Val Asn Gln Arg Arg Lys Arg Asn Arg Phe Cys Ala Glu Val Ser Gly
865 870 875 880
Thr Asp Leu Pro Ser Leu Val Gln Ser Leu Arg Ala Val Asp Ser Pro
885 890 895
Ser Phe Glu Ser Pro Gly Lys Ser Lys Pro Val Val Leu Val Phe Ser
900 905 910
Gly Gln Asn Thr Asn Ala Val Ala Leu Asp Arg Thr Ile Tyr Asp Thr
915 920 925
Tyr Pro Val Phe Lys Ala Tyr Ile Asp Ala Cys Asp Ser Glu Ile Val
930 935 940
Lys Leu Gly Phe Pro Ser Ile Met Glu Ala Ile Phe Gln Lys Glu Pro
945 950 955 960
Ile Ser Thr Ala Val Ala Leu Gln Gly Ser Ile Phe Ala Met Gln Tyr
965 970 975
Ala Cys Ala Arg Ser Trp Ile Asp Ala Gly Leu Lys Pro Arg Ala Ile
980 985 990
Ile Gly His Ser Phe Gly Glu Leu Thr Ala Leu Ala Val Ser Gly Ala
995 1000 1005
Leu Ser Leu Ala Asp Ser Leu Lys Leu Val Thr Cys Arg Gly His Leu
1010 1015 1020
Ile Asp Thr Lys Trp Gly Glu Glu Arg Gly Gly Met Leu Val Ile His
1025 1030 1035 1040
Ala Asp Val Ala Thr Val Glu Arg Phe Gln Ser Arg Phe Lys Ala Gln
1045 1050 1055
His Asp Gly Ala Glu Leu Glu Ile Ala Cys Tyr Asn Ser Pro Thr Thr
1060 1065 1070
Thr Val Val Ala Gly Pro Val Ala Tyr Met Asp Ala Ala Glu Gln Met
1075 1080 1085
Leu Ala Thr Asp Pro Asp Phe Gln Gly Leu Arg Lys Leu Arg Ile Val
1090 1095 1100
Thr Ser Asn Ala Phe His Ser Ser Leu Ser Asp Pro Ile Leu Ala Asp
1105 1110 1115 1120
Leu Asp Ser Met Ala Asp Thr Leu Thr Trp Asn Glu Pro Ser Ile Pro
1125 1130 1135
Leu Glu Ala Cys Thr Ser Glu Gly Leu Ala Ser Ile Lys Glu Trp Ser
1140 1145 1150
Ala Ser Arg His Thr Arg Gly Ser Val Tyr Phe Thr Lys Ala Val Glu
1155 1160 1165
Arg Ile Glu Gly Arg Leu Gly Ala Cys Ile Trp Val Glu Ala Gly Leu
1170 1175 1180
Asp Ser Ala Ile Ile Ala Met Ala Arg Lys Ala Ser Ser Lys Pro Asp
1185 1190 1195 1200
Ser Gln Val Phe Gln Ser Val Ser Thr Lys Ala Gly Ala Thr Ser Phe
1205 1210 1215
Ile Asp Gly Ile Val Asn Asn Leu Trp Arg Gln Gly Val Pro Leu Ser
1220 1225 1230
His Leu Asn Ala Leu Ser Ala Thr Val Lys Pro Asn Pro Val Trp Leu
1235 1240 1245
Pro Pro Tyr Gln Phe Glu Arg Glu Gln His Trp Thr Glu His Ile Asp
1250 1255 1260
Arg Ala Thr Glu Ala Ser Gln Ala Ser Thr Thr Ser Asp Thr Ile Gln
1265 1270 1275 1280
Ser Thr Pro Thr Gln Thr Val Gln Ser Pro Pro Lys Leu Ile Ser Arg
1285 1290 1295
Leu Ala Ser Leu Gln Tyr Gln Ile Asn Thr Gln Cys Glu Arg Phe Gln
1300 1305 1310
Lys Ile Thr Glu Gly His Ala Val Leu Tyr Glu Pro Leu Cys Pro Ala
1315 1320 1325
Ser Leu Tyr Met Glu Cys Val Val Met Ala Leu Gln Glu Leu Ala Gly
1330 1335 1340
Asp Leu Gly Ser Arg Thr Leu Asp Phe Glu Asn Leu Asp Phe His Ala
1345 1350 1355 1360
Gly Leu Gly Leu Gln Thr Asp Arg Arg Val Leu Leu Asp Leu Glu Glu
1365 1370 1375
Ala Arg Pro His Ser Trp Thr Phe Lys Val Gln Ser Thr Lys Ala Gly
1380 1385 1390
Ser Ser Arg Ser Leu Leu His Cys Ser Gly Arg Val Ile Leu Thr Glu
1395 1400 1405
Ser Ser Val Pro Thr Thr Phe Gln Arg Leu Val Asp Gly Pro Arg Ser
1410 1415 1420
Arg Leu Asp Gln Asp Lys Asp Ala Glu Lys Leu Met Ser Ser Arg Ala
1425 1430 1435 1440
Tyr Gly Leu Phe Ser Asn Ile Met Thr Tyr Ser Glu Phe Leu Lys Pro
1445 1450 1455
Ile Ser Ser Ile Ile Leu Arg Glu Asn Glu Ser Leu Ala Thr Ile Lys
1460 1465 1470
Leu Pro Pro Asn Gln Pro Gly Leu His Glu Ser Thr Ala Trp Lys Arg
1475 1480 1485
Cys Asp Ala Val Phe Leu Asp Gly Phe Ile Ser Ser Ser Gly Leu Leu
1490 1495 1500
Leu Asn Ser Ser Ser Val Val Gln Ser Gly His Val Leu Ile Ala Val
1505 1510 1515 1520
Gly Val Glu Arg Ala Ile Leu Thr Ala Ala Phe Gln Ala Ser Leu Ala
1525 1530 1535
Ser Ser Trp Gln Ala Tyr Ala Thr Phe Thr Met Val Gly Glu Thr His
1540 1545 1550
Ala Leu Cys Asp Val Phe Ala Cys Thr Pro Asp Gly Glu Val Val Ala
1555 1560 1565
Met Met Thr Gly Val Arg Phe Asn Lys Met Glu Ile Ser Lys Leu Ala
1570 1575 1580
Lys Ser Leu Ser Ser Val Asn Ala Ser Ser Pro Thr Gly Gly Arg Thr
1585 1590 1595 1600
Gln Pro Pro Ala Ala Pro Lys Thr Gln Ala Gln Pro Met Ala Ser Arg
1605 1610 1615
Pro Ser Pro Thr Pro Leu Gln Val Ser Phe Ala Thr Ala Glu Pro Ala
1620 1625 1630
Ala Pro Glu Pro Val Gln Gln Ser Thr Ala Ala Leu Ala Arg Asn Asp
1635 1640 1645
Ile Gly Pro Val Leu Lys Ser Leu Ile Ser Asn Tyr Thr Gly Leu Ile
1650 1655 1660
Glu Glu Asp Val Ser Glu Asp Ser Pro Leu Val Asp Leu Gly Leu Asp
1665 1670 1675 1680
Ser Leu Ser Ser Val Glu Phe Ala Ser Glu Ile Gly Thr Lys Phe Gly
1685 1690 1695
Val Thr Leu Asp Ala Asp Thr Val Gly Asp Leu Thr Leu His Ser Leu
1700 1705 1710
Cys Gln Arg Leu Ser Gly Thr Ser Asn Val Val Ser Gln Lys Met Ser
1715 1720 1725
Glu Thr Pro Ala Ala Ala Pro Val Lys Glu Leu Ile Glu Thr Val Pro
1730 1735 1740
Ser Pro Ile Val Thr Phe Ser Ser Pro Val Ser Asn Ser Ile Thr Ser
1745 1750 1755 1760
Val Leu Lys Ser Leu Leu Gly Ser Tyr Thr Gly Leu Gln Glu Glu Asp
1765 1770 1775
Met Pro Asp Asp Val Pro Leu Ile Asp Leu Gly Leu Asp Ser Leu Ser
1780 1785 1790
Ser Val Glu Phe Ala Ser Glu Leu Asn Asp Lys Met Gly Ala Asp Ile
1795 1800 1805
Asp Ser Ala Val Val Ala Asp Met Thr Leu Ser Arg Pro His Val Leu
1810 1815 1820
Ala Asp Glu Asn Leu Trp Asp Gln Ser Leu Arg Ala Ala Gly Tyr Gly
1825 1830 1835 1840
Asp Val Gln Trp Thr Glu Gly Gln Ser Glu Glu Ser Lys Thr Leu Arg
1845 1850 1855
Leu Ile Ala Ala Phe Asn Val Ser Asn Glu Asp Ala Lys Ala Ala Asn
1860 1865 1870
Ala Leu Ala Ser Ala Leu Ala Val Pro Gly Arg Lys Gly Arg Thr Ser
1875 1880 1885
Ala Thr Thr Ile Arg Trp Lys Gln Glu Gly Asp Leu Asp Leu Met Ala
1890 1895 1900
Asp Val Tyr Leu Pro Ser Asp Leu Asp Ala Ser Thr Val Ser Arg Pro
1905 1910 1915 1920
Val Ala Leu Ile Leu His Gly Gly Gly His Val Leu His Thr Arg Lys
1925 1930 1935
His Ile Asn Pro Arg His Ile Lys Met Leu Gln Asp Leu Gly Phe Leu
1940 1945 1950
Pro Val Ser Val Asp Tyr Arg Leu Cys Pro Glu Val Asn Ile Arg Asp
1955 1960 1965
Gly Pro Met Thr Asp Ala Cys Glu Ala Val Asp Trp Ala Arg Asn Ile
1970 1975 1980
Leu Pro Cys Leu Pro Val Cys Ser Glu Leu Arg Val Asp Lys Glu His
1985 1990 1995 2000
Val Val Val Ile Gly Tyr Ser Thr Gly Gly His Leu Ala Leu Thr Thr
2005 2010 2015
Ala Phe Thr Thr Arg Val Arg Gly Phe Lys Pro Pro Ser Ala Ile Leu
2020 2025 2030
Gly Phe Tyr Cys Pro Thr Asn Tyr Ser Ala Asp Trp Trp Arg Ser Pro
2035 2040 2045
Ile Tyr Pro Glu Leu Ala Gln Gln Ser Ser Ser Glu Thr Phe Asp Leu
2050 2055 2060
Leu Glu Gly Val Asn Glu His Ala Ile Ala Gly Tyr Thr Pro Thr Val
2065 2070 2075 2080
Asn Asn Asn Val Ala Ala Leu Leu Met Ser Leu Asp Asp Pro Arg Trp
2085 2090 2095
Arg Phe Val Leu His Ala Asn Trp Arg Ala Gln Thr Leu Pro Met Leu
2100 2105 2110
Ile Asn Gly Leu Pro Ser Lys Ser Arg Leu Ala Arg Ser Gly Gln Thr
2115 2120 2125
Val Asp Ser Val Ile Asn Arg Glu Ile Pro Asp Ala Glu Asp Val Ala
2130 2135 2140
Ser Ile Ser Pro Tyr Asp Gln Ile Val Arg Gly Ser Tyr Ser Thr Pro
2145 2150 2155 2160
Thr Phe Leu Leu His Gly Thr Lys Asp Asp Leu Ile Pro Trp Gln Gln
2165 2170 2175
Ser Ile Ala Thr Val Asp Ala Leu Ala Arg Arg Gly Val Asn Ala Arg
2180 2185 2190
Val Glu Ile Ile Glu Gly Ala Glu His Cys Phe Asp Val Trp Ser Asp
2195 2200 2205
Lys Tyr Asp Gly Met Ile Gly Arg Ala Leu Glu Trp Leu Val Glu Gln
2210 2215 2220
Cys Arg Asn Ala
2225
<210> 2
<211> 6687
<212> DNA/RNA
<213> 人工序列()
<400> 2
atgtctaatt ctacacgtga ctatcccata tccgcggcct tcttttgtcc acagagtagg 60
gcacccccag cggaatacct ccacgccctt tattcttttc tcagccaaaa cacccttgga 120
aaggctttcc ttcgccacat tgcgtccctt gacgaagtct ggcccatctt ctccgaagcg 180
agggacgata ttctcagact gcctgatgcg cgccaaaata tcaatgtgct cgtcgattgg 240
gcaaagggtg gctcttccac tcccattgct gaagcccgat ctggagtgat cgctcttcca 300
tcagtcttca ttgtccagct tggacaatac tttcgttacc tcgaggcaaa tcggctatcc 360
cacggcgact ttatcggcca gctcaaggat attggtggtg ttcatggata ctgtggaggc 420
gctgctgcag cactctccgt tgcgtgtgca gccgatgaga cccagctcat tgaccatgct 480
gcagtgttgc tacgtttatt cgttggtatc ggctgttgca tcgaggcagt ggatgattgg 540
accacaactg agtccactgt cattgcctgc cgtctcaaat acgaaggaca gggtgatgaa 600
ctctgtagcc gatttccagg tacatacgtc tctgccatta cagagcctaa gtcaataagc 660
attactggca atgcccgcac actgtcagag ctttttgatt atgcggtggg ccttggactt 720
cccacccata agatggaaat caccggtaaa gcacacaacc cagaaaacgc tgaactggcc 780
aaagatttta tcaacttata tcgtcggact ccggctctgc aactgccccc taccttcaag 840
ttgcaagcaa cagtgcgctc aaatcgtact gcggagaagt tgaccaacga aggcattatt 900
gaggacatga tcacgatgat tatagcgtcc caatgtgact ggaacacgct tctgacaaga 960
gtcgccgagg acatgaaggt ctctggtcga ccatttcaca agatggtgtc ctttgggatg 1020
aacgattgcg ttcctgtaac acctttcaat cgacagcggc ttaagaccac caaatttgag 1080
gctcatgtcc tcatcgagcc cctgaagcct tcgcgtattt ccgctgcgca gtatcctacc 1140
ttctcagatg atgcaatcgc cataacaggc gcttctttgc gcctaccagg tgcaaataat 1200
cttgacgaat tatgggacct gatctccaaa ggtaccgact gtcacaggga aataccaaaa 1260
gacagattcg atccgcacaa catttatcgg acctctcaga gtggcttcag caaagcccag 1320
aagtattttg gcaactttct tgaggacatc aaagggttcg atagggcgta tttcagcatg 1380
ggtgtacggg aagctgccaa catcgaccca caacagcgat tactcctgga gcttgcagtt 1440
gaagcccttg aggcaagtgg ctatctcgcc aaccatgtac gagaagctgg tgacccggtc 1500
ggctgctttg ttggagccag ctttatagaa tacctggaaa atactggtgc ccaccctcca 1560
acagcttaca ccgctcccgg aaccatcaga gcctttttat gtggcagact cagctattac 1620
tttggatgga cagccccagc ggaagttatc gatactgcct gctcggcttc catggtcgcg 1680
atcaaccgcg cagtcaaatc tatccaagca ggagaatgtg agatggcgct tgctggaggc 1740
gtaaacctga tcactggaat gaacaactat ctcgatttgg ccaaagccgg atttctgagc 1800
ccaacaggcc aatgcaagcc attcgaccaa tctggagatg gctattgtcg ctctgatgga 1860
gcaggatttg ttgttctgaa gaagttgtcg caggctctgg taaatggcga tccgatcatg 1920
ggtgttattc ccagtatcga aaccaatcaa ggtggtctat ccgggtcact cactgttcca 1980
tcatccactg cactacaagc actttacaaa cgcgtccttt cgaaatctgg tctggaacct 2040
gcacagatta cctatgttga agcccatggt acaggaaccc aagcaggtga cccgattgag 2100
gtggagagcg ttcgtgcagt tctcggagac cccacgcgag cccattctct ttccctaggc 2160
tctgtgaaag gaaacattgg ccattgcgaa actggcgctg gcgtcgctgg tctgctgaaa 2220
gtacttgcaa tgatcaaaca tggaggtatc ccgcctctgg caagccacaa agcgctcaat 2280
cctaaaatac cagccttgga gacacatcac atggaaattg caaagcagct taagccttgg 2340
gatgtcccac tgagggcagc atttgtcaac agttatggcg ctgctggctc gaatgctgcc 2400
gtgatctgtg tcgagccacc accagtcgtc accgacggat catctttgat tggcactgag 2460
cctcaaaagg taacgctccc agtcatcgtc agtggcgcta caagaaagag cttggtcctg 2520
aatgcacgag cattggcaag ctacctctcg caagacggat cacacctcag catacatgat 2580
gttgcgttta ccgtcaacca acggagaaaa cggaatagat tttgcgccga ggtctctggc 2640
accgatttgc catctttggt tcagtcactc cgcgctgtag actctcccag tttcgagagc 2700
cctggaaagt ccaagcctgt ggtgctcgtc ttcagcggac aaaacaccaa tgcagtagcc 2760
ttggaccgca cgatatacga tacctaccca gtatttaaag cctatattga cgcctgtgac 2820
tccgaaattg tgaaacttgg cttcccaagt atcatggagg ccattttcca gaaggagccc 2880
ataagcactg ctgttgcttt gcaaggcagt atcttcgcaa tgcagtatgc gtgtgcccgt 2940
tcttggatcg acgcaggcct caaacctcga gcaatcatcg gccacagttt cggcgaactt 3000
actgctttgg ctgtctctgg agctctgtca cttgcagaca gcttgaagct ggtcacatgc 3060
cgcggtcacc tcatcgacac taagtggggt gaggaaaggg gcggtatgct tgtcattcat 3120
gcggatgtgg ccacggtcga acgcttccaa tcccggttca aagcgcagca tgacggagct 3180
gaactggaga ttgcttgcta taactctcca actaccacag tggttgctgg gccagtggca 3240
tacatggatg cagctgagca gatgctggcc acagatccag atttccaggg ccttcgtaag 3300
ctgcgcattg taacgagtaa cgccttccat tcttcgttgt cggatccgat cctagccgat 3360
ttggactcca tggcagatac cttgacctgg aatgagccca gtatcccact ggaagcttgc 3420
acgagtgaag gcctggcgtc gatcaaagag tggagtgcct ccagacatac cagaggctca 3480
gtgtacttca ccaaagcggt ggagcgtatc gaaggacgac tgggtgcatg catctgggtt 3540
gaagccggcc ttgactccgc catcatagca atggctcgaa aagcttcttc aaagccagac 3600
tcgcaggtct ttcaatctgt cagcacgaag gctggagcta cttctttcat tgatggaatc 3660
gtaaacaatc tttggcgtca aggcgtgcct ctttctcact tgaacgcgct atcggcgact 3720
gtcaaaccca accctgtctg gcttccacca taccagttcg aaagagaaca gcattggacc 3780
gagcacatcg atagggcgac cgaagcaagt caagcaagca ccacaagcga cactattcag 3840
tcgactccaa cgcaaaccgt ccaaagtcca ccaaagctga tttccagact cgcatctctg 3900
cagtatcaga tcaacacgca gtgcgagcgc ttccaaaaga tcaccgaagg ccatgcggtg 3960
ttgtatgaac ccttatgccc tgcatccttg tacatggaat gtgttgtcat ggctctccaa 4020
gaactagcag gcgaccttgg ttcccgcact cttgacttcg aaaatctgga cttccatgcg 4080
gggttgggcc tacagactga ccgccgtgtg cttctcgact tggaagaagc gcgccctcac 4140
tcatggactt tcaaggtgca atccacgaaa gctgggtcat ctcggtcatt gttacattgc 4200
tcgggccggg tgatcctaac tgagagttcg gtacctacca cgttccagcg tctggtcgat 4260
ggccccagat cacgtctcga ccaggacaag gatgctgaga agcttatgtc gtctcgcgcc 4320
tacggtctgt tttccaacat catgacctat tcggaattcc tcaagccgat ttcgtcgatc 4380
atcctgcgcg aaaacgaatc cttggctacc atcaaacttc caccgaacca gcctggtctg 4440
catgaaagca cggcttggaa aagatgcgac gcagtgttcc tggatggctt catctcctct 4500
tcgggacttc tgctcaatag cagcagcgtg gttcagtcag gccatgtttt gatcgctgtt 4560
ggagtcgagc gggccatcct cacagctgct ttccaagcat cccttgcttc ctcatggcag 4620
gcgtacgcaa catttaccat ggttggcgaa actcacgctc tctgcgatgt tttcgcttgc 4680
actcctgacg gtgaagtggt agccatgatg acaggcgtga ggttcaacaa gatggagatc 4740
tcaaagttag cgaaatcgct ctcgtcggtc aacgcctcgt caccgacagg tggaagaact 4800
cagccaccag ccgcgccaaa aacccaagct cagccgatgg cttctagacc ctcacctacc 4860
ccactgcagg tttcctttgc aacggcagaa cctgccgcac cagagcctgt tcaacagtca 4920
acagctgccc tagcgcgtaa tgacataggt ccagtcctta agtctctcat ctccaactac 4980
accggcctaa tcgaagagga tgtctcggaa gatagtcctc tcgtcgactt aggtcttgac 5040
tcgctctctt ccgttgagtt cgcgtctgaa atcggaacca agttcggagt cactctggat 5100
gcggatacag tgggagactt gacgttacac tcgctttgcc agaggctcag tggcacctcg 5160
aacgttgtat cccagaagat gtccgagaca cctgcagcgg ctccggtgaa ggagctgatt 5220
gaaactgtac catcacccat cgtgactttc agcagtcctg tgtcaaacag catcacatcg 5280
gtcctaaagt ctcttctcgg gagctacacc ggcttacaag aagaagacat gcccgacgat 5340
gtacctctta ttgatcttgg actggattcc ttgtcatccg tcgagtttgc gtcggaactg 5400
aacgacaaaa tgggagcaga tatcgactcc gctgttgttg cagacatgac cttatctcga 5460
ccacacgttc ttgctgacga aaatctctgg gaccagagct tacgagcagc tggttatgga 5520
gacgtgcagt ggactgaagg gcagtctgag gaatccaaga cgctacgact cattgctgcg 5580
ttcaacgtaa gcaacgagga tgcgaaggca gcgaacgctc tggcgagcgc cttggccgta 5640
cccgggcgta aaggcaggac cagtgcgacg accatacgct ggaagcaaga gggcgatctg 5700
gatctcatgg cggatgtata cctaccgtct gatctggatg catcaactgt aagcagaccc 5760
gtcgctctga tccttcacgg tggcggccat gtcttgcaca ctagaaaaca catcaacccg 5820
cgacacatca aaatgctaca agatcttggc ttcttaccgg tttcagtcga ttatcgtctt 5880
tgtccagagg tcaacattcg cgatggacct atgacggacg catgtgaggc ggtggactgg 5940
gcaaggaata ttctaccatg tctgcctgtg tgctccgagt tgcgtgtcga caaagagcac 6000
gtagtggtga ttggctactc tacaggcgga caccttgctc tgacaactgc attcacaaca 6060
cgtgtcaggg gattcaagcc cccctctgcc attctgggat tctactgccc gaccaactat 6120
agcgccgact ggtggcggtc tcccatctat ccggagcttg ctcagcagtc tagctcggag 6180
actttcgact tgctggaagg tgtcaatgag catgcgattg ctggatacac accaacagtg 6240
aataataatg tcgctgcgct tctgatgtct cttgacgacc cacgctggcg cttcgtccta 6300
catgccaact ggcgagctca gactctcccg atgcttatca acgggctgcc ctctaagtct 6360
cggcttgcgc gcagtggaca aacggtggac agtgtcatca acagggagat tccagacgct 6420
gaagatgttg cgtctatcag cccgtatgat caaatcgtca gaggaagcta cagtacccct 6480
acattccttc tccatggaac gaaggacgat ctcattcctt ggcagcagag catagcgaca 6540
gttgatgctc tggcacgacg tggggtgaat gcgagagtgg agattattga gggtgcggag 6600
cactgttttg atgtttggtc tgataagtat gatgggatga ttgggagggc actggagtgg 6660
ttggtggagc agtgtcggaa tgcttag 6687
<210> 3
<211> 58
<212> DNA
<213> 人工序列()
<400> 3
gatgacaggc gtgaggttca acaagatgga gatctcaaag ttagcgaaat cgctctcg 58
<210> 4
<211> 29
<212> DNA
<213> 人工序列()
<400> 4
agataaggtc atgtctgcaa caacagcgg 29
<210> 5
<211> 57
<212> DNA
<213> 人工序列()
<400> 5
tccgctgttg ttgcagacat gaccttatct cgaccacacg ttcttgctga cgaaaat 57
<210> 6
<211> 58
<212> DNA
<213> 人工序列()
<400> 6
agtgatggtg atggtgatgt ccgtttaaac ctaagcattc cgacactgct ccaccaac 58

Claims (9)

1.聚酮合酶PreuA-TEPreu3,其特征在于,所述聚酮合酶PreuA-TEPreu3的氨基酸序列如SEQID NO.1所示。
2.编码权利要求1所述聚酮合酶PreuA-TEPreu3的基因。
3.根据权利要求2所述的基因,其特征在于,所述基因序列是SEQ ID NO.2所示的核苷酸序列。
4.含有权利要求2或3所述的基因的重组载体。
5.一种用权利要求4所述重组载体转化得到的重组基因工程菌。
6.权利要求1所述的聚酮合酶PreuA-TEPreu3在制备苔色酸中的应用。
7.一株可高效生产苔色酸的酵母突变株的构建方法,其特征在于,包括如下步骤:
采用LiAc/PEG4000介导的转化法利用权利要求4所述的重组载体转化酿酒酵母,将转化液均匀涂布于SC-Ura固体平板上,30℃培养箱中培养,即得到酵母突变株。
8.苔色酸的制备方法,采用权利要求7所述的构建方法构建的酵母突变株,其特征在于,包括如下步骤:
步骤(1),将酵母突变株接种于SC-Ura液体培养基中,30℃,摇床培养;培养的第2d,加入1%YPD培养基继续培养3-4d,得到发酵液;
其中,1%YPD培养基和SC-Ura液体培养基体积相同;
步骤(2),对步骤(1)培养得到的发酵液,用等体积的乙酸乙酯萃取,对萃取液浓缩,得到粗浸膏;
步骤(3),对步骤(2)得到的粗浸膏提纯,得到苔色酸。
9.根据权利要求8所述的苔色酸的制备方法,其特征在于:
步骤(3)中,对步骤(2)得到的粗浸膏进行提纯,提纯方法为:将粗浸膏用甲醇溶解后,通过ODS C18反相硅胶柱层析法,选用甲醇-水为流动相对粗浸膏进行梯度洗脱,共得到五个组分段Fr.A-Fr.E;目标代谢物苔色酸集中在Fr. E组分中,将Fr. E组分通过高效液相制备得到苔色酸;
其中,梯度洗脱流动相采用的甲醇:水的体积比依次为5:95、10:90、15:85、20:80、25:75,各梯度洗脱所用的流动相总体积均为SC-Ura液体培养基体积的十分之一。
CN202110989776.0A 2021-08-26 2021-08-26 聚酮合酶PreuA-TEPreu3的构建及其在制备苔色酸中的应用 Active CN113699130B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110989776.0A CN113699130B (zh) 2021-08-26 2021-08-26 聚酮合酶PreuA-TEPreu3的构建及其在制备苔色酸中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110989776.0A CN113699130B (zh) 2021-08-26 2021-08-26 聚酮合酶PreuA-TEPreu3的构建及其在制备苔色酸中的应用

Publications (2)

Publication Number Publication Date
CN113699130A CN113699130A (zh) 2021-11-26
CN113699130B true CN113699130B (zh) 2023-03-24

Family

ID=78655334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110989776.0A Active CN113699130B (zh) 2021-08-26 2021-08-26 聚酮合酶PreuA-TEPreu3的构建及其在制备苔色酸中的应用

Country Status (1)

Country Link
CN (1) CN113699130B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115125260B (zh) * 2022-05-27 2023-05-26 北京大学现代农业研究院 一种匍柄霉聚酮合成酶基因pks1及应用
CN115976093B (zh) * 2022-09-13 2023-06-27 东北林业大学 一种利用米曲霉制备苔色酸的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105985967A (zh) * 2015-02-10 2016-10-05 中国科学院上海生命科学研究院 卵孢霉素的生物合成基因簇及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105985967A (zh) * 2015-02-10 2016-10-05 中国科学院上海生命科学研究院 卵孢霉素的生物合成基因簇及其应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Biochemical and genetic basis of orsellinic acid biosynthesis and prenylation in a stereaceous basidiomycete;Jana Braesel等;《Fungal Genet Biol》;20170131;第98卷;12-19 *
Cloning and Functional Characterization of the Polyketide Synthases Based on Genome Mining of Preussia isomera XL-1326;Qingpei Liu等;《Front Microbiol》;20220504;第13卷;819086 *
Phytochemical study and antioxidant, antimicrobial and anticancer activities of Melanelia subaurifera and Melanelia fuliginosa lichens;Svetlana Ristić等;《J Food Sci Technol》;20160622;2804-2813 *
基于定点突变的植物Ⅲ型聚酮合酶结构与功能研究进展;李星等;《生物工程学报》;20180425(第04期);18-33 *
老龙七中苔色酸乙酯的分离及体外抗菌活性研究;张海荣等;《海峡药学》;20191231;第31卷(第09期);31-34 *
苔色酸酯的合成及抗真菌作用的研究;洪阁等;《中国新药杂志》;20070723(第14期);1099-1101 *

Also Published As

Publication number Publication date
CN113699130A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
Ma et al. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents
CN113699130B (zh) 聚酮合酶PreuA-TEPreu3的构建及其在制备苔色酸中的应用
Shao et al. Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold
Mo et al. Elucidation of the Streptomyces coelicolor pathway to 2-undecylpyrrole, a key intermediate in undecylprodiginine and streptorubin B biosynthesis
CN107435049B (zh) 一种生产红景天苷的重组大肠杆菌及构建方法及应用
CN104357418B (zh) 一种糖基转移酶及其突变体在合成人参皂苷Rh2中的应用
Shin et al. Bombyxamycins A and B, cytotoxic macrocyclic lactams from an intestinal bacterium of the silkworm Bombyx mori
Bertrand et al. Lichen biosynthetic gene clusters. Part I. Genome sequencing reveals a rich biosynthetic potential
CN113416748A (zh) 一种合成大麻二酚的表达载体、异源表达方法及应用
CN115197172B (zh) 二倍半萜化合物、其合成基因簇与合成方法
Pan et al. Genome mining and metabolic profiling illuminate the chemistry driving diverse biological activities of Bacillus siamensis SCSIO 05746
Yue et al. Functional operons in secondary metabolic gene clusters in Glarea lozoyensis (Fungi, Ascomycota, Leotiomycetes)
Liu et al. Activation and characterization of bohemamine biosynthetic gene cluster from Streptomyces sp. CB02009
Sang et al. Identification of an anti-MRSA cyclic lipodepsipeptide, WBP-29479A1, by genome mining of Lysobacter antibioticus
Mo et al. Production of branched-chain alkylprodiginines in S. coelicolor by replacement of the 3-ketoacyl ACP synthase III initiation enzyme, RedP
CN113832123B (zh) 聚酮合酶Preu3-ΔCMeT及其在制备苔色酸中的应用
Yang et al. Complete biosynthesis of the phenylethanoid glycoside verbascoside
CN111088254A (zh) 一种以真菌操纵子为基础的外源基因定点定量定时表达系统
Yang et al. MGCEP 1.0: A genetic-engineered marine-derived chassis cell for a scaled heterologous expression platform of microbial bioactive metabolites
Wu et al. De novo biosynthesis of diverse plant-derived styrylpyrones in Saccharomyces cerevisiae
US20220380822A1 (en) Application of branched-chain a-ketoacid dehydrogenase complex in preparation of malonyl coenzyme a
EP3414334B1 (en) Process
Akhgari et al. Single cell mutant selection for metabolic engineering of actinomycetes
Xiao et al. Halovirs I–K, antibacterial and cytotoxic lipopeptaibols from the plant pathogenic fungus Paramyrothecium roridum NRRL 2183
CN113583993B (zh) 聚酮合酶PreuA及其在制备红粉苔酸中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant