CN113699053B - Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof - Google Patents

Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof Download PDF

Info

Publication number
CN113699053B
CN113699053B CN202010430296.6A CN202010430296A CN113699053B CN 113699053 B CN113699053 B CN 113699053B CN 202010430296 A CN202010430296 A CN 202010430296A CN 113699053 B CN113699053 B CN 113699053B
Authority
CN
China
Prior art keywords
saccharomyces cerevisiae
astaxanthin
artificial sequence
beta
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010430296.6A
Other languages
Chinese (zh)
Other versions
CN113699053A (en
Inventor
杨祖明
王竞辉
张雅萍
张稳
姜西娟
黎源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wanhua Chemical Group Co Ltd
Wanhua Chemical Sichuan Co Ltd
Original Assignee
Wanhua Chemical Group Co Ltd
Wanhua Chemical Sichuan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wanhua Chemical Group Co Ltd, Wanhua Chemical Sichuan Co Ltd filed Critical Wanhua Chemical Group Co Ltd
Priority to CN202010430296.6A priority Critical patent/CN113699053B/en
Publication of CN113699053A publication Critical patent/CN113699053A/en
Application granted granted Critical
Publication of CN113699053B publication Critical patent/CN113699053B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13129Beta-carotene 3-hydroxylase (1.14.13.129)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof. The recombinant saccharomyces cerevisiae disclosed by the invention is used for expressing a beta-carotene ketolase gene CrtW in a constitutive mode, expressing a beta-carotene hydroxylase gene CrtZ in an inducible mode, and synthesizing an intermediate product beta-carotene into astaxanthin. The invention uses the constitutive promoter to regulate the CrtW gene to express firstly, uses the inducible promoter to regulate the CrtZ gene to express later, obviously improves the metabolic flux of the synthesizing path of the saccharomyces cerevisiae astaxanthin, ensures that the astaxanthin yield reaches 464.90mg/L, and has good industrial development prospect.

Description

Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof
Technical Field
The invention belongs to the field of microorganisms, and relates to recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof.
Background
Astaxanthin (3, 3' -dihydroxy-beta, beta ' -carotene-4,4' -dione, C) 40 H 52 O 4 596.84) has lipophilicity and hydrophilicity, is one of the most antioxidative antioxidants found in nature so far, and has an antioxidative capacity 800 times that of coenzyme Q10 and 700 times that of anthocyaninMultiple, 550 times vitamin E. Astaxanthin is divided into (3R, 3 'R), (3S, 3' S) and (3R, 3 'S) 3 different configurations according to the difference of two chiral carbons, wherein the (3S, 3' S) configuration has the strongest antioxidant capacity. Astaxanthin has a plurality of conjugated double bonds, can remove free radicals inside and outside cell membranes, reduce oxidation of proteins and lipids and damage of DNA, protect cells and delay aging, is the only carotenoid antioxidant capable of passing through blood brain barriers, has positive treatment and prevention effects on cardiovascular and cerebrovascular diseases, diabetes mellitus, cancers and the like, is known as 'health and soft gold' by European scientists and medical scientists, and has great market value in the fields of medicine, health care products, food, aquaculture and the like. Global astaxanthin production was about 511.8 tons in 2017, with total production values of about dollars 1 million, and proliferated to dollars 1.5 million in 2018. The global astaxanthin production value of 2024 is estimated to be close to 3.4 hundred million dollars, and the astaxanthin production value of China is estimated to be close to 2 hundred million dollars, and the wide market prospect is also pushing the astaxanthin biosynthesis technology to continuously develop.
At present, the species approved for the biosynthesis of astaxanthin are mainly phaffia rhodozyma and rhodococcus pluvialis. The rhodotorula produces astaxanthin with (3R, 3' R) configuration, and the astaxanthin has low antioxidant capacity and poor biological activity and is mainly used as a feed additive. The haematococcus pluvialis can accumulate astaxanthin with a relatively high concentration and a configuration of (3S, 3' S) in vivo, can be used in human foods and cosmetics, but has strict culture conditions, needs to be cultured under the condition of proper illumination throughout the year, has a relatively long period, and therefore, the production economic cost is high for a long time. With the development of synthetic biology in recent years, researchers have turned their eyes to other engineering bacteria with more mature genetic background. Saccharomyces cerevisiae is a recognized safety model microorganism, has clear genetic background and rich molecular operation tools, and can realize high-density fermentation and synthesis of high-quality (3S, 3' S) configuration astaxanthin, so that the realization of high yield of astaxanthin in Saccharomyces cerevisiae has great competitiveness in industrial production. However, a large amount of intermediates can be accumulated in the two-step reticulate metabolic pathway from beta-carotene to astaxanthin synthesis at present, so that the yield of astaxanthin is limited, and therefore, the metabolic flux of the downstream reticulate metabolic pathway is dredged, the accumulation of the intermediates is reduced, and the method has great significance in improving the synthesis of astaxanthin in saccharomyces cerevisiae.
Disclosure of Invention
The invention aims to solve the technical problem of improving the synthesis of astaxanthin in saccharomyces cerevisiae.
In order to solve the technical problems, the invention provides a recombinant saccharomyces cerevisiae which constitutively expresses a beta-carotene ketolase gene CrtW and inducible expresses a beta-carotene hydroxylase gene CrtZ, and an intermediate product beta-carotene is synthesized into astaxanthin.
In some embodiments, in the recombinant Saccharomyces cerevisiae described above, the constitutive promoter used for constitutive expression of the beta-carotene ketolase gene CrtW is TDH3p, and the sequence of TDH3p is shown in SEQ ID NO 9.
In some embodiments, in the recombinant s.cerevisiae described in any of the above, the inducible promoter used for inducible expression of the beta-carotene hydroxylase gene CrtZ is Gal1, and the sequence of Gal1 is shown in SEQ ID No. 6.
In some embodiments, in any of the above recombinant s.cerevisiae, the beta-carotene ketolase gene CrtW is BDC263CrtW derived from Brevibacterium vesiculosum (Brevundimonas vesicularis DC 263), and the sequence of BDC263CrtW is shown in positions 9-734 of SEQ ID NO: 28.
In some embodiments, in the recombinant Saccharomyces cerevisiae of any of the above, the beta-carotene hydroxylase gene CrtZ is AaCrtZ from orange Huang Nong bacillus (Agrobacterium aurantiacum), and the sequence of AaCrtZ is shown in positions 9-497 of SEQ ID NO. 25.
In order to solve the technical problems, the invention also provides a recombinant expression vector of saccharomyces cerevisiae, which comprises a constitutive promoter and a beta-carotene ketolase gene CrtW under the control of the constitutive promoter, and an inducible promoter and a beta-carotene hydroxylase gene CrtZ under the control of the inducible promoter.
In some embodiments, in the recombinant expression vector, the constitutive promoter is TDH3p, and the sequence of TDH3p is shown in SEQ ID NO. 9.
In some embodiments, in any of the above recombinant expression vectors, the beta-carotene ketolase gene CrtW has a terminator downstream, preferably TDH2t, the sequence of TDH2t is shown in SEQ ID No. 12.
In some embodiments, in the recombinant expression vector of any one of the above, the inducible promoter is Gal1, and the sequence of Gal1 is shown in SEQ ID NO. 6.
In some embodiments, in any of the above recombinant expression vectors, the beta-carotene hydroxylase gene CrtZ has a terminator downstream, preferably ADH1t, the sequence of ADH1t being shown in SEQ ID No. 3.
In some embodiments, in any of the above recombinant expression vectors, the beta-carotene ketolase gene CrtW is BDC263CrtW derived from shortwave monad vesicular (Brevundimonas vesicularis DC 263), and the sequence of BDC263CrtW is shown in positions 9-734 of SEQ ID No. 28.
In some embodiments, in any of the above recombinant expression vectors, the beta-carotene hydroxylase gene CrtZ is AaCrtZ derived from bacillus orange Huang Nong (Agrobacterium aurantiacum), and the sequence of AaCrtZ is shown in positions 9-497 in SEQ ID No. 25.
In some embodiments, any one of the above recombinant expression vectors is PRS416-ADH1t-AaCrtZ-Gal1-TDH3p-BDC263CrtW-TDH2t, the sequence of which is shown in SEQ ID NO: 35.
In order to solve the technical problems, the invention also provides a method for constructing any one of the recombinant saccharomyces cerevisiae, which comprises the step of transferring any one of the recombinant expression vectors into the original saccharomyces cerevisiae to obtain the recombinant saccharomyces cerevisiae;
the Saccharomyces cerevisiae is Saccharomyces cerevisiae capable of synthesizing beta-carotene, and is preferably Saccharomyces cerevisiae Scy10026 (Saccharomyces cerevisiae).
In order to solve the technical problems, the invention also provides a method for producing astaxanthin, which comprises the steps of fermenting and culturing any recombinant saccharomyces cerevisiae to make beta-carotene ketolase gene CrtW be expressed in a constitutive mode and adding D- (+) -galactose to induce beta-carotene hydroxylase gene CrtZ to be expressed in the fermenting and culturing process so as to synthesize astaxanthin.
In some embodiments, the above method of producing astaxanthin, the fermentation culture comprises subjecting the recombinant Saccharomyces cerevisiae described in any of the above to fermentation culture in an initial fermentation medium, at, for example, an initial OD 600 Fermenting at 30deg.C, pH5.8-6.2, aeration rate of 3.0vvm, dissolved oxygen of 30% and 300-500rpm for 48 hr, and adding D- (+) -galactose with final concentration of 20g/L for inducing beta-carotene hydroxylase gene CrtZ expression;
before adding D- (+) -galactose, feeding glucose in a feeding way and controlling the feeding speed within a range of 0-1g/L so as to reduce the generation of byproducts as much as possible, feeding the D- (+) -galactose, stopping feeding the glucose in the feeding way, and entering an astaxanthin synthesis stage, wherein a carbon source in a fermentation tank is switched to ethanol, and the carbon source is fed in a feeding way, feeding the ethanol in a feeding way and controlling the feeding speed within a range of 0.5-10g/L, and controlling the temperature within a range of 20-30 ℃;
adding nitrogen source by intermittent feeding with decreasing concentration gradient, adding a certain volume of yeast extract mother liquor into the fermentation tank at intervals, for example, adding 1.5 times of yeast extract every 12 hours (12 h,24h,36h,48h,60 h) from the beginning of fermentation, adding 1.0 times of yeast extract every 12 hours (72 h, 84 h) of fermentation, adding 2 times of yeast extract every 12 hours (96 h, 108 h) of fermentation, and adding 0.5 times of yeast extract every 12 hours (96 h, 108 h) of fermentation.
In some embodiments, in the method of producing astaxanthin of any of the above, the initial fermentation medium is YPD with 3% glucose (10 g/L yeast extract, 20g/L peptone, 30g/L glucose, balance water).
In some embodiments, the method for producing astaxanthin according to any one of the above further comprises, prior to the fermentation culture, a step of subjecting any one of the recombinant s.cerevisiae to a primary seed culture and a secondary seed culture;
the primary seed culture comprises culturing any one of the aboveThe recombinant Saccharomyces cerevisiae is inoculated into a shake flask containing SC-Ura liquid culture medium, and cultured to OD under the conditions of 30 ℃ and 250rpm, for example 600 A step of =6-7;
the secondary seed culture comprises transferring the primary seed obtained by primary seed culture into shake flask containing SC-Ura liquid culture medium, and culturing at 30deg.C and 250rpm to OD 600 A step of =5-6;
the seed may be inoculated in an amount of 5%.
In order to solve the technical problems, the invention also provides the application of any one of the recombinant saccharomyces cerevisiae and/or any one of the recombinant expression vectors in astaxanthin production.
The recombinant yeast strain for producing astaxanthin disclosed by the invention regulates and controls the expression of beta-carotene ketolase gene CrtW and beta-carotene hydroxylase gene CrtZ on an astaxanthin synthesis path through the combination of constitutive promoters and inducible promoters, the promoters and gene elements with different combinations are cloned on a plasmid expression vector, transformed into Saccharomyces cerevisiae, and the recombinant yeast strain is subjected to fermentation, detection of astaxanthin yield and screening to obtain the high-yield target strain.
The beneficial effects of the invention are as follows: the constitutive promoter is used for regulating and controlling the expression of the CrtW gene, and the inducible promoter is used for regulating and controlling the expression of the Crt Z gene, so that the metabolic flux of the astaxanthin synthesis path of the saccharomyces cerevisiae is obviously improved, the yield and purity of the astaxanthin in the saccharomyces cerevisiae are improved, the yield of the astaxanthin reaches 464.90mg/L, and the method has good industrial development prospect.
Drawings
FIG. 1 is a schematic diagram of two recombinant expression vectors constructed in example 2.
FIG. 2 shows the results of the detection of astaxanthin production by shake flask fermentation in example 4.
FIG. 3 shows the results of fermentation test of the 7L fermenter of recombinant Saccharomyces cerevisiae S1 of example 6.
Detailed Description
The experimental methods used in the following examples are conventional methods unless otherwise specified.
Materials, reagents and the like used in the examples described below are commercially available unless otherwise specified.
The invention will be further illustrated with reference to specific examples. It should be understood that the following examples are illustrative of the present invention and are not intended to limit the scope of the present invention.
Saccharomyces cerevisiae S228C (Saccharomyces cerevisiae S228C) is described in the literature "Fisk et al, saccharomyces cerevisiae S288C genome annotation: a working hypothesis. Yeast.2006;23 (12) 857-865", available to the public from Wanhua chemical groups Co., ltd.
The PRS416 carrier is Shanghai-associated biological engineering Co., ltd, and the product number is LM4777.
D- (+) -galactose is an Ala-dine product, with the product number G100367.
AaCrtZ in the examples is CrtZ from orange Huang Nong bacillus (Agrobacterium aurantiacum) and BDC263CrtW is CrtW from Brevibacterium vesiculosus (Brevundimonas vesicularis DC 263).
Example 1: construction of recombinant plasmid PRS416-ADH1t-Gal1-TDH3p-TDH2t
1. PCR amplification is carried out by taking the genome DNA of Saccharomyces cerevisiae S228C (Saccharomyces cerevisiae S228C) as a template and ADH1t_F and ADH1t_R as primers to obtain ADH1t, wherein the sequence of the ADH1t is shown as SEQ ID NO. 3.
ADH1t_F:5’-agctttggacttcttcgccagagg-3’(SEQ ID NO:1);
ADH1t_R:5’-catgccggtagaggtgtggtcaataag-3’(SEQ ID NO:2)。
2. And performing PCR amplification by taking genomic DNA of Saccharomyces cerevisiae S228C as a template and Gal1_F and Gal1_R as primers to obtain Gal1, wherein the sequence of the Gal1 is shown as SEQ ID NO. 6.
Gal1_F:5’-tatagttttttctccttgacgttaaagtatag-3’(SEQ ID NO:4);
Gal1_R:5’-ttatattgaattttcaaaaattcttactttttttttggatgg-3’(SEQ ID NO:5)。
3. And performing PCR amplification by taking genomic DNA of saccharomyces cerevisiae S228C as a template and TDH23p_F and TDH23p_R as primers to obtain TDH3p, wherein the sequence of the TDH3p is shown as SEQ ID NO. 9.
TDH3p_F:5’-cagttcgagtttatcattatcaatactgcca-3’(SEQ ID NO:7);
TDH3p_R:5’-tttgtttgtttatgtgtgtttattcgaaac-3’(SEQ ID NO:8)。
4. And performing PCR amplification by taking genomic DNA of saccharomyces cerevisiae S228C as a template and TDH2t_F and TDH2t_R as primers to obtain TDH2t, wherein the sequence of the TDH2t is shown as SEQ ID NO. 12.
TDH2t_F:5’-atttaactccttaagttactttaatgatttag-3’(SEQ ID NO:10);
TDH2t_R:5’-gcgaaaagccaattagtgtgatac-3’(SEQ ID NO:11)。
5. Splicing the ADH1t, the Gal1, the TDH3p and the TDH2t obtained in the first step to the fourth step in an OE-PCR mode to obtain the ADH1t-Gal1-TDH3p-TDH2t (SEQ ID NO: 21) with BamHI and SalI enzyme cutting sites at two ends, wherein a BsmBI enzyme cutting site is added between the ADH1t and the Gal1, and a BsaI enzyme cutting site is added between the TDH3p and the TDH2 t.
The OE-PCR system (50. Mu.l reaction system) was as follows:
ADH1t, gal1, TDH3p and TDH2t templates 1. Mu.l each, 1. Mu.l each of the upstream primer, 1. Mu.l each of the downstream primer, 10 XBuffer 5. Mu.l, dNTP 4. Mu.l, pfu DNA Polymerase. Mu.l, and ddH was added 2 O makes up the volume to 50. Mu.l.
The primers used were as follows:
Primer 1_F:5’-ggatcccatgccggtagaggtgtggtc-3’(SEQ ID NO:13);
Primer 1_R:5’-tgaaaattcaatataaatgggagacgcgtctcctaaagctttggacttc-3’(SEQ ID NO:14);
Primer 2_F:5’-aagtccaaagctttaggagacgcgtctcccatttatattgaattttcaaaaattc-3’(SEQ ID NO:15);
Primer 2_R:5’-tgataaactcgaactgtatagttttttctccttgacgttaaagtatag-3’(SEQ ID NO:16);
Primer 3_F:5’-gtcaaggagaaaaaactatacagttcgagtttatcattatcaatactg-3’(SEQ ID NO:17);
Primer 3_R:5’-ggagttaaatatttaggagaccggtctcccattatttgtttgtttatgtg-3’(SEQ ID NO:18);
Primer 4_F:5’-ataaacaaacaaataatgggagaccggtctcctaaatatttaactccttaag-3’(SEQ ID NO:19);
Primer 4_R:5’-gtcgacgcgaaaagccaattagtgtgatactaag-3’(SEQ ID NO:20)。
6. cutting ADH1t-Gal1-TDH3p-TDH2t with restriction enzymes SalI and BamHI to obtain gene fragment; cutting a PRS416 vector by using restriction enzymes SalI and BamHI to obtain a vector fragment; the gene segment is connected with the vector segment to obtain a recombinant expression vector PRS416-ADH1t-Gal1-TDH3p-TDH2t, the sequence of which is shown as SEQ ID NO. 22.
Example 2: foreign gene insertion
1. PCR amplification is carried out by taking an AaCrtZ gene as a template and taking a Primer 5_F and a Primer 5_R as primers to obtain BsaI-AaCrtZ-BsaI, the sequence of the BsaI-AaCrtZ-BsaI is shown as SEQ ID NO. 25, and the AaCrtZ gene is shown as the 9 th-497 th position in the SEQ ID NO. 25.
Primer 5_F:5’-ggtctccaatgactaacttcttgatcgttgttg-3’(SEQ ID NO:23);
Primer 5_R:5’-ggtctccatttaagttctttcttgagcttcag-3’(SEQ ID NO:24)。
2. And performing PCR amplification by using the BDC263CrtW gene as a template and using a Primer 6_F and a Primer 6_R as primers to obtain BsaI-BDC263CrtW-BsaI, wherein the sequence of the BsaI-BDC263CrtW-BsaI is shown as SEQ ID NO. 28, and the BDC263CrtW gene is shown as 9 th-734 th positions in SEQ ID NO. 28.
Primer 6_F:5’-ggtctccaatgtccgctgttactccaatg-3’(SEQ ID NO:26);
Primer 6_R:5’-ggtctccatttatgaaaataaagaccaccaaggc-3’(SEQ ID NO:27)。
3. PCR amplification is carried out by taking AaCrtZ gene as a template and taking Primer 7_F and Primer 7_R as primers to obtain BsmBI-AaCrtZ-BsmBI, wherein the sequence of the BsmBI-AaCrtZ-BsmBI is shown as SEQ ID NO. 31.
Primer 7_F:5’-cgtctccaatgactaacttcttgatcgttgttg-3’(SEQ ID NO:29);
Primer 7_R:5’-cgtctcctttaagttctttcttgagcttcagc-3’(SEQ ID NO:30)。
4. And performing PCR amplification by using BDC263CrtW gene as a template and using Primer 8_F and Primer 8_R as primers to obtain BsmBI-BDC263CrtW-BsmBI, wherein the sequence of BsmBI-BDC263CrtW-BsmBI is shown as SEQ ID NO: 34.
Primer 8_F:5’-cgtctccaatgtccgctgttactcc-3’(SEQ ID NO:32);
Primer 8_R:5’-cgtctcctttatgaaaataaagaccaccaaggc-3’(SEQ ID NO:33)。
5. BsaI-BDC263CrtW-BsaI is digested by BsaI to obtain a gene fragment; PRS416-ADH1t-Gal1-TDH3p-TDH2t obtained in example 1 was digested with BsaI to obtain vector fragment; ligating the gene fragment with the vector fragment to obtain PRS416-ADH1t-Gal1-TDH3p-BDC263CrtW-TDH2t;
cutting BsmBI-AaCrtZ-BsmBI by using BsmBI to obtain a gene fragment; cutting PRS416-ADH1t-Gal1-TDH3p-BDC263CrtW-TDH2t by BsmBI to obtain a vector fragment; the gene segment is connected with the vector segment to obtain a recombinant expression vector PRS416-ADH1t-AaCrtZ-Gal1-TDH3p-BDC263CrtW-TDH2t, the sequence of which is shown as SEQ ID NO: 35.
6. BsaI-AaCrtZ-BsaI is digested by BsaI to obtain a gene fragment; cutting the PRS416-ADH1t-Gal1-TDH3p-TDH2t vector obtained in example 1 by BsaI to obtain a vector fragment; ligating the gene fragment with the vector fragment to obtain PRS416-ADH1t-Gal1-TDH3p-AaCrtZ-TDH2t;
BsmBI-BDC263CrtW-BsmBI is digested by BsmBI to obtain a gene fragment; cutting PRS416-ADH1t-Gal1-TDH3p-AaCrtZ-TDH2t by BsmBI to obtain vector fragment; connecting the gene segment with the vector segment to obtain a recombinant expression vector PRS416-ADH1t-BDC263CrtW-Gal1-TDH3p-AaCrtZ-TDH2t, wherein the sequence of the recombinant expression vector PRS416-ADH1t-BDC263CrtW-Gal1-TDH3p-AaCrtZ-TDH2t is shown as SEQ ID NO: shown at 36.
A schematic representation of the recombinant expression vectors PRS416-ADH1t-AaCrtZ-Gal1-TDH3p-BDC263CrtW-TDH2t and PRS416-ADH1t-BDC263CrtW-Gal1-TDH3p-AaCrtZ-TDH2t is shown in FIG. 1.
Example 3: construction of astaxanthin-producing recombinant Yeast Strain
The recombinant expression vectors PRS416-ADH1t-AaCrtZ-Gal1-TDH3p-BDC263CrtW-TDH2t and PRS416-ADH1t-BDC263CrtW-Gal1-TDH3p-AaCrtZ-TDH2t obtained in the construction of example 2 were transformed into the strain Scy10026 s.cerevisiae (Saccharomyces cerevisiae) producing β -carotene by the lithium acetate method, and were subjected to transformant selection via SC-Ura solid medium (synthetic yeast nitrogen source YNB 6.7g/L, glucose 20g/L, uracil-removed mixed amino acid powder 2g/L,2% agar powder) to obtain recombinant s.cerevisiae strains S1 and S2 producing astaxanthin, respectively.
The construction method of the Scy10026 saccharomyces cerevisiae comprises the following steps: transferring CYC1t-BtCrtI-HXT7p-TDH3p-PaCrtB-ADH1t fragment (SEQ ID NO: 37) into Saccharomyces cerevisiae S288C, carrying out homologous recombination and replacing gal1, gal7 and gal10 genes, and integrating into a chromosome; and then the CYC1t-PaCrtY-HXT7p-FBA1p-TmCrtE-TDH2t fragment (SEQ ID NO: 38) is transferred into the yeast, homologous recombination is carried out, the ypl062w gene is replaced, and the yeast is integrated on a chromosome, so that the yeast Scy10026 for producing beta-carotene is obtained.
CYC1t-BtCrtI-HXT7p-TDH3p-PaCrtB-ADH1t (SEQ ID NO: 37):
the 1 st to 40 th homologous sequence is the gal7 gene downstream, the 41 st to 241 st sequence is the terminator CYC1t sequence, the 242 th to 1990 th sequence is the gene BtCrtI sequence, the 1991 st to 2691 th sequence is the promoter HXT7p sequence, the 2692 th to 3371 th sequence is the promoter TDH3p sequence, the 3372 th to 4301 nd sequence is the gene PaCrtB sequence, the 4302 nd to 4629 nd sequence is the terminator ADH1t sequence, and the 4630 th to 4669 th sequence is the gal1 gene downstream homologous sequence.
CYC1t-PaCrtY-HXT7p-FBA1p-TmCrtE-TDH2t (SEQ ID NO: 38):
the 1 st to 40 th homologous sequence is ypl062w gene upstream, the 41 st to 241 st homologous sequence is terminator CYC1t sequence, the 242 st to 1390 th homologous sequence is PaCrtY gene sequence, the 1391 st to 2091 st homologous sequence is promoter HXT7p sequence, the 2092 st to 2911 st homologous sequence is promoter FBA1p sequence, the 2912 nd to 4093 th homologous sequence is gene TmCrtE sequence, the 4094 th to 4493 th homologous sequence is terminator TDH2t sequence, and the 4494 th to 4533 th homologous sequence is ypl062w gene downstream.
Example 4: production of astaxanthin by shaking fermentation
Single colonies of recombinant Saccharomyces cerevisiae strains S1 and S2 were respectively picked and inoculated into 5ml of SC-Ura liquid medium (synthetic yeast nitrogen source YNB 6.7g/L, glucose 20g/L, mixed amino acid powder excluding uracil 2g/L, balance water), and cultured overnight at 30℃at 250rpm to obtain primary seeds. The first seed is then inoculated into fresh 5ml SC-Ura liquid medium at an inoculum size of 5% (volume to volume)Culturing the seeds at 30 deg.C and 250rpm to OD 600 =5-6, resulting in secondary seeds. Inoculating the secondary seeds into 250mL shake flask containing 50mL YPD culture medium for fermentation culture, and initial OD 600 The fermentation was completed for 84 hours after the completion of the fermentation for 48 hours by adding D- (+) -galactose at a final concentration of 2% (2 g/100 ml) to induce astaxanthin production.
1mL of the fermentation broth was centrifuged at 12000rpm for 5min, the supernatant was decanted, 1mL of sterile water was added to resuspend the cells, and the supernatant was decanted. 1mL of 3M HCl was added to resuspend the cells, the mixture was boiled for 5min, ice for 5min, centrifuged, the supernatant was decanted, the boiling water was repeated for 5min, the ice for 5min, and the mixture was repeated 2 times. After washing twice by centrifugation and discarding the supernatant, adding 1mL of acetone to resuspend cells, adding a small amount of quartz sand, shaking for 10min by vortex, centrifuging the acetone extract for 10min at 12000rpm, filtering the supernatant by using a 0.2 mu m organic filter membrane, and adding 200 mu L of the filtered supernatant into a sample bottle for astaxanthin HPLC high performance liquid chromatography detection.
The astaxanthin HPLC high performance liquid chromatography detection conditions are as follows:
the dual-wavelength detection is adopted, the measurement wavelength is set to 450/470nm, and the integral wavelength is 470nm;
column temperature: 25 ℃;
mobile phase: flow rate was 1mL/min, mobile phase B: acetonitrile: water=9:1 (volume ratio), mobile phase C: methanol: isopropanol=3:2 (volume ratio), elution conditions were: 0-15min,0-90% C;15-30min,90% C;30-35min,90-0%C;35-45min,0% C. The astaxanthin concentration was calculated by the external standard method.
Astaxanthin purity was calculated according to the formula:
W=Ca/C*100%
w is purity, ca is astaxanthin concentration (mg/L), C is carotenoid concentration (mg/L);
the carotenoid concentration is also detected by adopting an HPLC external standard method, and the HPLC detection conditions are consistent with the astaxanthin HPLC high performance liquid chromatography detection conditions.
The astaxanthin yield of recombinant Saccharomyces cerevisiae strain S2 was examined to be 43.72mg/L (purity: 57.51%), the astaxanthin yield of recombinant Saccharomyces cerevisiae strain S1 was 70.67mg/L (purity: 90.65%), and the astaxanthin yields of recombinant Saccharomyces cerevisiae strains S1 and S2 were compared as shown in FIG. 2.
Example 5: fermentation tank fermentation production of astaxanthin
1. Primary seed culture: inoculating S1 into 250mL shake flask containing 50mL SC-Ura liquid culture medium, culturing at 30deg.C and 250rpm to OD 600 =6-7, resulting in first order seeds.
2. Secondary seed culture: the first seed is transferred into a 250mL shaking flask filled with 50mL SC-Ura liquid culture medium according to the inoculum size of 5% (volume ratio), and is cultured at 30 ℃ and 250rpm until the OD 600 =5-6, resulting in secondary seeds.
3. Inoculating a fermentation tank: transferring the secondary seeds into a 7L fermentation tank with 10% (volume ratio) inoculation amount, starting fermentation, wherein the initial liquid loading amount of the fermentation tank is 3.5L, the initial fermentation medium is YPD (10 g/L yeast extract, 20g/L peptone, 30g/L glucose, and the balance being water) containing 3% glucose, and the initial OD 600 =0.5. Fermentation tank parameter setting: the fermentation temperature was 30℃and the pH was controlled at 5.8, the aeration was set at 3.0vvm, the Dissolved Oxygen (DO) was 30%, the rotational speed was in the range of 300-500rpm, and stirring was associated with DO.
The whole fermentation process adopts the D- (+) -galactose inducer to be added at the time point of two stages of boundary points. Glucose was fed in a fed-batch manner before the D- (+) -galactose inducer was added and controlled in the range of 0-1g/L to reduce the production of by-products as much as possible. After 48h of fermentation, adding a D- (+) -galactose inducer with a final concentration of 20g/L, stopping feeding glucose simultaneously, and entering an astaxanthin synthesis stage, wherein a carbon source in the fermentation tank is switched to ethanol, the ethanol is added in a feeding mode, and the concentration of the ethanol in the fermentation tank is controlled to be 0.5-10g/L. In addition, the nitrogen source in the fermentation medium is also an important factor influencing the fermentation. In order to avoid excessive nitrogen source feeding, the invention adopts an intermittent feeding mode with decreasing concentration gradient to feed nitrogen source into the fermentation tank, and adds a certain volume of yeast powder-soaking mother liquor into the fermentation tank at intervals, and the specific feeding process is as follows: 15g yeast extract is added per liter at 12, 24, 36, 48, 60 hours of fermentation; 10g yeast extract powder is added per liter at 72 and 84 hours of fermentation; 5g yeast extract was added per liter at 96 and 108 hours of fermentation.
By the same HPLC detection as in example 4, the final astaxanthin yield in the 7L fermenter was 366.90mg/L, which was 4.19 times higher than the shaking flask fermentation yield (70.67 mg/L).
Example 6
The experiment of example 6 was repeated except that the fermentation pH was controlled to 6.2 and the fermentation temperature after the addition of the D- (+) -galactose inducer was set to 20℃and the fermentation test results were shown in FIG. 3, in which the final 7L fermenter astaxanthin yield was measured to 464.90mg/L by the same HPLC test as in example 4, which was 5.58-fold improvement over the shake flask fermentation yield (70.67 mg/L).
Sequence listing
<110> Wanhua chemical group Co., ltd
Wan Hua Hua Xue (Sichuan) Co., Ltd.
<120> recombinant Saccharomyces cerevisiae for producing astaxanthin and application thereof
<130> DSP1F200403ZX
<160> 38
<170> SIPOSequenceListing 1.0
<210> 1
<211> 24
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 1
agctttggac ttcttcgcca gagg 24
<210> 2
<211> 27
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 2
catgccggta gaggtgtggt caataag 27
<210> 3
<211> 328
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 3
agctttggac ttcttcgcca gaggtttggt caagtctcca atcaaggttg tcggcttgtc 60
taccttgcca gaaatttacg aaaagatgga aaagggtcaa atcgttggta gatacgttgt 120
tgacacttct aaataagcga atttcttatg atttatgatt tttattatta aataagttat 180
aaaaaaaata agtgtataca aattttaaag tgactcttag gttttaaaac gaaaattctt 240
attcttgagt aactctttcc tgtaggtcag gttgctttct caggtatagc atgaggtcgc 300
tcttattgac cacacctcta ccggcatg 328
<210> 4
<211> 32
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 4
tatagttttt tctccttgac gttaaagtat ag 32
<210> 5
<211> 42
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 5
ttatattgaa ttttcaaaaa ttcttacttt ttttttggat gg 42
<210> 6
<211> 668
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 6
tatagttttt tctccttgac gttaaagtat agaggtatat taacaatttt ttgttgatac 60
ttttatgaca tttgaataag aagtaataca aaccgaaaat gttgaaagta ttagttaaag 120
tggttatgca gcttttgcat ttatatatct gttaatagat caaaaatcat cgcttcgctg 180
attaattacc ccagaaataa ggctaaaaaa ctaatcgcat tattatccta tggttgttaa 240
tttgattcgt tgatttgaag gtttgtgggg ccaggttact gccaattttt cctcttcata 300
accataaaag ctagtattgt agaatcttta ttgttcggag cagtgcggcg cgaggcacat 360
ctgcgtttca ggaacgcgac cggtgaagac caggacgcac ggaggagagt cttccgtcgg 420
agggctgtcg cccgctcggc ggcttctaat ccgtacttca atatagcaat gagcagttaa 480
gcgtattact gaaagttcca aagagaaggt ttttttaggc taagataatg gggctcttta 540
catttccaca acatataagt aagattagat atggatatgt atatggtggt attgccatgt 600
aatatgatta ttaaacttct ttgcgtccat ccaaaaaaaa agtaagaatt tttgaaaatt 660
caatataa 668
<210> 7
<211> 31
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 7
cagttcgagt ttatcattat caatactgcc a 31
<210> 8
<211> 30
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 8
tttgtttgtt tatgtgtgtt tattcgaaac 30
<210> 9
<211> 680
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 9
cagttcgagt ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt 60
agtgattttc ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt 120
acatgcccaa aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga 180
acagtttatt cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag 240
aaaaaaaaag aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt 300
ccattctctt agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac 360
ctcaatggag tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc 420
atgtatctat ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa 480
agctgaaaaa aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt 540
atataaagac ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat 600
tctactttta tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata 660
aacacacata aacaaacaaa 680
<210> 10
<211> 32
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 10
atttaactcc ttaagttact ttaatgattt ag 32
<210> 11
<211> 24
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 11
gcgaaaagcc aattagtgtg atac 24
<210> 12
<211> 400
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 12
atttaactcc ttaagttact ttaatgattt agtttttatt attaataatt catgctcatg 60
acatctcata tacacgttta taaaacttaa atagattgaa aatgtattaa agattcctca 120
gggattcgat ttttttggaa gtttttgttt ttttttcctt gagatgctgt agtatttggg 180
aacaattata caatcgaaag atatatgctt acattcgacc gttttagccg tgatcattat 240
cctatagtaa cataacctga agcataactg acactactat catcaatact tgtcacatga 300
gaactctgtg aataattagg ccactgaaat ttgatgcctg aaggaccggc atcacggatt 360
ttcgataaag cacttagtat cacactaatt ggcttttcgc 400
<210> 13
<211> 27
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 13
ggatcccatg ccggtagagg tgtggtc 27
<210> 14
<211> 49
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 14
tgaaaattca atataaatgg gagacgcgtc tcctaaagct ttggacttc 49
<210> 15
<211> 55
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 15
aagtccaaag ctttaggaga cgcgtctccc atttatattg aattttcaaa aattc 55
<210> 16
<211> 48
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 16
tgataaactc gaactgtata gttttttctc cttgacgtta aagtatag 48
<210> 17
<211> 48
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 17
gtcaaggaga aaaaactata cagttcgagt ttatcattat caatactg 48
<210> 18
<211> 50
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 18
ggagttaaat atttaggaga ccggtctccc attatttgtt tgtttatgtg 50
<210> 19
<211> 52
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 19
ataaacaaac aaataatggg agaccggtct cctaaatatt taactcctta ag 52
<210> 20
<211> 34
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 20
gtcgacgcga aaagccaatt agtgtgatac taag 34
<210> 21
<211> 2132
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 21
ggatcccatg ccggtagagg tgtggtcaat aagagcgacc tcatgctata cctgagaaag 60
caacctgacc tacaggaaag agttactcaa gaataagaat tttcgtttta aaacctaaga 120
gtcactttaa aatttgtata cacttatttt ttttataact tatttaataa taaaaatcat 180
aaatcataag aaattcgctt atttagaagt gtcaacaacg tatctaccaa cgatttgacc 240
cttttccatc ttttcgtaaa tttctggcaa ggtagacaag ccgacaacct tgattggaga 300
cttgaccaaa cctctggcga agaagtccaa agctttagga gacgcgtctc ccatttatat 360
tgaattttca aaaattctta cttttttttt ggatggacgc aaagaagttt aataatcata 420
ttacatggca ataccaccat atacatatcc atatctaatc ttacttatat gttgtggaaa 480
tgtaaagagc cccattatct tagcctaaaa aaaccttctc tttggaactt tcagtaatac 540
gcttaactgc tcattgctat attgaagtac ggattagaag ccgccgagcg ggcgacagcc 600
ctccgacgga agactctcct ccgtgcgtcc tggtcttcac cggtcgcgtt cctgaaacgc 660
agatgtgcct cgcgccgcac tgctccgaac aataaagatt ctacaatact agcttttatg 720
gttatgaaga ggaaaaattg gcagtaacct ggccccacaa accttcaaat caacgaatca 780
aattaacaac cataggataa taatgcgatt agttttttag ccttatttct ggggtaatta 840
atcagcgaag cgatgatttt tgatctatta acagatatat aaatgcaaaa gctgcataac 900
cactttaact aatactttca acattttcgg tttgtattac ttcttattca aatgtcataa 960
aagtatcaac aaaaaattgt taatatacct ctatacttta acgtcaagga gaaaaaacta 1020
tacagttcga gtttatcatt atcaatactg ccatttcaaa gaatacgtaa ataattaata 1080
gtagtgattt tcctaacttt atttagtcaa aaaattagcc ttttaattct gctgtaaccc 1140
gtacatgccc aaaatagggg gcgggttaca cagaatatat aacatcgtag gtgtctgggt 1200
gaacagttta ttcctggcat ccactaaata taatggagcc cgctttttaa gctggcatcc 1260
agaaaaaaaa agaatcccag caccaaaata ttgttttctt caccaaccat cagttcatag 1320
gtccattctc ttagcgcaac tacagagaac aggggcacaa acaggcaaaa aacgggcaca 1380
acctcaatgg agtgatgcaa cctgcctgga gtaaatgatg acacaaggca attgacccac 1440
gcatgtatct atctcatttt cttacacctt ctattacctt ctgctctctc tgatttggaa 1500
aaagctgaaa aaaaaggttg aaaccagttc cctgaaatta ttcccctact tgactaataa 1560
gtatataaag acggtaggta ttgattgtaa ttctgtaaat ctatttctta aacttcttaa 1620
attctacttt tatagttagt ctttttttta gttttaaaac accaagaact tagtttcgaa 1680
taaacacaca taaacaaaca aataatggga gaccggtctc ctaaatattt aactccttaa 1740
gttactttaa tgatttagtt tttattatta ataattcatg ctcatgacat ctcatataca 1800
cgtttataaa acttaaatag attgaaaatg tattaaagat tcctcaggga ttcgattttt 1860
ttggaagttt ttgttttttt ttccttgaga tgctgtagta tttgggaaca attatacaat 1920
cgaaagatat atgcttacat tcgaccgttt tagccgtgat cattatccta tagtaacata 1980
acctgaagca taactgacac tactatcatc aatacttgtc acatgagaac tctgtgaata 2040
attaggccac tgaaatttga tgcctgaagg accggcatca cggattttcg ataaagcact 2100
tagtatcaca ctaattggct tttcgcgtcg ac 2132
<210> 22
<211> 6979
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 22
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accataccac agcttttcaa ttcaattcat catttttttt ttattctttt ttttgatttc 240
ggtttctttg aaattttttt gattcggtaa tctccgaaca gaaggaagaa cgaaggaagg 300
agcacagact tagattggta tatatacgca tatgtagtgt tgaagaaaca tgaaattgcc 360
cagtattctt aacccaactg cacagaacaa aaacctgcag gaaacgaaga taaatcatgt 420
cgaaagctac atataaggaa cgtgctgcta ctcatcctag tcctgttgct gccaagctat 480
ttaatatcat gcacgaaaag caaacaaact tgtgtgcttc attggatgtt cgtaccacca 540
aggaattact ggagttagtt gaagcattag gtcccaaaat ttgtttacta aaaacacatg 600
tggatatctt gactgatttt tccatggagg gcacagttaa gccgctaaag gcattatccg 660
ccaagtacaa ttttttactc ttcgaagaca gaaaatttgc tgacattggt aatacagtca 720
aattgcagta ctctgcgggt gtatacagaa tagcagaatg ggcagacatt acgaatgcac 780
acggtgtggt gggcccaggt attgttagcg gtttgaagca ggcggcagaa gaagtaacaa 840
aggaacctag aggccttttg atgttagcag aattgtcatg caagggctcc ctatctactg 900
gagaatatac taagggtact gttgacattg cgaagagcga caaagatttt gttatcggct 960
ttattgctca aagagacatg ggtggaagag atgaaggtta cgattggttg attatgacac 1020
ccggtgtggg tttagatgac aagggagacg cattgggtca acagtataga accgtggatg 1080
atgtggtctc tacaggatct gacattatta ttgttggaag aggactattt gcaaagggaa 1140
gggatgctaa ggtagagggt gaacgttaca gaaaagcagg ctgggaagca tatttgagaa 1200
gatgcggcca gcaaaactaa aaaactgtat tataagtaaa tgcatgtata ctaaactcac 1260
aaattagagc ttcaatttaa ttatatcagt tattacccta tgcggtgtga aataccgcac 1320
agatgcgtaa ggagaaaata ccgcatcagg aaattgtaaa cgttaatatt ttgttaaaat 1380
tcgcgttaaa tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaaa 1440
tcccttataa atcaaaagaa tagaccgaga tagggttgag tgttgttcca gtttggaaca 1500
agagtccact attaaagaac gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg 1560
gcgatggccc actacgtgaa ccatcaccct aatcaagttt tttggggtcg aggtgccgta 1620
aagcactaaa tcggaaccct aaagggagcc cccgatttag agcttgacgg ggaaagccgg 1680
cgaacgtggc gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa 1740
gtgtagcggt cacgctgcgc gtaaccacca cacccgccgc gcttaatgcg ccgctacagg 1800
gcgcgtcgcg ccattcgcca ttcaggctgc gcaactgttg ggaagggcga tcggtgcggg 1860
cctcttcgct attacgccag ctggcgaaag ggggatgtgc tgcaaggcga ttaagttggg 1920
taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgag cgcgcgtaat 1980
acgactcact atagggcgaa ttgggtaccg ggccccccct cgaggtcgac gcgaaaagcc 2040
aattagtgtg atactaagtg ctttatcgaa aatccgtgat gccggtcctt caggcatcaa 2100
atttcagtgg cctaattatt cacagagttc tcatgtgaca agtattgatg atagtagtgt 2160
cagttatgct tcaggttatg ttactatagg ataatgatca cggctaaaac ggtcgaatgt 2220
aagcatatat ctttcgattg tataattgtt cccaaatact acagcatctc aaggaaaaaa 2280
aaacaaaaac ttccaaaaaa atcgaatccc tgaggaatct ttaatacatt ttcaatctat 2340
ttaagtttta taaacgtgta tatgagatgt catgagcatg aattattaat aataaaaact 2400
aaatcattaa agtaacttaa ggagttaaat atttaggaga ccggtctccc attatttgtt 2460
tgtttatgtg tgtttattcg aaactaagtt cttggtgttt taaaactaaa aaaaagacta 2520
actataaaag tagaatttaa gaagtttaag aaatagattt acagaattac aatcaatacc 2580
taccgtcttt atatacttat tagtcaagta ggggaataat ttcagggaac tggtttcaac 2640
cttttttttc agctttttcc aaatcagaga gagcagaagg taatagaagg tgtaagaaaa 2700
tgagatagat acatgcgtgg gtcaattgcc ttgtgtcatc atttactcca ggcaggttgc 2760
atcactccat tgaggttgtg cccgtttttt gcctgtttgt gcccctgttc tctgtagttg 2820
cgctaagaga atggacctat gaactgatgg ttggtgaaga aaacaatatt ttggtgctgg 2880
gattcttttt ttttctggat gccagcttaa aaagcgggct ccattatatt tagtggatgc 2940
caggaataaa ctgttcaccc agacacctac gatgttatat attctgtgta acccgccccc 3000
tattttgggc atgtacgggt tacagcagaa ttaaaaggct aattttttga ctaaataaag 3060
ttaggaaaat cactactatt aattatttac gtattctttg aaatggcagt attgataatg 3120
ataaactcga actgtatagt tttttctcct tgacgttaaa gtatagaggt atattaacaa 3180
ttttttgttg atacttttat gacatttgaa taagaagtaa tacaaaccga aaatgttgaa 3240
agtattagtt aaagtggtta tgcagctttt gcatttatat atctgttaat agatcaaaaa 3300
tcatcgcttc gctgattaat taccccagaa ataaggctaa aaaactaatc gcattattat 3360
cctatggttg ttaatttgat tcgttgattt gaaggtttgt ggggccaggt tactgccaat 3420
ttttcctctt cataaccata aaagctagta ttgtagaatc tttattgttc ggagcagtgc 3480
ggcgcgaggc acatctgcgt ttcaggaacg cgaccggtga agaccaggac gcacggagga 3540
gagtcttccg tcggagggct gtcgcccgct cggcggcttc taatccgtac ttcaatatag 3600
caatgagcag ttaagcgtat tactgaaagt tccaaagaga aggttttttt aggctaagat 3660
aatggggctc tttacatttc cacaacatat aagtaagatt agatatggat atgtatatgg 3720
tggtattgcc atgtaatatg attattaaac ttctttgcgt ccatccaaaa aaaaagtaag 3780
aatttttgaa aattcaatat aaatgggaga cgcgtctcct aaagctttgg acttcttcgc 3840
cagaggtttg gtcaagtctc caatcaaggt tgtcggcttg tctaccttgc cagaaattta 3900
cgaaaagatg gaaaagggtc aaatcgttgg tagatacgtt gttgacactt ctaaataagc 3960
gaatttctta tgatttatga tttttattat taaataagtt ataaaaaaaa taagtgtata 4020
caaattttaa agtgactctt aggttttaaa acgaaaattc ttattcttga gtaactcttt 4080
cctgtaggtc aggttgcttt ctcaggtata gcatgaggtc gctcttattg accacacctc 4140
taccggcatg ggatccacta gttctagagc ggccgccacc gcggtggagc tccagctttt 4200
gttcccttta gtgagggtta attgcgcgct tggcgtaatc atggtcatag ctgtttcctg 4260
tgtgaaattg ttatccgctc acaattccac acaacatagg agccggaagc ataaagtgta 4320
aagcctgggg tgcctaatga gtgaggtaac tcacattaat tgcgttgcgc tcactgcccg 4380
ctttccagtc gggaaacctg tcgtgccagc tgcattaatg aatcggccaa cgcgcgggga 4440
gaggcggttt gcgtattggg cgctcttccg cttcctcgct cactgactcg ctgcgctcgg 4500
tcgttcggct gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg ttatccacag 4560
aatcagggga taacgcagga aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc 4620
gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg cccccctgac gagcatcaca 4680
aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt 4740
ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc 4800
tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc 4860
tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc 4920
ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta agacacgact 4980
tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg 5040
ctacagagtt cttgaagtgg tggcctaact acggctacac tagaaggaca gtatttggta 5100
tctgcgctct gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca 5160
aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa 5220
aaaaaggatc tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaacg 5280
aaaactcacg ttaagggatt ttggtcatga gattatcaaa aaggatcttc acctagatcc 5340
ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa acttggtctg 5400
acagttacca atgcttaatc agtgaggcac ctatctcagc gatctgtcta tttcgttcat 5460
ccatagttgc ctgactcccc gtcgtgtaga taactacgat acgggagggc ttaccatctg 5520
gccccagtgc tgcaatgata ccgcgagacc cacgctcacc ggctccagat ttatcagcaa 5580
taaaccagcc agccggaagg gccgagcgca gaagtggtcc tgcaacttta tccgcctcca 5640
tccagtctat taattgttgc cgggaagcta gagtaagtag ttcgccagtt aatagtttgc 5700
gcaacgttgt tgccattgct acaggcatcg tggtgtcacg ctcgtcgttt ggtatggctt 5760
cattcagctc cggttcccaa cgatcaaggc gagttacatg atcccccatg ttgtgcaaaa 5820
aagcggttag ctccttcggt cctccgatcg ttgtcagaag taagttggcc gcagtgttat 5880
cactcatggt tatggcagca ctgcataatt ctcttactgt catgccatcc gtaagatgct 5940
tttctgtgac tggtgagtac tcaaccaagt cattctgaga atagtgtatg cggcgaccga 6000
gttgctcttg cccggcgtca atacgggata ataccgcgcc acatagcaga actttaaaag 6060
tgctcatcat tggaaaacgt tcttcggggc gaaaactctc aaggatctta ccgctgttga 6120
gatccagttc gatgtaaccc actcgtgcac ccaactgatc ttcagcatct tttactttca 6180
ccagcgtttc tgggtgagca aaaacaggaa ggcaaaatgc cgcaaaaaag ggaataaggg 6240
cgacacggaa atgttgaata ctcatactct tcctttttca atattattga agcatttatc 6300
agggttattg tctcatgagc ggatacatat ttgaatgtat ttagaaaaat aaacaaatag 6360
gggttccgcg cacatttccc cgaaaagtgc cacctgggtc cttttcatca cgtgctataa 6420
aaataattat aatttaaatt ttttaatata aatatataaa ttaaaaatag aaagtaaaaa 6480
aagaaattaa agaaaaaata gtttttgttt tccgaagatg taaaagactc tagggggatc 6540
gccaacaaat actacctttt atcttgctct tcctgctctc aggtattaat gccgaattgt 6600
ttcatcttgt ctgtgtagaa gaccacacac gaaaatcctg tgattttaca ttttacttat 6660
cgttaatcga atgtatatct atttaatctg cttttcttgt ctaataaata tatatgtaaa 6720
gtacgctttt tgttgaaatt ttttaaacct ttgtttattt ttttttcttc attccgtaac 6780
tcttctacct tctttattta ctttctaaaa tccaaataca aaacataaaa ataaataaac 6840
acagagtaaa ttcccaaatt attccatcat taaaagatac gaggcgcgtg taagttacag 6900
gcaagcgatc cgtcctaaga aaccattatt atcatgacat taacctataa aaataggcgt 6960
atcacgaggc cctttcgtc 6979
<210> 23
<211> 33
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 23
ggtctccaat gactaacttc ttgatcgttg ttg 33
<210> 24
<211> 32
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 24
ggtctccatt taagttcttt cttgagcttc ag 32
<210> 25
<211> 506
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 25
ggtctccaat gactaacttc ttgatcgttg ttgctactgt tttggttatg gaattgactg 60
cttactctgt tcacagatgg atcatgcacg gtccattggg ttggggttgg cacaagtctc 120
accacgaaga acacgaccac gctttggaaa agaacgactt gtacggtttg gttttcgctg 180
ttatcgctac tgttttgttc actgttggtt ggatctgggc tccagttttg tggtggatcg 240
ctttgggtat gactgtttac ggtttgatct acttcgtttt gcacgacggt ttggttcacc 300
aaagatggcc attcagatac atcccaagaa agggttacgc tagaagattg taccaagctc 360
acagattgca ccacgctgtt gaaggtagag accactgtgt ttctttcggt ttcatctacg 420
ctccaccagt tgacaagttg aagcaagact tgaagatgtc tggtgttttg agagctgaag 480
ctcaagaaag aacttaaatg gagacc 506
<210> 26
<211> 29
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 26
ggtctccaat gtccgctgtt actccaatg 29
<210> 27
<211> 34
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 27
ggtctccatt tatgaaaata aagaccacca aggc 34
<210> 28
<211> 743
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 28
ggtctccaat gtccgctgtt actccaatga gtagagttgt ccctaatcaa gcattgattg 60
gtttgacttt agcaggtttg attgctgctg cttggttgac attgcatata tacggtgtct 120
acttccacag atggacaatc tggtctgttt tgaccgtccc attaattgta gctggtcaaa 180
cttggttgtc cgtaggttta ttcatagttg ctcatgatgc aatgcacggt agtttggcac 240
cagccagacc tagattaaac acagcaatcg gttctttggc tttagcattg tatgccggtt 300
ttagattcac cccattgaaa actgcccatc acgctcatca cgctgcacca ggtacagcag 360
atgaccctga ttttcatgcc gacgctccaa gagcattttt gccttggttc tatggtttct 420
ttagaaccta cttcggttgg agagaattag cagttttgac tgtattagtt gcagtcgccg 480
tattaatatt gggtgctaga atgccaaatt tgttagtctt ttgggccgct cctgcattgt 540
tgtctgcctt acaattgttc actttcggta catggttgcc acatagacac accgatgacg 600
cctttcctga taatcataac gctagaacat ctccattcgg tcctgtttta tcattgttga 660
cctgtttcca tttcggtaga catcacgaac atcacttgac accttggaag ccttggtggt 720
ctttattttc ataaatggag acc 743
<210> 29
<211> 33
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 29
cgtctccaat gactaacttc ttgatcgttg ttg 33
<210> 30
<211> 32
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 30
cgtctccttt aagttctttc ttgagcttca gc 32
<210> 31
<211> 505
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 31
cgtctccaat gactaacttc ttgatcgttg ttgctactgt tttggttatg gaattgactg 60
cttactctgt tcacagatgg atcatgcacg gtccattggg ttggggttgg cacaagtctc 120
accacgaaga acacgaccac gctttggaaa agaacgactt gtacggtttg gttttcgctg 180
ttatcgctac tgttttgttc actgttggtt ggatctgggc tccagttttg tggtggatcg 240
ctttgggtat gactgtttac ggtttgatct acttcgtttt gcacgacggt ttggttcacc 300
aaagatggcc attcagatac atcccaagaa agggttacgc tagaagattg taccaagctc 360
acagattgca ccacgctgtt gaaggtagag accactgtgt ttctttcggt ttcatctacg 420
ctccaccagt tgacaagttg aagcaagact tgaagatgtc tggtgttttg agagctgaag 480
ctcaagaaag aacttaaagg agacg 505
<210> 32
<211> 25
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 32
cgtctccaat gtccgctgtt actcc 25
<210> 33
<211> 33
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 33
cgtctccttt atgaaaataa agaccaccaa ggc 33
<210> 34
<211> 742
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 34
cgtctccaat gtccgctgtt actccaatga gtagagttgt ccctaatcaa gcattgattg 60
gtttgacttt agcaggtttg attgctgctg cttggttgac attgcatata tacggtgtct 120
acttccacag atggacaatc tggtctgttt tgaccgtccc attaattgta gctggtcaaa 180
cttggttgtc cgtaggttta ttcatagttg ctcatgatgc aatgcacggt agtttggcac 240
cagccagacc tagattaaac acagcaatcg gttctttggc tttagcattg tatgccggtt 300
ttagattcac cccattgaaa actgcccatc acgctcatca cgctgcacca ggtacagcag 360
atgaccctga ttttcatgcc gacgctccaa gagcattttt gccttggttc tatggtttct 420
ttagaaccta cttcggttgg agagaattag cagttttgac tgtattagtt gcagtcgccg 480
tattaatatt gggtgctaga atgccaaatt tgttagtctt ttgggccgct cctgcattgt 540
tgtctgcctt acaattgttc actttcggta catggttgcc acatagacac accgatgacg 600
cctttcctga taatcataac gctagaacat ctccattcgg tcctgtttta tcattgttga 660
cctgtttcca tttcggtaga catcacgaac atcacttgac accttggaag ccttggtggt 720
ctttattttc ataaaggaga cg 742
<210> 35
<211> 8154
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 35
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accataccac agcttttcaa ttcaattcat catttttttt ttattctttt ttttgatttc 240
ggtttctttg aaattttttt gattcggtaa tctccgaaca gaaggaagaa cgaaggaagg 300
agcacagact tagattggta tatatacgca tatgtagtgt tgaagaaaca tgaaattgcc 360
cagtattctt aacccaactg cacagaacaa aaacctgcag gaaacgaaga taaatcatgt 420
cgaaagctac atataaggaa cgtgctgcta ctcatcctag tcctgttgct gccaagctat 480
ttaatatcat gcacgaaaag caaacaaact tgtgtgcttc attggatgtt cgtaccacca 540
aggaattact ggagttagtt gaagcattag gtcccaaaat ttgtttacta aaaacacatg 600
tggatatctt gactgatttt tccatggagg gcacagttaa gccgctaaag gcattatccg 660
ccaagtacaa ttttttactc ttcgaagaca gaaaatttgc tgacattggt aatacagtca 720
aattgcagta ctctgcgggt gtatacagaa tagcagaatg ggcagacatt acgaatgcac 780
acggtgtggt gggcccaggt attgttagcg gtttgaagca ggcggcagaa gaagtaacaa 840
aggaacctag aggccttttg atgttagcag aattgtcatg caagggctcc ctatctactg 900
gagaatatac taagggtact gttgacattg cgaagagcga caaagatttt gttatcggct 960
ttattgctca aagagacatg ggtggaagag atgaaggtta cgattggttg attatgacac 1020
ccggtgtggg tttagatgac aagggagacg cattgggtca acagtataga accgtggatg 1080
atgtggtctc tacaggatct gacattatta ttgttggaag aggactattt gcaaagggaa 1140
gggatgctaa ggtagagggt gaacgttaca gaaaagcagg ctgggaagca tatttgagaa 1200
gatgcggcca gcaaaactaa aaaactgtat tataagtaaa tgcatgtata ctaaactcac 1260
aaattagagc ttcaatttaa ttatatcagt tattacccta tgcggtgtga aataccgcac 1320
agatgcgtaa ggagaaaata ccgcatcagg aaattgtaaa cgttaatatt ttgttaaaat 1380
tcgcgttaaa tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaaa 1440
tcccttataa atcaaaagaa tagaccgaga tagggttgag tgttgttcca gtttggaaca 1500
agagtccact attaaagaac gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg 1560
gcgatggccc actacgtgaa ccatcaccct aatcaagttt tttggggtcg aggtgccgta 1620
aagcactaaa tcggaaccct aaagggagcc cccgatttag agcttgacgg ggaaagccgg 1680
cgaacgtggc gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa 1740
gtgtagcggt cacgctgcgc gtaaccacca cacccgccgc gcttaatgcg ccgctacagg 1800
gcgcgtcgcg ccattcgcca ttcaggctgc gcaactgttg ggaagggcga tcggtgcggg 1860
cctcttcgct attacgccag ctggcgaaag ggggatgtgc tgcaaggcga ttaagttggg 1920
taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgag cgcgcgtaat 1980
acgactcact atagggcgaa ttgggtaccg ggccccccct cgaggtcgac gcgaaaagcc 2040
aattagtgtg atactaagtg ctttatcgaa aatccgtgat gccggtcctt caggcatcaa 2100
atttcagtgg cctaattatt cacagagttc tcatgtgaca agtattgatg atagtagtgt 2160
cagttatgct tcaggttatg ttactatagg ataatgatca cggctaaaac ggtcgaatgt 2220
aagcatatat ctttcgattg tataattgtt cccaaatact acagcatctc aaggaaaaaa 2280
aaacaaaaac ttccaaaaaa atcgaatccc tgaggaatct ttaatacatt ttcaatctat 2340
ttaagtttta taaacgtgta tatgagatgt catgagcatg aattattaat aataaaaact 2400
aaatcattaa agtaacttaa ggagttaaat aatttatgaa aataaagacc accaaggctt 2460
ccaaggtgtc aagtgatgtt cgtgatgtct accgaaatgg aaacaggtca acaatgataa 2520
aacaggaccg aatggagatg ttctagcgtt atgattatca ggaaaggcgt catcggtgtg 2580
tctatgtggc aaccatgtac cgaaagtgaa caattgtaag gcagacaaca atgcaggagc 2640
ggcccaaaag actaacaaat ttggcattct agcacccaat attaatacgg cgactgcaac 2700
taatacagtc aaaactgcta attctctcca accgaagtag gttctaaaga aaccatagaa 2760
ccaaggcaaa aatgctcttg gagcgtcggc atgaaaatca gggtcatctg ctgtacctgg 2820
tgcagcgtga tgagcgtgat gggcagtttt caatggggtg aatctaaaac cggcatacaa 2880
tgctaaagcc aaagaaccga ttgctgtgtt taatctaggt ctggctggtg ccaaactacc 2940
gtgcattgca tcatgagcaa ctatgaataa acctacggac aaccaagttt gaccagctac 3000
aattaatggg acggtcaaaa cagaccagat tgtccatctg tggaagtaga caccgtatat 3060
atgcaatgtc aaccaagcag cagcaatcaa acctgctaaa gtcaaaccaa tcaatgcttg 3120
attagggaca actctactca ttggagtaac agcggacatt tttgtttgtt tatgtgtgtt 3180
tattcgaaac taagttcttg gtgttttaaa actaaaaaaa agactaacta taaaagtaga 3240
atttaagaag tttaagaaat agatttacag aattacaatc aatacctacc gtctttatat 3300
acttattagt caagtagggg aataatttca gggaactggt ttcaaccttt tttttcagct 3360
ttttccaaat cagagagagc agaaggtaat agaaggtgta agaaaatgag atagatacat 3420
gcgtgggtca attgccttgt gtcatcattt actccaggca ggttgcatca ctccattgag 3480
gttgtgcccg ttttttgcct gtttgtgccc ctgttctctg tagttgcgct aagagaatgg 3540
acctatgaac tgatggttgg tgaagaaaac aatattttgg tgctgggatt cttttttttt 3600
ctggatgcca gcttaaaaag cgggctccat tatatttagt ggatgccagg aataaactgt 3660
tcacccagac acctacgatg ttatatattc tgtgtaaccc gccccctatt ttgggcatgt 3720
acgggttaca gcagaattaa aaggctaatt ttttgactaa ataaagttag gaaaatcact 3780
actattaatt atttacgtat tctttgaaat ggcagtattg ataatgataa actcgaactg 3840
tatagttttt tctccttgac gttaaagtat agaggtatat taacaatttt ttgttgatac 3900
ttttatgaca tttgaataag aagtaataca aaccgaaaat gttgaaagta ttagttaaag 3960
tggttatgca gcttttgcat ttatatatct gttaatagat caaaaatcat cgcttcgctg 4020
attaattacc ccagaaataa ggctaaaaaa ctaatcgcat tattatccta tggttgttaa 4080
tttgattcgt tgatttgaag gtttgtgggg ccaggttact gccaattttt cctcttcata 4140
accataaaag ctagtattgt agaatcttta ttgttcggag cagtgcggcg cgaggcacat 4200
ctgcgtttca ggaacgcgac cggtgaagac caggacgcac ggaggagagt cttccgtcgg 4260
agggctgtcg cccgctcggc ggcttctaat ccgtacttca atatagcaat gagcagttaa 4320
gcgtattact gaaagttcca aagagaaggt ttttttaggc taagataatg gggctcttta 4380
catttccaca acatataagt aagattagat atggatatgt atatggtggt attgccatgt 4440
aatatgatta ttaaacttct ttgcgtccat ccaaaaaaaa agtaagaatt tttgaaaatt 4500
caatataaat gactaacttc ttgatcgttg ttgctactgt tttggttatg gaattgactg 4560
cttactctgt tcacagatgg atcatgcacg gtccattggg ttggggttgg cacaagtctc 4620
accacgaaga acacgaccac gctttggaaa agaacgactt gtacggtttg gttttcgctg 4680
ttatcgctac tgttttgttc actgttggtt ggatctgggc tccagttttg tggtggatcg 4740
ctttgggtat gactgtttac ggtttgatct acttcgtttt gcacgacggt ttggttcacc 4800
aaagatggcc attcagatac atcccaagaa agggttacgc tagaagattg taccaagctc 4860
acagattgca ccacgctgtt gaaggtagag accactgtgt ttctttcggt ttcatctacg 4920
ctccaccagt tgacaagttg aagcaagact tgaagatgtc tggtgttttg agagctgaag 4980
ctcaagaaag aacttaaagc tttggacttc ttcgccagag gtttggtcaa gtctccaatc 5040
aaggttgtcg gcttgtctac cttgccagaa atttacgaaa agatggaaaa gggtcaaatc 5100
gttggtagat acgttgttga cacttctaaa taagcgaatt tcttatgatt tatgattttt 5160
attattaaat aagttataaa aaaaataagt gtatacaaat tttaaagtga ctcttaggtt 5220
ttaaaacgaa aattcttatt cttgagtaac tctttcctgt aggtcaggtt gctttctcag 5280
gtatagcatg aggtcgctct tattgaccac acctctaccg gcatgggatc cactagttct 5340
agagcggccg ccaccgcggt ggagctccag cttttgttcc ctttagtgag ggttaattgc 5400
gcgcttggcg taatcatggt catagctgtt tcctgtgtga aattgttatc cgctcacaat 5460
tccacacaac ataggagccg gaagcataaa gtgtaaagcc tggggtgcct aatgagtgag 5520
gtaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa acctgtcgtg 5580
ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta ttgggcgctc 5640
ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc 5700
agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa 5760
catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt 5820
tttccatagg ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg 5880
gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg 5940
ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag 6000
cgtggcgctt tctcatagct cacgctgtag gtatctcagt tcggtgtagg tcgttcgctc 6060
caagctgggc tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa 6120
ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg 6180
taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc 6240
taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac 6300
cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggtgg 6360
tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag aagatccttt 6420
gatcttttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag ggattttggt 6480
catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat gaagttttaa 6540
atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct taatcagtga 6600
ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcctgac tccccgtcgt 6660
gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa tgataccgcg 6720
agacccacgc tcaccggctc cagatttatc agcaataaac cagccagccg gaagggccga 6780
gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt gttgccggga 6840
agctagagta agtagttcgc cagttaatag tttgcgcaac gttgttgcca ttgctacagg 6900
catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt cccaacgatc 6960
aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg gttagctcct tcggtcctcc 7020
gatcgttgtc agaagtaagt tggccgcagt gttatcactc atggttatgg cagcactgca 7080
taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg agtactcaac 7140
caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg cgtcaatacg 7200
ggataatacc gcgccacata gcagaacttt aaaagtgctc atcattggaa aacgttcttc 7260
ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt aacccactcg 7320
tgcacccaac tgatcttcag catcttttac tttcaccagc gtttctgggt gagcaaaaac 7380
aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt gaatactcat 7440
actcttcctt tttcaatatt attgaagcat ttatcagggt tattgtctca tgagcggata 7500
catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat ttccccgaaa 7560
agtgccacct gggtcctttt catcacgtgc tataaaaata attataattt aaatttttta 7620
atataaatat ataaattaaa aatagaaagt aaaaaaagaa attaaagaaa aaatagtttt 7680
tgttttccga agatgtaaaa gactctaggg ggatcgccaa caaatactac cttttatctt 7740
gctcttcctg ctctcaggta ttaatgccga attgtttcat cttgtctgtg tagaagacca 7800
cacacgaaaa tcctgtgatt ttacatttta cttatcgtta atcgaatgta tatctattta 7860
atctgctttt cttgtctaat aaatatatat gtaaagtacg ctttttgttg aaatttttta 7920
aacctttgtt tatttttttt tcttcattcc gtaactcttc taccttcttt atttactttc 7980
taaaatccaa atacaaaaca taaaaataaa taaacacaga gtaaattccc aaattattcc 8040
atcattaaaa gatacgaggc gcgtgtaagt tacaggcaag cgatccgtcc taagaaacca 8100
ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt cgtc 8154
<210> 36
<211> 8154
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 36
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accataccac agcttttcaa ttcaattcat catttttttt ttattctttt ttttgatttc 240
ggtttctttg aaattttttt gattcggtaa tctccgaaca gaaggaagaa cgaaggaagg 300
agcacagact tagattggta tatatacgca tatgtagtgt tgaagaaaca tgaaattgcc 360
cagtattctt aacccaactg cacagaacaa aaacctgcag gaaacgaaga taaatcatgt 420
cgaaagctac atataaggaa cgtgctgcta ctcatcctag tcctgttgct gccaagctat 480
ttaatatcat gcacgaaaag caaacaaact tgtgtgcttc attggatgtt cgtaccacca 540
aggaattact ggagttagtt gaagcattag gtcccaaaat ttgtttacta aaaacacatg 600
tggatatctt gactgatttt tccatggagg gcacagttaa gccgctaaag gcattatccg 660
ccaagtacaa ttttttactc ttcgaagaca gaaaatttgc tgacattggt aatacagtca 720
aattgcagta ctctgcgggt gtatacagaa tagcagaatg ggcagacatt acgaatgcac 780
acggtgtggt gggcccaggt attgttagcg gtttgaagca ggcggcagaa gaagtaacaa 840
aggaacctag aggccttttg atgttagcag aattgtcatg caagggctcc ctatctactg 900
gagaatatac taagggtact gttgacattg cgaagagcga caaagatttt gttatcggct 960
ttattgctca aagagacatg ggtggaagag atgaaggtta cgattggttg attatgacac 1020
ccggtgtggg tttagatgac aagggagacg cattgggtca acagtataga accgtggatg 1080
atgtggtctc tacaggatct gacattatta ttgttggaag aggactattt gcaaagggaa 1140
gggatgctaa ggtagagggt gaacgttaca gaaaagcagg ctgggaagca tatttgagaa 1200
gatgcggcca gcaaaactaa aaaactgtat tataagtaaa tgcatgtata ctaaactcac 1260
aaattagagc ttcaatttaa ttatatcagt tattacccta tgcggtgtga aataccgcac 1320
agatgcgtaa ggagaaaata ccgcatcagg aaattgtaaa cgttaatatt ttgttaaaat 1380
tcgcgttaaa tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaaa 1440
tcccttataa atcaaaagaa tagaccgaga tagggttgag tgttgttcca gtttggaaca 1500
agagtccact attaaagaac gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg 1560
gcgatggccc actacgtgaa ccatcaccct aatcaagttt tttggggtcg aggtgccgta 1620
aagcactaaa tcggaaccct aaagggagcc cccgatttag agcttgacgg ggaaagccgg 1680
cgaacgtggc gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa 1740
gtgtagcggt cacgctgcgc gtaaccacca cacccgccgc gcttaatgcg ccgctacagg 1800
gcgcgtcgcg ccattcgcca ttcaggctgc gcaactgttg ggaagggcga tcggtgcggg 1860
cctcttcgct attacgccag ctggcgaaag ggggatgtgc tgcaaggcga ttaagttggg 1920
taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgag cgcgcgtaat 1980
acgactcact atagggcgaa ttgggtaccg ggccccccct cgaggtcgac gcgaaaagcc 2040
aattagtgtg atactaagtg ctttatcgaa aatccgtgat gccggtcctt caggcatcaa 2100
atttcagtgg cctaattatt cacagagttc tcatgtgaca agtattgatg atagtagtgt 2160
cagttatgct tcaggttatg ttactatagg ataatgatca cggctaaaac ggtcgaatgt 2220
aagcatatat ctttcgattg tataattgtt cccaaatact acagcatctc aaggaaaaaa 2280
aaacaaaaac ttccaaaaaa atcgaatccc tgaggaatct ttaatacatt ttcaatctat 2340
ttaagtttta taaacgtgta tatgagatgt catgagcatg aattattaat aataaaaact 2400
aaatcattaa agtaacttaa ggagttaaat aatttaagtt ctttcttgag cttcagctct 2460
caaaacacca gacatcttca agtcttgctt caacttgtca actggtggag cgtagatgaa 2520
accgaaagaa acacagtggt ctctaccttc aacagcgtgg tgcaatctgt gagcttggta 2580
caatcttcta gcgtaaccct ttcttgggat gtatctgaat ggccatcttt ggtgaaccaa 2640
accgtcgtgc aaaacgaagt agatcaaacc gtaaacagtc atacccaaag cgatccacca 2700
caaaactgga gcccagatcc aaccaacagt gaacaaaaca gtagcgataa cagcgaaaac 2760
caaaccgtac aagtcgttct tttccaaagc gtggtcgtgt tcttcgtggt gagacttgtg 2820
ccaaccccaa cccaatggac cgtgcatgat ccatctgtga acagagtaag cagtcaattc 2880
cataaccaaa acagtagcaa caacgatcaa gaagttagtc atttttgttt gtttatgtgt 2940
gtttattcga aactaagttc ttggtgtttt aaaactaaaa aaaagactaa ctataaaagt 3000
agaatttaag aagtttaaga aatagattta cagaattaca atcaatacct accgtcttta 3060
tatacttatt agtcaagtag gggaataatt tcagggaact ggtttcaacc ttttttttca 3120
gctttttcca aatcagagag agcagaaggt aatagaaggt gtaagaaaat gagatagata 3180
catgcgtggg tcaattgcct tgtgtcatca tttactccag gcaggttgca tcactccatt 3240
gaggttgtgc ccgttttttg cctgtttgtg cccctgttct ctgtagttgc gctaagagaa 3300
tggacctatg aactgatggt tggtgaagaa aacaatattt tggtgctggg attctttttt 3360
tttctggatg ccagcttaaa aagcgggctc cattatattt agtggatgcc aggaataaac 3420
tgttcaccca gacacctacg atgttatata ttctgtgtaa cccgccccct attttgggca 3480
tgtacgggtt acagcagaat taaaaggcta attttttgac taaataaagt taggaaaatc 3540
actactatta attatttacg tattctttga aatggcagta ttgataatga taaactcgaa 3600
ctgtatagtt ttttctcctt gacgttaaag tatagaggta tattaacaat tttttgttga 3660
tacttttatg acatttgaat aagaagtaat acaaaccgaa aatgttgaaa gtattagtta 3720
aagtggttat gcagcttttg catttatata tctgttaata gatcaaaaat catcgcttcg 3780
ctgattaatt accccagaaa taaggctaaa aaactaatcg cattattatc ctatggttgt 3840
taatttgatt cgttgatttg aaggtttgtg gggccaggtt actgccaatt tttcctcttc 3900
ataaccataa aagctagtat tgtagaatct ttattgttcg gagcagtgcg gcgcgaggca 3960
catctgcgtt tcaggaacgc gaccggtgaa gaccaggacg cacggaggag agtcttccgt 4020
cggagggctg tcgcccgctc ggcggcttct aatccgtact tcaatatagc aatgagcagt 4080
taagcgtatt actgaaagtt ccaaagagaa ggttttttta ggctaagata atggggctct 4140
ttacatttcc acaacatata agtaagatta gatatggata tgtatatggt ggtattgcca 4200
tgtaatatga ttattaaact tctttgcgtc catccaaaaa aaaagtaaga atttttgaaa 4260
attcaatata aatgtccgct gttactccaa tgagtagagt tgtccctaat caagcattga 4320
ttggtttgac tttagcaggt ttgattgctg ctgcttggtt gacattgcat atatacggtg 4380
tctacttcca cagatggaca atctggtctg ttttgaccgt cccattaatt gtagctggtc 4440
aaacttggtt gtccgtaggt ttattcatag ttgctcatga tgcaatgcac ggtagtttgg 4500
caccagccag acctagatta aacacagcaa tcggttcttt ggctttagca ttgtatgccg 4560
gttttagatt caccccattg aaaactgccc atcacgctca tcacgctgca ccaggtacag 4620
cagatgaccc tgattttcat gccgacgctc caagagcatt tttgccttgg ttctatggtt 4680
tctttagaac ctacttcggt tggagagaat tagcagtttt gactgtatta gttgcagtcg 4740
ccgtattaat attgggtgct agaatgccaa atttgttagt cttttgggcc gctcctgcat 4800
tgttgtctgc cttacaattg ttcactttcg gtacatggtt gccacataga cacaccgatg 4860
acgcctttcc tgataatcat aacgctagaa catctccatt cggtcctgtt ttatcattgt 4920
tgacctgttt ccatttcggt agacatcacg aacatcactt gacaccttgg aagccttggt 4980
ggtctttatt ttcataaagc tttggacttc ttcgccagag gtttggtcaa gtctccaatc 5040
aaggttgtcg gcttgtctac cttgccagaa atttacgaaa agatggaaaa gggtcaaatc 5100
gttggtagat acgttgttga cacttctaaa taagcgaatt tcttatgatt tatgattttt 5160
attattaaat aagttataaa aaaaataagt gtatacaaat tttaaagtga ctcttaggtt 5220
ttaaaacgaa aattcttatt cttgagtaac tctttcctgt aggtcaggtt gctttctcag 5280
gtatagcatg aggtcgctct tattgaccac acctctaccg gcatgggatc cactagttct 5340
agagcggccg ccaccgcggt ggagctccag cttttgttcc ctttagtgag ggttaattgc 5400
gcgcttggcg taatcatggt catagctgtt tcctgtgtga aattgttatc cgctcacaat 5460
tccacacaac ataggagccg gaagcataaa gtgtaaagcc tggggtgcct aatgagtgag 5520
gtaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa acctgtcgtg 5580
ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta ttgggcgctc 5640
ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc 5700
agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa 5760
catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt 5820
tttccatagg ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg 5880
gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg 5940
ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag 6000
cgtggcgctt tctcatagct cacgctgtag gtatctcagt tcggtgtagg tcgttcgctc 6060
caagctgggc tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa 6120
ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg 6180
taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc 6240
taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac 6300
cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggtgg 6360
tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag aagatccttt 6420
gatcttttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag ggattttggt 6480
catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat gaagttttaa 6540
atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct taatcagtga 6600
ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcctgac tccccgtcgt 6660
gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa tgataccgcg 6720
agacccacgc tcaccggctc cagatttatc agcaataaac cagccagccg gaagggccga 6780
gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt gttgccggga 6840
agctagagta agtagttcgc cagttaatag tttgcgcaac gttgttgcca ttgctacagg 6900
catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt cccaacgatc 6960
aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg gttagctcct tcggtcctcc 7020
gatcgttgtc agaagtaagt tggccgcagt gttatcactc atggttatgg cagcactgca 7080
taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg agtactcaac 7140
caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg cgtcaatacg 7200
ggataatacc gcgccacata gcagaacttt aaaagtgctc atcattggaa aacgttcttc 7260
ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt aacccactcg 7320
tgcacccaac tgatcttcag catcttttac tttcaccagc gtttctgggt gagcaaaaac 7380
aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt gaatactcat 7440
actcttcctt tttcaatatt attgaagcat ttatcagggt tattgtctca tgagcggata 7500
catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat ttccccgaaa 7560
agtgccacct gggtcctttt catcacgtgc tataaaaata attataattt aaatttttta 7620
atataaatat ataaattaaa aatagaaagt aaaaaaagaa attaaagaaa aaatagtttt 7680
tgttttccga agatgtaaaa gactctaggg ggatcgccaa caaatactac cttttatctt 7740
gctcttcctg ctctcaggta ttaatgccga attgtttcat cttgtctgtg tagaagacca 7800
cacacgaaaa tcctgtgatt ttacatttta cttatcgtta atcgaatgta tatctattta 7860
atctgctttt cttgtctaat aaatatatat gtaaagtacg ctttttgttg aaatttttta 7920
aacctttgtt tatttttttt tcttcattcc gtaactcttc taccttcttt atttactttc 7980
taaaatccaa atacaaaaca taaaaataaa taaacacaga gtaaattccc aaattattcc 8040
atcattaaaa gatacgaggc gcgtgtaagt tacaggcaag cgatccgtcc taagaaacca 8100
ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt cgtc 8154
<210> 37
<211> 4669
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 37
ttacagtctt tgtagataat gaatctgacc atctaaattt tttgtacaga aaaaaaagaa 60
aaatttgaaa tataaataac gttcttaata ctaacataac tattaaaaaa aataaatagg 120
gacctagact tcaggttgtc taactccttc cttttcggtt agagcggatg tgggaggagg 180
gcgtgaatgt aagcgtgaca taactaatta catgatatcg acaaaggaaa aggggcctgt 240
tttatatcct aatatcgtta gagttctgtc cttggaagac gtttggcaac aactgattaa 300
taaaagatgc tggagtagta gtgtcgtccc taggaaagaa atagaagaac aagaaagtga 360
caaagtagca tgctaagcag taataaatcc agtgtgactc agtcttcctt gtttgctcag 420
gtgcatattt cttctgagag tcctgtaact tcctaggcaa agggttttgt ccgaatgact 480
tacagacctg gtcagaagtt aatttagatc ctgccaagac tattgggact cctgtaccag 540
ggtgagttga tgcaccgacg aaaaataaat tgtcatatct gttagtagag tcctttgttg 600
aaggtctgaa ccacaaaacc tgaaagacat catgtgataa acctaatatt gatcccctcc 660
acaagttgaa cttagattgc cagactgatg ggtcgttgac ctcctcgtgt tctatcaagt 720
tagcgaagtt gttgactccc aacctcctct ctatgacctc caagaccatc tttctagccc 780
tgttgaccaa ctctgggtag ttctcctctg ctgagttacc tgtcttagac ttcatgtgac 840
caattggaac taaaactata attgagtcct tatttggagg tgctgcagac tcgtctatcc 900
ttgaaggaac gttgacgtag aaagatgctt cagaaggcaa accgaaatcg ttaaaaatct 960
cgtcgaatga ctccttgtaa gcctcagcca agaaaatgtt gtggacgtcc aattgaggga 1020
ccttagtaga cattgaccag taaaaagaaa ttgatgaaga tgttaatttc ttagatgcca 1080
aagtcttctt tgtccagttg caaggtggca acaagtggtg gtaagcgtag accaagtcag 1140
cgttgcagac gacagcgtct gcctcaatga cttctccaga ctccaaagtg acaccagtga 1200
ccctcttgtc tttatcgaca gtgttaatct tagcgacagg agattggtac ctgaactcag 1260
ctccgtactt cttagaagct atagactcca acttttggac gaccatgttg aaaccacccc 1320
ttgggtacca aattccctct gcgaactctg tatattgcaa caatgagtag actgcaggtg 1380
cgtcgtaagg tgacataccc atgtacattg tttgaaaagt aaaagccatc ctcatctttt 1440
ttgtttggaa gtattttgat gctctgtcgt atatcttacc gaataagtgc aacctaaaaa 1500
tctctgggac gtactgtaac cttattaagt cccatatagt ttcgaagttt ctctttatag 1560
caatgaatgt accctgctcg tagtggacgt gtgtctcttt catgaaatct aagaacctac 1620
cgaatcctaa aggtccctca atcctgtcca actcaccctt catctttgtt aagtctgatg 1680
acaattggac agcgtcaccg tcgtcgaaat ggactttgta attgttgtca catcttaata 1740
agtccaagtg gtctcctatc ctctcgtcta agtcagcgaa agcgtcctca aacaacttag 1800
gcatcaagta caatgaaggt ccctggtcga acctgtgacc gtcgtggtga atgaaagagc 1860
accttcctcc agagaagtcg ttcttctcga cgacagtgac tctgaaaccc tcccttgcta 1920
accttgctgc tgttgcagta cctcctattc cagcacctat gacgacaatg tgcttcttct 1980
gatcagacat ttttttgatt aaaattaaaa aaactttttg tttttgtgtt tattctttgt 2040
tcttagaaaa gacaagttga gcttgtttgt tcttgatgtt ttattatttt acaatagctg 2100
caaatgaaga atagattcga acattgtgaa gtattggcat atatcgtctc tatttatact 2160
tttttttttt cagttctagt atattttgta ttttcctcct tttcattctt tcagttgcca 2220
ataagttaca ggggatctcg aaagatggtg gggatttttc cttgaaagac gactttttgc 2280
catctaattt ttccttgttg cctctgaaaa ttatccagca gaagcaaatg taaaagatga 2340
acctcagaag aacacgcagg ggcccgaaat tgttcctacg agaagtagtg ggtcataaaa 2400
agtttattcc ctggaaaaaa aattttgcgt tgcctttctg gagaattttt tcgaattagc 2460
gtgctgccac tgcatgcatt tctgagaagt gtgggcattc ttccaccagt tgttcctcct 2520
aaaaaaaaaa aagatttcct accccgcaca aattcctgca tacccctcat ttccacgggg 2580
taaaaaaaaa acatcccgta gcagcctctg acggagccgt atggaacaat cctggataaa 2640
tatggcggaa aaacggctct ggctgcggct ttgtttaagg cagaaactag acagttcgag 2700
tttatcatta tcaatactgc catttcaaag aatacgtaaa taattaatag tagtgatttt 2760
cctaacttta tttagtcaaa aaattagcct tttaattctg ctgtaacccg tacatgccca 2820
aaataggggg cgggttacac agaatatata acatcgtagg tgtctgggtg aacagtttat 2880
tcctggcatc cactaaatat aatggagccc gctttttaag ctggcatcca gaaaaaaaaa 2940
gaatcccagc accaaaatat tgttttcttc accaaccatc agttcatagg tccattctct 3000
tagcgcaact acagagaaca ggggcacaaa caggcaaaaa acgggcacaa cctcaatgga 3060
gtgatgcaac ctgcctggag taaatgatga cacaaggcaa ttgacccacg catgtatcta 3120
tctcattttc ttacaccttc tattaccttc tgctctctct gatttggaaa aagctgaaaa 3180
aaaaggttga aaccagttcc ctgaaattat tcccctactt gactaataag tatataaaga 3240
cggtaggtat tgattgtaat tctgtaaatc tatttcttaa acttcttaaa ttctactttt 3300
atagttagtc ttttttttag ttttaaaaca ccaagaactt agtttcgaat aaacacacat 3360
aaacaaacaa aatgtcacaa ccaccattat tggaccacgc tacacaaact atggcaaacg 3420
gttctaaatc tttcgctact gctgctaaat tattcgaccc agcaacaaga agatctgtat 3480
tgatgttgta cacctggtgt agacattgcg atgacgttat agatgaccaa actcacggtt 3540
ttgcttcaga agctgcagcc gaagaagaag ctacacaaag attggcaaga ttaagaactt 3600
tgacattagc tgcattcgaa ggtgccgaaa tgcaagatcc agcttttgcc gctttccaag 3660
aagttgcatt aacccatggt attactccta gaatggcttt ggatcactta gacggttttg 3720
caatggatgt cgcccaaaca agatacgtaa ccttcgaaga cactttaaga tattgttacc 3780
atgtcgccgg tgttgtcggt ttgatgatgg ctagagtaat gggtgttaga gatgaaagag 3840
ttttagatag agcatgtgac ttgggtttag ccttccaatt gacaaacata gctagagata 3900
taatagatga cgcagccata gacagatgct atttgccagc tgaatggtta caagatgcag 3960
gtttgactcc tgaaaattac gctgcaagag aaaacagagc cgctttagcc agagttgctg 4020
aaagattgat agatgcagcc gaaccatatt acatctcttc acaagctggt ttgcatgatt 4080
tgccacctag atgcgcatgg gccattgcta ccgcaagatc tgtttacaga gaaatcggta 4140
ttaaagtcaa ggctgcaggt ggttccgcat gggatagaag acaacacact tctaaaggtg 4200
aaaagatcgc tatgttgatg gccgctcctg gtcaagttat tagagcaaag accaccagag 4260
tcaccccaag accagccggt ttatggcaaa gacctgttta aagctttgga cttcttcgcc 4320
agaggtttgg tcaagtctcc aatcaaggtt gtcggcttgt ctaccttgcc agaaatttac 4380
gaaaagatgg aaaagggtca aatcgttggt agatacgttg ttgacacttc taaataagcg 4440
aatttcttat gatttatgat ttttattatt aaataagtta taaaaaaaat aagtgtatac 4500
aaattttaaa gtgactctta ggttttaaaa cgaaaattct tattcttgag taactctttc 4560
ctgtaggtca ggttgctttc tcaggtatag catgaggtcg ctcttattga ccacacctct 4620
accggcatgc tctaaaccag cattgggcag ctgtctatat gaattataa 4669
<210> 38
<211> 4533
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 38
atagaattgg attatgtaaa aggtgaagat accattgtag tttgtacaga aaaaaaagaa 60
aaatttgaaa tataaataac gttcttaata ctaacataac tattaaaaaa aataaatagg 120
gacctagact tcaggttgtc taactccttc cttttcggtt agagcggatg tgggaggagg 180
gcgtgaatgt aagcgtgaca taactaatta catgatatcg acaaaggaaa aggggcctgt 240
tttaacgatg agtcgtcata atggcttgca atgctgctaa taccggaaca ggcggcttgc 300
cgctcagaat acgtagccga tcggtcagcg tgagttttcc cgcataaaaa cgggcaatta 360
aatcttcagg taaaccataa aaacgctgca taacccgcca gcgtgaatcg gcgggtccgg 420
ctaaaaacag catgcgattc agcatgcgga aaaagcgctg ctgctgccag cgctcgcggg 480
caaaatgcgt aatggcctgg tgaattgagg ccgacgtaaa gacatcaagt gcgctcaggc 540
ggtcggccac ggcaaccgcc agcggcagtg aatagccggt ggtaggatgg aacagaccgg 600
cacgtaatcc actacaggcc agggggcgct gctgccagaa tgcgtcggca ttgcccgaca 660
gggtgatggg taaggcgccc tgttcttcac gcagcaatgt ctgaagctgc caaccctgtt 720
gcgcggcata gtcgcaaata ttttgccgcg cgcgttcagg atctaatgtc gcattatcga 780
tatagtgcgt gtcttcaatt aacaatctgg tcggcgagag cggcaggctg tacacgaagc 840
gataaccatt ttgctgatcg accgtggcat ccatgataat gggagacgat aaaccatgcg 900
gttggctcaa tcgccattcc tggccaataa acgcctggaa gcccacgctc agtgctgagt 960
ttgccgcata accccgcccg tcaatcaccg cgcgtgcacc gataacctga ccctttttca 1020
accgaacaga ttccgcatta acctctgcga ccgcggtatc catccacaag tgcgggccaa 1080
actgtcgctg taaaacctca gcgaaacgct gagaagtaat acagaagtag ccgctgttca 1140
gcttacgacg gcgtgtggga aagcgcacct gatagtcggg ccagtgatga accaccagcg 1200
gagctatcca gcgatgttgg ctctcagtca aatcatcgtg gtgaaatgac cacgtatgat 1260
tcccgcccgc ctggggtgcg gcgtcgataa gcaaaatacg catatcaggt tgctgctgct 1320
gaagacgcag ggcgataagg ccattcgcga gtccagcccc cacgagaatc agatcataat 1380
gcggttgcat ttttttgatt aaaattaaaa aaactttttg tttttgtgtt tattctttgt 1440
tcttagaaaa gacaagttga gcttgtttgt tcttgatgtt ttattatttt acaatagctg 1500
caaatgaaga atagattcga acattgtgaa gtattggcat atatcgtctc tatttatact 1560
tttttttttt cagttctagt atattttgta ttttcctcct tttcattctt tcagttgcca 1620
ataagttaca ggggatctcg aaagatggtg gggatttttc cttgaaagac gactttttgc 1680
catctaattt ttccttgttg cctctgaaaa ttatccagca gaagcaaatg taaaagatga 1740
acctcagaag aacacgcagg ggcccgaaat tgttcctacg agaagtagtg ggtcataaaa 1800
agtttattcc ctggaaaaaa aattttgcgt tgcctttctg gagaattttt tcgaattagc 1860
gtgctgccac tgcatgcatt tctgagaagt gtgggcattc ttccaccagt tgttcctcct 1920
aaaaaaaaaa aagatttcct accccgcaca aattcctgca tacccctcat ttccacgggg 1980
taaaaaaaaa acatcccgta gcagcctctg acggagccgt atggaacaat cctggataaa 2040
tatggcggaa aaacggctct ggctgcggct ttgtttaagg cagaaactag atccaactgg 2100
caccgctggc ttgaacaaca ataccagcct tccaacttct gtaaataacg gcggtacgcc 2160
agtgccacca gtaccgttac ctttcggtat acctcctttc cccatgtttc caatgccctt 2220
catgcctcca acggctacta tcacaaatcc tcatcaagct gacgcaagcc ctaagaaatg 2280
aataacaata ctgacagtac taaataattg cctacttggc ttcacatacg ttgcatacgt 2340
cgatatagat aataatgata atgacagcag gattatcgta atacgtaata gttgaaaatc 2400
tcaaaaatgt gtgggtcatt acgtaaataa tgataggaat gggattcttc tatttttcct 2460
ttttccattc tagcagccgt cgggaaaacg tggcatcctc tctttcgggc tcaattggag 2520
tcacgctgcc gtgagcatcc tctctttcca tatctaacaa ctgagcacgt aaccaatgga 2580
aaagcatgag cttagcgttg ctccaaaaaa gtattggatg gttaatacca tttgtctgtt 2640
ctcttctgac tttgactcct caaaaaaaaa aaatctacaa tcaacagatc gcttcaatta 2700
cgccctcaca aaaacttttt tccttcttct tcgcccacgt taaattttat ccctcatgtt 2760
gtctaacgga tttctgcact tgatttatta taaaaagaca aagacataat acttctctat 2820
caatttcagt tattgttctt ccttgcgtta ttcttctgtt cttctttttc ttttgtcata 2880
tataaccata accaagtaat acatattcaa aatggcttat accgcaatgg cagcaggaac 2940
tcagtcattg cagttgagga cagtcgcctc ttaccaggag tgcaactcaa tgaggtcttg 3000
cttcaagttg accccattca agtcattcca cggtgtcaac ttcaacgttc cttctttagg 3060
tgccgccaac tgcgaaatca tgggtcactt gaaattgggt tctttgccat acaaacagtg 3120
ttcagtatca tctaagtcaa ctaagactat ggcccagttg gtagatttgg cagagaccga 3180
gaaagccgag ggaaaggata tcgagttcga ttttaacgag tatatgaagt ctaaggctgt 3240
cgctgttgat gcagccttgg ataaggccat ccctttggag tatccagaga agatccatga 3300
gtctatgagg tactcattgt tggccggagg aaaaagggtc agacctgcat tatgcatcgc 3360
tgcttgcgag ttagtaggtg gttctcagga cttggccatg ccaaccgcat gtgccatgga 3420
aatgattcat accatgtcat tgattcacga tgatttgcct tgcatggaca acgacgactt 3480
cagaagggga aagcctacca atcacaaggt tttcggagag gacactgctg ttttagccgg 3540
tgacgcattg ttatctttcg cttttgaaca catcgccgtt gccacatcaa aaactgtccc 3600
atctgacagg accttgagag tcatttctga gttgggtaaa accatcggtt cacagggatt 3660
ggtcggaggt caggtagtcg acatcacttc tgagggagac gccaacgtcg acttaaagac 3720
attggagtgg attcacattc acaagactgc cgtcttgttg gaatgctctg ttgtttctgg 3780
aggaatcttg ggtggagcta ccgaggatga gattgctaga ataagaagat acgccaggtg 3840
cgtcggtttg ttgttccagg ttgtcgacga cattttggat gtcaccaagt cttcagagga 3900
attgggaaag accgccggta aagacttatt gaccgacaag gctacctacc ctaagttgat 3960
gggtttggag aaggccaaag agtttgcagc agaattagct accagggcaa aggaagagtt 4020
gtcatcattc gaccagatca aggcagcccc tttgttagga ttggccgatt acatcgcttt 4080
caggcaaaac taaatttaac tccttaagtt actttaatga tttagttttt attattaata 4140
attcatgctc atgacatctc atatacacgt ttataaaact taaatagatt gaaaatgtat 4200
taaagattcc tcagggattc gatttttttg gaagtttttg tttttttttc cttgagatgc 4260
tgtagtattt gggaacaatt atacaatcga aagatatatg cttacattcg accgttttag 4320
ccgtgatcat tatcctatag taacataacc tgaagcataa ctgacactac tatcatcaat 4380
acttgtcaca tgagaactct gtgaataatt aggccactga aatttgatgc ctgaaggacc 4440
ggcatcacgg attttcgata aagcacttag tatcacacta attggctttt cgcattgatc 4500
tcctcttggg aacggtgagt gcaacgaatg cga 4533

Claims (2)

1. A method for producing astaxanthin, comprising the steps of subjecting recombinant saccharomyces cerevisiae to fermentation culture such that the beta-carotene ketolase gene CrtW is constitutively expressed and adding D- (+) -galactose during the fermentation culture to induce the expression of the beta-carotene hydroxylase gene CrtZ to synthesize astaxanthin;
the fermentation culture comprises the steps of carrying out fermentation culture on the recombinant saccharomyces cerevisiae in an initial fermentation culture medium, fermenting the saccharomyces cerevisiae with pH of 5.8-6.2, and then adding D- (+) -galactose to induce beta-carotene hydroxylase gene CrtZ to express;
before D- (+) -galactose is added, glucose is fed in and controlled within the range of 0-1 g/L; d- (+) -galactose is added, meanwhile, glucose is stopped being fed, ethanol is fed and controlled within the range of 0.5-10g/L, and the temperature is controlled within 20-30 ℃;
the nitrogen source is supplemented in a concentration gradient decreasing intermittent feeding mode during fermentation culture;
the recombinant saccharomyces cerevisiae is obtained by transferring a recombinant expression vector PRS416-ADH1t-AaCrtZ-Gal1-TDH3p-BDC263CrtW-TDH2t shown in SEQ ID NO. 35 into the saccharomyces cerevisiae capable of synthesizing beta-carotene.
2. The method according to claim 1, characterized in that: the method also comprises the step of carrying out primary seed culture and secondary seed culture on the recombinant saccharomyces cerevisiae before fermentation culture;
the primary seed culture comprises inoculating the recombinant Saccharomyces cerevisiae into a shake flask filled with SC-Ura liquid culture medium, and culturing to OD 600 A step of =6-7;
the secondary seed culture comprises transferring the primary seed obtained by primary seed culture into shake flask containing SC-Ura liquid culture medium, and culturing to OD 600 Step=5-6.
CN202010430296.6A 2020-05-20 2020-05-20 Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof Active CN113699053B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010430296.6A CN113699053B (en) 2020-05-20 2020-05-20 Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010430296.6A CN113699053B (en) 2020-05-20 2020-05-20 Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof

Publications (2)

Publication Number Publication Date
CN113699053A CN113699053A (en) 2021-11-26
CN113699053B true CN113699053B (en) 2023-08-11

Family

ID=78645599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010430296.6A Active CN113699053B (en) 2020-05-20 2020-05-20 Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof

Country Status (1)

Country Link
CN (1) CN113699053B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214218A (en) * 2021-12-24 2022-03-22 华东理工大学 Engineering bacterium for producing astaxanthin and preparation method and application thereof
CN114574516B (en) * 2022-01-18 2023-10-27 浙江大学杭州国际科创中心 CRISPR/Cas 9-based yeast genome stable integration method
CN114350736A (en) * 2022-01-29 2022-04-15 万华化学(四川)有限公司 Method for increasing content of astaxanthin diester in haematococcus pluvialis culture

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865818A (en) * 2012-12-07 2014-06-18 上海来益生物药物研究开发中心有限责任公司 Construction method of genetically engineered bacterium for producing astaxanthin
CN105087408A (en) * 2015-09-10 2015-11-25 武汉生物技术研究院 Yeast strain for producing beta-carotene and application of yeast strain
CN105779319A (en) * 2016-03-23 2016-07-20 天津大学 Recombinant yeast strain, and building method and application thereof
CN105861538A (en) * 2016-05-25 2016-08-17 天津大学 Recombinant plasmid and recombinant yeast strain and establishing method and application thereof
CN109943493A (en) * 2019-04-17 2019-06-28 天津大学 Realize the mutant strain and its construction method of general enzymatic functional diversity
CN109971664A (en) * 2019-04-23 2019-07-05 天津大学 The bacterial strain of high-yield astaxanthin and its application
CN110195023A (en) * 2019-06-27 2019-09-03 天津大学 A kind of Wine brewing yeast strain and its application
CN111057712A (en) * 2019-12-02 2020-04-24 森瑞斯生物科技(深圳)有限公司 Recombinant yeast strain and construction method and application thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865818A (en) * 2012-12-07 2014-06-18 上海来益生物药物研究开发中心有限责任公司 Construction method of genetically engineered bacterium for producing astaxanthin
CN105087408A (en) * 2015-09-10 2015-11-25 武汉生物技术研究院 Yeast strain for producing beta-carotene and application of yeast strain
CN105779319A (en) * 2016-03-23 2016-07-20 天津大学 Recombinant yeast strain, and building method and application thereof
CN105861538A (en) * 2016-05-25 2016-08-17 天津大学 Recombinant plasmid and recombinant yeast strain and establishing method and application thereof
CN109943493A (en) * 2019-04-17 2019-06-28 天津大学 Realize the mutant strain and its construction method of general enzymatic functional diversity
CN109971664A (en) * 2019-04-23 2019-07-05 天津大学 The bacterial strain of high-yield astaxanthin and its application
CN110195023A (en) * 2019-06-27 2019-09-03 天津大学 A kind of Wine brewing yeast strain and its application
CN111057712A (en) * 2019-12-02 2020-04-24 森瑞斯生物科技(深圳)有限公司 Recombinant yeast strain and construction method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Xixian Chen等.Metabolic Engineering Strategies for Sustainable Terpenoid Flavor and Fragrance Synthesis.《J. Agric. Food Chem》.2019,第第68卷卷第10252-10264页. *

Also Published As

Publication number Publication date
CN113699053A (en) 2021-11-26

Similar Documents

Publication Publication Date Title
CN113699053B (en) Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof
KR102698595B1 (en) Methods and compositions for expression of guide RNA based on polymerase II (POL-II)
KR102381610B1 (en) Genetic targeting in non-conventional yeast using an rna-guided endonuclease
KR20180081618A (en) Therapeutic Targets and Methods for Calibration of Human Dystrophin Gene by Gene Editing
KR102021982B1 (en) Mnd promoter chimeric antigen receptors
CN114058604B (en) Fusion protein and application thereof in base editing
JP2023071855A (en) CRISPR-Cas effector polypeptides and methods of use thereof
CN102695796B (en) Cell, nucleic acid, enzyme and they be used to produce the purposes and method of sophorolipid
US20020131956A1 (en) Adeno-associated virus vectors encoding factor VIII and methods of using the same
CN110678202B (en) Systems and methods for in vivo nucleic acid expression
KR20180056772A (en) Protective DNA templates and methods for intracellular gene modification and increased homologous recombination
CN106687578B (en) Targeted mutagenesis in spirulina
AU2022201838A1 (en) Bacteria engineered to reduce hyperphenylalaninemia
KR102652494B1 (en) A two-component vector library system for rapid assembly and diversification of full-length T-cell receptor open reading frames.
CN108779480A (en) The method for producing sphingosine and sphingolipid
CN112088215A (en) CRISPR Transient Expression Constructs (CTEC)
CN114981423A (en) I-B type CRISPR-associated transposase system
DK2861727T3 (en) MUTERED ACYL-COA: LYSOPHOSPHATIDYLCHOLINE ACYL TRANSFERASES
CN107312800B (en) CIK capable of knocking down endogenous PD-1 expression and preparation method and application thereof
CN113249407B (en) Vector for homologous recombination and application thereof
CN108424934A (en) A kind of slow virus CAG-CMV double-promoters transformation vector construction and application
CN111867637B (en) Novel EHV insertion site UL43
CN112852849B (en) System and method for seamless assembly of large-fragment DNA
CN1263853C (en) Carrier system containing artificial transcription factor regulated by oxygen deficit, and its configuration and use
CN112384610B (en) Yeast for producing and delivering RNA bioactive molecules, methods and uses thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant