CN113699053A - Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof - Google Patents

Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof Download PDF

Info

Publication number
CN113699053A
CN113699053A CN202010430296.6A CN202010430296A CN113699053A CN 113699053 A CN113699053 A CN 113699053A CN 202010430296 A CN202010430296 A CN 202010430296A CN 113699053 A CN113699053 A CN 113699053A
Authority
CN
China
Prior art keywords
saccharomyces cerevisiae
beta
recombinant
astaxanthin
carotene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010430296.6A
Other languages
Chinese (zh)
Other versions
CN113699053B (en
Inventor
杨祖明
王竞辉
张雅萍
张稳
姜西娟
黎源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wanhua Chemical Group Co Ltd
Wanhua Chemical Sichuan Co Ltd
Original Assignee
Wanhua Chemical Group Co Ltd
Wanhua Chemical Sichuan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wanhua Chemical Group Co Ltd, Wanhua Chemical Sichuan Co Ltd filed Critical Wanhua Chemical Group Co Ltd
Priority to CN202010430296.6A priority Critical patent/CN113699053B/en
Publication of CN113699053A publication Critical patent/CN113699053A/en
Application granted granted Critical
Publication of CN113699053B publication Critical patent/CN113699053B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13129Beta-carotene 3-hydroxylase (1.14.13.129)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof. The recombinant saccharomyces cerevisiae disclosed by the invention constitutively expresses beta-carotene ketolase gene CrtW, and inductively expresses beta-carotene hydroxylase gene CrtZ, so that an intermediate product beta-carotene is synthesized into astaxanthin. According to the invention, the constitutive promoter is used for regulating the expression of the CrtW gene first, and the inducible promoter is used for regulating the expression of the CrtZ gene later, so that the metabolic flux of the synthetic path of the saccharomyces cerevisiae astaxanthin is obviously improved, the astaxanthin yield reaches 464.90mg/L, and the industrial development prospect is good.

Description

Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof
Technical Field
The invention belongs to the field of microorganisms, and relates to a recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof.
Background
Astaxanthin (3,3 ' -dihydroxy-beta, beta ' -carotene-4,4 ' -dione, C)40H52O4596.84) has lipophilicity and hydrophilicity, and is one of the antioxidants with the strongest oxidation resistance found in nature so far, and the antioxidant capacity of the antioxidant is 800 times that of coenzyme Q10, 700 times that of anthocyanin and 550 times that of vitamin E. The astaxanthin has two asymmetric carbons which are positioned at the 3 and 3 ' positions of a beta-ionone ring, and is divided into 3 different configurations of (3R,3 ' R), (3S,3 ' S) and (3R,3 ' S) according to the difference of the two chiral carbons, wherein the (3S,3 ' S) configuration has the strongest antioxidant capacity. Astaxanthin has a plurality of conjugated double bonds, can remove free radicals inside and outside cell membranes, reduce the oxidation of protein and lipid and the damage of DNA, protect cells and delay senility, is the only carotenoid antioxidant which can pass through a blood brain barrier, has positive treatment and prevention effects on cardiovascular and cerebrovascular diseases, diabetes, cancers and the like, is known as 'healthy soft gold' by European and American scientists and medical scientists, and has great market value in the fields of medicines, health products, foods, aquaculture and the like. The global astaxanthin production in 2017 was about 511.8 tons, the total yield was about $ 1 billion, and the yield in 2018 proliferated to $ 1.5 billion. The global astaxanthin production value is estimated to approach 3.4 billion dollars in 2024, while the astaxanthin production value in China will approach 2 billion dollars, and the wide market prospect also pushes the astaxanthin biosynthesis technology to develop continuously.
Currently, the species approved for the biosynthesis of astaxanthin are primarily phaffia rhodozyma and haematococcus pluvialis. The phaffia rhodozyma produces astaxanthin with (3R, 3' R) configuration, has low oxidation resistance and poor biological activity, and is mainly used for feed additives. The haematococcus pluvialis can accumulate astaxanthin with higher concentration configuration (3S, 3' S) in vivo, can be used in human food and cosmetics, but has rigorous culture conditions, needs to be cultured under the condition of proper illumination throughout the year, has longer period, and has long-term high production economic cost. With the development of synthetic biology in recent years, researchers have turned their eyes to other engineering bacteria with mature genetic backgrounds. The saccharomyces cerevisiae is a well-known safe mode microorganism, has clear genetic background and abundant molecular operation tools, can realize high-density fermentation and synthesize high-quality astaxanthin with a (3S, 3' S) configuration, and therefore, the realization of high yield of the astaxanthin in the saccharomyces cerevisiae has great competitiveness in industrial production. However, at present, a large number of intermediates are accumulated in the two-step reticular metabolic pathway from beta-carotene to astaxanthin synthesis, and the yield of astaxanthin is limited, so that the metabolic flux of the downstream reticular metabolic pathway is dredged, the accumulation of the intermediates is reduced, and the method has great significance for improving the synthesis of astaxanthin in saccharomyces cerevisiae.
Disclosure of Invention
The invention aims to solve the technical problem of improving the synthesis of astaxanthin in saccharomyces cerevisiae.
In order to solve the technical problems, the invention provides a recombinant saccharomyces cerevisiae, which constitutively expresses a beta-carotene ketolase gene CrtW, inducibly expresses a beta-carotene hydroxylase gene CrtZ, and synthesizes an intermediate product beta-carotene into astaxanthin.
In some embodiments, in the recombinant Saccharomyces cerevisiae, the constitutive promoter for constitutive expression of the beta-carotene ketolase gene CrtW is TDH3p, and the sequence of TDH3p is shown as SEQ ID NO. 9.
In some embodiments, in any of the recombinant s.cerevisiae described above, the inducible promoter for inducible expression of the β -carotene hydroxylase gene CrtZ is Gal1, and the sequence of Gal1 is shown in SEQ ID No. 6.
In some embodiments, in the recombinant Saccharomyces cerevisiae of any of the above embodiments, the β -carotene ketolase gene CrtW is BDC263CrtW derived from Brevundimonas vesiculosus (Brevundimonas vesicularis DC263), and the sequence of BDC263CrtW is shown in SEQ ID NO:28 at positions 9-734.
In some embodiments, in any of the above recombinant Saccharomyces cerevisiae, the β -carotene hydroxylase gene CrtZ is AaCrtZ derived from Agrobacterium aurantium (Agrobacterium aurantiacaum), and the sequence of AaCrtZ is shown as positions 9-497 in SEQ ID NO. 25.
In order to solve the technical problems, the invention also provides a recombinant expression vector of the saccharomyces cerevisiae, which comprises a constitutive promoter and a beta-carotene ketolase gene CrtW under the control of the constitutive promoter, and an inducible promoter and a beta-carotene hydroxylase gene CrtZ under the control of the inducible promoter.
In some embodiments, in the above recombinant expression vector, the constitutive promoter is TDH3p, and the sequence of TDH3p is shown in SEQ ID NO 9.
In some embodiments, in any of the recombinant expression vectors described above, the β -carotene ketolase gene CrtW has a terminator downstream, preferably TDH2t, and TDH2t has the sequence shown in SEQ ID NO. 12.
In some embodiments, in any of the recombinant expression vectors described above, the inducible promoter is Gal1 and the sequence of Gal1 is shown in SEQ ID NO 6.
In some embodiments, in any one of the recombinant expression vectors described above, a terminator is located downstream of the β -carotene hydroxylase gene CrtZ, preferably the terminator is ADH1t, and the sequence of ADH1t is shown in SEQ ID NO. 3.
In some embodiments, in any of the recombinant expression vectors described above, the β -carotene ketolase gene CrtW is BDC263CrtW derived from Brevundimonas vesicularis (Brevundimonas vesicularis DC263), and the sequence of BDC263CrtW is shown in SEQ ID NO:28 at positions 9-734.
In some embodiments, in any of the recombinant expression vectors described above, the β -carotene hydroxylase gene CrtZ is AaCrtZ derived from Agrobacterium aurantiacus (Agrobacterium aurantiacaum), and the sequence of AaCrtZ is shown as positions 9-497 in SEQ ID No. 25.
In some embodiments, the recombinant expression vector of any one of the above, wherein the recombinant expression vector is PRS416-ADH1t-AaCrtZ-Gal1-TDH3p-BDC263CrtW-TDH2t, and the sequence is shown in SEQ ID NO: 35.
In order to solve the technical problems, the invention also provides a method for constructing any one of the recombinant saccharomyces cerevisiae, which comprises the step of transferring any one of the recombinant expression vectors into starting saccharomyces cerevisiae to obtain recombinant saccharomyces cerevisiae;
the starting Saccharomyces cerevisiae is Saccharomyces cerevisiae capable of synthesizing beta-carotene, and is preferably Scy10026 Saccharomyces cerevisiae (Saccharomyces cerevisiae).
In order to solve the technical problems, the invention also provides a method for producing astaxanthin, which comprises the steps of performing fermentation culture on any one of the recombinant saccharomyces cerevisiae so that the beta-carotene ketolase gene CrtW is constitutively expressed, and adding D- (+) -galactose to induce the expression of the beta-carotene hydroxylase gene CrtZ during the fermentation culture so as to synthesize astaxanthin.
In some embodiments, the above method for producing astaxanthin, wherein said fermentative culture comprises subjecting the recombinant Saccharomyces cerevisiae of any of the above to fermentative culture in an initial fermentation medium, e.g., at the initial OD600Fermenting at 30 deg.C and pH5.8-6.2 with ventilation of 3.0vvm for 48h under the conditions of dissolved oxygen 30% and 300-500rpm, and adding D- (+) -galactose with final concentration of 20g/L to induce the expression of beta-carotene hydroxylase gene CrtZ;
before adding D- (+) -galactose, feeding glucose and controlling the feeding within the range of 0-1g/L to reduce the generation of byproducts as much as possible, adding D- (+) -galactose and stopping feeding glucose, entering an astaxanthin synthesis stage, wherein a carbon source in a fermentation tank is switched to ethanol, and the feeding is also carried out in a feeding manner, wherein the feeding of ethanol is controlled within the range of 0.5-10g/L, and the temperature is controlled at 20-30 ℃;
supplementing a nitrogen source by adopting an intermittent feeding mode with decreasing concentration gradient, adding a certain volume of yeast extract powder mother liquor into a fermentation tank at intervals, for example, adding 1.5 times of yeast extract powder every 12 hours (12 th hour, 24 th hour, 36 th hour, 48 th hour and 60 th hour) from the beginning of fermentation by taking the concentration of yeast extract in an initial fermentation culture medium as 1.0 times, supplementing 5 times, then adding 1.0 times of yeast extract powder every 12 hours (72 th and 84 th hour of fermentation), supplementing 2 times, then adding 0.5 times of yeast extract powder every 12 hours (96 th and 108 th hour of fermentation), and supplementing 2 times.
In some embodiments, the method of producing astaxanthin according to any one of the above, wherein the initial fermentation medium is YPD containing 3% glucose (10g/L yeast extract, 20g/L peptone, 30g/L glucose, balance water).
In some embodiments, the method for producing astaxanthin according to any one of the above further comprises the step of subjecting the recombinant Saccharomyces cerevisiae according to any one of the above to primary seed culture and secondary seed culture before fermentation culture;
the primary seed culture comprises inoculating any one of the recombinant Saccharomyces cerevisiae strains into a shake flask containing SC-Ura liquid medium, and culturing at 30 deg.C and 250rpm to OD600A step of 6-7;
the secondary seed culture comprises transferring the primary seed obtained from the primary seed culture to a shake flask containing SC-Ura liquid medium, and culturing at 30 deg.C and 250rpm to OD600A step of 5-6;
the first seed may be inoculated at 5%.
In order to solve the technical problems, the invention also provides the application of any one of the recombinant saccharomyces cerevisiae and/or any one of the recombinant expression vector in the production of astaxanthin.
The recombinant yeast strain for producing astaxanthin regulates the expression of beta-carotene ketolase gene CrtW and beta-carotene hydroxylase gene CrtZ on an astaxanthin synthesis path through the combination of a constitutive promoter and an inducible promoter, clones promoters and gene elements with different combinations on a plasmid expression vector, transfers the plasmid expression vector into saccharomyces cerevisiae, and obtains a high-yield target strain through fermentation, astaxanthin yield detection and screening.
The invention has the beneficial effects that: the constitutive promoter is used for regulating the expression of the CrtW gene first, and the inducible promoter is used for regulating the expression of the Crt Z gene later, so that the metabolic flux of an astaxanthin synthesis path of saccharomyces cerevisiae is obviously improved, the yield and the purity of astaxanthin in the saccharomyces cerevisiae are improved, the yield of the astaxanthin reaches 464.90mg/L, and the method has a good industrial development prospect.
Drawings
FIG. 1 is a schematic representation of two recombinant expression vectors constructed in example 2.
FIG. 2 shows the results of the astaxanthin production by shake flask fermentation in example 4.
FIG. 3 shows the results of fermentation test in 7L fermentor of recombinant S1 of Saccharomyces cerevisiae in example 6.
Detailed Description
The experimental procedures used in the following examples are all conventional procedures unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The present invention will be further described with reference to the following examples. It should be understood that the following examples are illustrative only and are not intended to limit the scope of the present invention.
Saccharomyces cerevisiae S228C (Saccharomyces cerevisiae S228C) in the literature "Fisk et al. Saccharomyces cerevisiae S288C genome identification: a working hypothesis. Yeast.2006; 23(12) 857-.
The PRS416 vector is a product of Shanghai Lianmai bioengineering, Inc., and has a cargo number LM 4777.
The D- (+) -galactose is an aradin product with the product number of G100367.
In the examples, AaCrtZ is Agrobacterium aurantiacaum (Agrobacterium aurantiacaum) derived CrtZ, and BDC263CrtW is Brevundimonas vesicularis (Brevundimonas vesicularis DC263) derived CrtW.
Example 1: construction of recombinant plasmid PRS416-ADH1t-Gal1-TDH3p-TDH2t
Firstly, PCR amplification is carried out by taking the genomic DNA of Saccharomyces cerevisiae S228C (Saccharomyces cerevisiae S228C) as a template and ADH1t _ F and ADH1t _ R as primers to obtain ADH1t, wherein the sequence of ADH1t is shown as SEQ ID NO. 3.
ADH1t_F:5’-agctttggacttcttcgccagagg-3’(SEQ ID NO:1);
ADH1t_R:5’-catgccggtagaggtgtggtcaataag-3’(SEQ ID NO:2)。
Secondly, PCR amplification is carried out by taking the genome DNA of the saccharomyces cerevisiae S228C as a template and Gal1_ F and Gal1_ R as primers to obtain Gal1, wherein the sequence of the Gal1 is shown as SEQ ID NO. 6.
Gal1_F:5’-tatagttttttctccttgacgttaaagtatag-3’(SEQ ID NO:4);
Gal1_R:5’-ttatattgaattttcaaaaattcttactttttttttggatgg-3’(SEQ ID NO:5)。
Thirdly, taking the genome DNA of the saccharomyces cerevisiae S228C as a template and TDH3p _ F and TDH3p _ R as primers to carry out PCR amplification to obtain TDH3p, wherein the sequence of the TDH3p is shown as SEQ ID NO. 9.
TDH3p_F:5’-cagttcgagtttatcattatcaatactgcca-3’(SEQ ID NO:7);
TDH3p_R:5’-tttgtttgtttatgtgtgtttattcgaaac-3’(SEQ ID NO:8)。
And fourthly, carrying out PCR amplification by using the genome DNA of the saccharomyces cerevisiae S228C as a template and TDH2t _ F and TDH2t _ R as primers to obtain TDH2t, wherein the sequence of the TDH2t is shown as SEQ ID NO. 12.
TDH2t_F:5’-atttaactccttaagttactttaatgatttag-3’(SEQ ID NO:10);
TDH2t_R:5’-gcgaaaagccaattagtgtgatac-3’(SEQ ID NO:11)。
Fifthly, splicing ADH1t, Gal1, TDH3p and TDH2t obtained in the first step to the fourth step in an OE-PCR mode to obtain ADH1t-Gal1-TDH3p-TDH2t (SEQ ID NO:21) with digestion sites of BamHI and SalI at two ends, wherein BsmBI digestion sites are added between ADH1t and Gal1, and BsaI digestion sites are added between TDH3p and TDH2 t.
The OE-PCR system (50. mu.l reaction) was as follows:
1. mu.l each of ADH1t, Gal1, TDH3p and TDH2t templates, 1. mu.l each of upstream primer, 1. mu.l each of downstream primer, 5. mu.l of 10 XBuffer, 4. mu.l of dNTP, 1. mu.l of Pfu DNA Polymerase were added to the mixture, and ddH was added thereto2O make up the volume to 50. mu.l.
The primers used were as follows:
Primer 1_F:5’-ggatcccatgccggtagaggtgtggtc-3’(SEQ ID NO:13);
Primer 1_R:5’-tgaaaattcaatataaatgggagacgcgtctcctaaagctttggacttc-3’(SEQ ID NO:14);
Primer 2_F:5’-aagtccaaagctttaggagacgcgtctcccatttatattgaattttcaaaaattc-3’(SEQ ID NO:15);
Primer 2_R:5’-tgataaactcgaactgtatagttttttctccttgacgttaaagtatag-3’(SEQ ID NO:16);
Primer 3_F:5’-gtcaaggagaaaaaactatacagttcgagtttatcattatcaatactg-3’(SEQ ID NO:17);
Primer 3_R:5’-ggagttaaatatttaggagaccggtctcccattatttgtttgtttatgtg-3’(SEQ ID NO:18);
Primer 4_F:5’-ataaacaaacaaataatgggagaccggtctcctaaatatttaactccttaag-3’(SEQ ID NO:19);
Primer 4_R:5’-gtcgacgcgaaaagccaattagtgtgatactaag-3’(SEQ ID NO:20)。
sixthly, double enzyme digestion is carried out on ADH1t-Gal1-TDH3p-TDH2t by using restriction endonucleases SalI and BamHI to obtain a gene fragment; carrying out double digestion on the PRS416 vector by using restriction enzymes SalI and BamHI to obtain a vector fragment; the gene fragment is connected with the vector fragment to obtain a recombinant expression vector PRS416-ADH1t-Gal1-TDH3p-TDH2t, and the sequence is shown as SEQ ID NO. 22.
Example 2: insertion of foreign genes
Firstly, using AaCrtZ gene as a template, and using Primer 5_ F and Primer 5_ R as primers to carry out PCR amplification to obtain BsaI-AaCrtZ-BsaI, wherein the sequence of the BsaI-AaCrtZ-BsaI is shown as SEQ ID NO. 25, and the AaCrtZ gene is shown as 9-497 th position in the SEQ ID NO. 25.
Primer 5_F:5’-ggtctccaatgactaacttcttgatcgttgttg-3’(SEQ ID NO:23);
Primer 5_R:5’-ggtctccatttaagttctttcttgagcttcag-3’(SEQ ID NO:24)。
Secondly, BsaI-BDC263CrtW-BsaI is obtained by PCR amplification by taking the BDC263CrtW gene as a template and taking Primer 6_ F and Primer 6_ R as primers, the sequence of the BsaI-BDC263CrtW-BsaI is shown as SEQ ID NO:28, and the BDC263CrtW gene is shown as the 9 th to 734 th sites in the SEQ ID NO: 28.
Primer 6_F:5’-ggtctccaatgtccgctgttactccaatg-3’(SEQ ID NO:26);
Primer 6_R:5’-ggtctccatttatgaaaataaagaccaccaaggc-3’(SEQ ID NO:27)。
And thirdly, performing PCR amplification by using the AaCrtZ gene as a template and using Primer 7_ F and Primer 7_ R as primers to obtain BsmBI-AaCrtZ-BsmBI, wherein the sequence of the BsmBI-AaCrtZ-BsmBI is shown as SEQ ID NO. 31.
Primer 7_F:5’-cgtctccaatgactaacttcttgatcgttgttg-3’(SEQ ID NO:29);
Primer 7_R:5’-cgtctcctttaagttctttcttgagcttcagc-3’(SEQ ID NO:30)。
And fourthly, performing PCR amplification by using the BDC263CrtW gene as a template and using Primer 8_ F and Primer 8_ R as primers to obtain BsmBI-BDC263CrtW-BsmBI, wherein the sequence of the BsmBI-BDC263CrtW-BsmBI is shown as SEQ ID NO. 34.
Primer 8_F:5’-cgtctccaatgtccgctgttactcc-3’(SEQ ID NO:32);
Primer 8_R:5’-cgtctcctttatgaaaataaagaccaccaaggc-3’(SEQ ID NO:33)。
Fifthly, digesting BsaI-BDC263CrtW-BsaI by BsaI enzyme to obtain a gene segment; the PRS416-ADH1t-Gal1-TDH3p-TDH2t obtained in example 1 was digested with BsaI to obtain a vector fragment; connecting the gene fragment with the vector fragment to obtain PRS416-ADH1t-Gal1-TDH3p-BDC263CrtW-TDH2 t;
using BsmBI to perform enzyme digestion on BsmBI-AaCrtZ-BsmBI to obtain a gene fragment; cutting PRS416-ADH1t-Gal1-TDH3p-BDC263CrtW-TDH2t by BsmBI enzyme to obtain a vector fragment; the gene fragment is connected with the vector fragment to obtain a recombinant expression vector PRS416-ADH1t-AaCrtZ-Gal1-TDH3p-BDC263CrtW-TDH2t, and the sequence is shown as SEQ ID NO. 35.
Sixthly, carrying out enzyme digestion on BsaI-AaCrtZ-BsaI by BsaI to obtain a gene fragment; the PRS416-ADH1t-Gal1-TDH3p-TDH2t vector obtained in example 1 was digested with BsaI to obtain a vector fragment; connecting the gene fragment with the vector fragment to obtain PRS416-ADH1t-Gal1-TDH3p-AaCrtZ-TDH2 t;
using BsmBI to perform enzyme digestion on BsmBI-BDC263CrtW-BsmBI to obtain a gene fragment; cutting PRS416-ADH1t-Gal1-TDH3p-AaCrtZ-TDH2t by BsmBI enzyme to obtain a vector fragment; the gene fragment is connected with the vector fragment to obtain a recombinant expression vector PRS416-ADH1t-BDC263CrtW-Gal1-TDH3p-AaCrtZ-TDH2t, the sequence of which is shown in SEQ ID NO: shown at 36.
The recombinant expression vectors PRS416-ADH1t-AaCrtZ-Gal1-TDH3p-BDC263CrtW-TDH2t and PRS416-ADH1t-BDC263CrtW-Gal1-TDH3p-AaCrtZ-TDH2t are schematically shown in FIG. 1.
Example 3: construction of recombinant Yeast strains for the production of astaxanthin
The recombinant expression vectors PRS416-ADH1t-AaCrtZ-Gal1-TDH3p-BDC263CrtW-TDH2t and PRS416-ADH1t-BDC263CrtW-Gal1-TDH3p-AaCrtZ-TDH2t obtained in example 2 were transformed into β -carotene-producing strain Scy10026 Saccharomyces cerevisiae (Saccharomyces cerevisiae) by a lithium acetate method, and transformants were selected by SC-Ura solid medium (synthetic yeast nitrogen source YNB 6.7g/L, glucose 20g/L, uracil-removed mixed amino acid powder 2g/L, 2% agar powder) to obtain astaxanthin-producing recombinant yeast strains S1 and S2, respectively.
The construction method of the Scy10026 Saccharomyces cerevisiae is as follows: transferring the CYC1t-BtCrtI-HXT7p-TDH3p-PaCrtB-ADH1t fragment (SEQ ID NO:37) into Saccharomyces cerevisiae S288C, carrying out homologous recombination, replacing gal1, gal7 and gal10 genes, and integrating the genes into a chromosome; then, the CYC1t-PaCrtY-HXT7p-FBA1p-TmCrtE-TDH2t fragment (SEQ ID NO:38) was transferred into it, homologous recombination was carried out, the ypl062w gene was replaced, and the gene was integrated into the chromosome, thereby obtaining the beta-carotene-producing yeast Scy 10026.
CYC1t-BtCrtI-HXT7p-TDH3p-PaCrtB-ADH1t (SEQ ID NO: 37):
the 1-40 th site is the downstream homologous sequence of the gal7 gene, the 41-241 th site is the terminator CYC1t sequence, the 242 nd 1990 th site is the gene BtCrtI sequence, the 1991 nd 2691 th site is the promoter HXT7p sequence, the 2692 nd 3371 th site is the promoter TDH3p sequence, the 3372 nd 4301 nd site is the gene PaCrtB sequence, the 4302 nd 4629 th site is the terminator ADH1t sequence, and the 4630 th site 4669 th site is the downstream homologous sequence of the gal1 gene.
CYC1t-PaCrtY-HXT7p-FBA1p-TmCrtE-TDH2t (SEQ ID NO: 38):
the upstream homologous sequence of ypl062w gene at the 1-40 th position, the terminator CYC1t sequence at the 41-241 th position, the PaCrtY gene sequence at the 242-1390 th position, the promoter HXT7p sequence at the 1391-2091 th position, the promoter FBA1p sequence at the 2092-2911 th position, the TmCrtE gene sequence at the 2912-4093 th position, the terminator TDH2t sequence at the 4094-4493 th position, and the downstream homologous sequence of ypl062w gene at the 4494-4533 th position.
Example 4: astaxanthin production by shake flask fermentation
Single colonies of recombinant Saccharomyces cerevisiae strains S1 and S2 were picked and inoculated into 5ml of SC-Ura liquid medium (6.7 g/L of synthetic yeast nitrogen source YNB, 20g/L of glucose, 2g/L of mixed amino acid powder without uracil, and the balance water), and cultured overnight at 30 ℃ and 250rpm to obtain primary seeds. Then inoculating the primary seed with 5% (volume ratio) of inoculum size to fresh 5ml SC-Ura liquid medium for secondary seed culture, culturing at 30 deg.C and 250rpm to OD600Secondary seeds were obtained 5-6. Inoculating the secondary seed into 250mL shake flask containing 50mL YPD medium, fermenting and culturing to obtain initial OD600After fermentation for 48 hours, D- (+) -galactose was added at a final concentration of 2% (2g/100ml) to induce astaxanthin production, and the co-fermentation was terminated for 84 hours to obtain a fermentation broth.
Taking 1mL fermentation liquor, centrifuging at 12000rpm for 5min, pouring off the supernatant, adding 1mL sterile water to resuspend cells, centrifuging, and pouring off the supernatant. Add 1mL 3M HCl heavy suspension cells, boiling water bath 5min, ice bath 5min, centrifugation, pour off the supernatant, repeat boiling water bath 5min, ice bath 5min, repeat 2 times. Centrifuging and washing twice, discarding the supernatant, adding 1mL of acetone to resuspend cells, adding a small amount of quartz sand, performing vortex oscillation for 10min, centrifuging the acetone extracting solution at 12000rpm for 10min, filtering the supernatant by using a 0.2 mu m organic filter membrane, and adding 200 mu L of the supernatant into a sample bottle for astaxanthin HPLC detection.
The astaxanthin HPLC detection conditions are as follows:
double-wavelength detection is adopted, the measurement wavelength is set to be 450/470nm, and the integral wavelength is 470 nm;
column temperature: 25 ℃;
mobile phase: flow rate 1mL/min, mobile phase B: acetonitrile to water 9:1 (volume ratio), mobile phase C: methanol to isopropanol-3: 2 (volume ratio), elution conditions were: 0-15min, 0-90% C; 15-30min, 90% C; 30-35min, 90-0% C; 35-45min, 0% C. And calculating the concentration of the astaxanthin by an external standard method.
The astaxanthin purity was calculated according to the following formula:
W=Ca/C*100%
w is purity, Ca is astaxanthin concentration (mg/L), C is carotenoid concentration (mg/L);
wherein the carotenoid concentration is detected by adopting an HPLC external standard method, and the HPLC detection condition is consistent with the astaxanthin HPLC detection condition.
The astaxanthin production of recombinant s.cerevisiae strain S2 was found to be 43.72mg/L (purity of 57.51%), the astaxanthin production of recombinant s.cerevisiae strain S1 was found to be 70.67mg/L (purity of 90.65%), and a comparison of the astaxanthin production of recombinant s.cerevisiae strains S1 and S2 is shown in fig. 2.
Example 5: fermentation tank for producing astaxanthin
First-stage seed culture: inoculating S1 into 250mL shake flask containing 50mL SC-Ura liquid culture medium, culturing at 30 deg.C and 250rpm to OD600First-order seeds were obtained 6-7.
II, secondary seed culture: inoculating the first seed at 5% (volume ratio) into 250mL shake flask containing 50mL SC-Ura liquid culture medium, culturing at 30 deg.C and 250rpm to OD600Secondary seeds were obtained 5-6.
Thirdly, inoculating in a fermentation tank: transferring the second seed to 7L fermenter with 10% (volume ratio) for fermentation, wherein the initial liquid loading of the fermenter is 3.5L, the initial fermentation medium is YPD (10g/L yeast extract, 20g/L peptone, 30g/L glucose, and water as the rest) containing 3% glucose, and the initial OD is6000.5. Setting fermentation tank parameters: the fermentation temperature was 30 ℃, pH was controlled at 5.8, aeration was 3.0vvm, Dissolved Oxygen (DO) was 30%, rotation speed was 300-500rpm, and stirring was related to DO.
The adding time of the D- (+) -galactose inducer is taken as a demarcation point of two stages in the whole fermentation process. Glucose was added in a fed-batch manner before the addition of the D- (+) -galactose inducer, and was controlled in the range of 0-1g/L to reduce the production of by-products as much as possible. After fermentation for 48h, adding a D- (+) -galactose inducer with the final concentration of 20g/L, stopping adding glucose in a flowing manner, entering an astaxanthin synthesis stage, switching a carbon source into ethanol in a fermentation tank, adding the ethanol in a flowing manner, and controlling the ethanol concentration in the fermentation tank to be 0.5-10 g/L. In addition, important factors affecting fermentation are the nitrogen source in the fermentation medium. The method takes the yeast extract powder as a nitrogen source, supplements the nitrogen source into a fermentation tank in an intermittent feeding mode with decreasing concentration gradient in order to avoid excessive feeding of the nitrogen source, and adds a certain volume of yeast extract powder mother liquor into the fermentation tank at intervals, wherein the specific feeding process comprises the following steps: adding 15g of yeast extract powder per liter at 12, 24, 36, 48 and 60 hours of fermentation; adding 10g of yeast extract powder per liter at 72 and 84 hours of fermentation; 5g of yeast extract powder per liter is added at 96 and 108 hours of fermentation.
Through HPLC detection same as that in example 4, the astaxanthin yield of the final 7L fermentation tank reaches 366.90mg/L, which is improved by 4.19 times compared with the shake flask fermentation yield (70.67 mg/L).
Example 6
The experiment of example 6 was repeated except that the fermentation pH was controlled to 6.2 and the fermentation temperature after the addition of D- (+) -galactose inducer was set to 20 deg.C, and the fermentation test results are shown in FIG. 3, in which the astaxanthin production in the final 7L fermentor reached 464.90mg/L, which was measured by the same HPLC test as in example 4, and was improved by 5.58 times as compared with the shake flask fermentation yield (70.67 mg/L).
Sequence listing
<110> Wanhua chemical group, Ltd
Wan Hua Hua Xue (Sichuan) Co., Ltd.
<120> recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof
<130> DSP1F200403ZX
<160> 38
<170> SIPOSequenceListing 1.0
<210> 1
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
agctttggac ttcttcgcca gagg 24
<210> 2
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
catgccggta gaggtgtggt caataag 27
<210> 3
<211> 328
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
agctttggac ttcttcgcca gaggtttggt caagtctcca atcaaggttg tcggcttgtc 60
taccttgcca gaaatttacg aaaagatgga aaagggtcaa atcgttggta gatacgttgt 120
tgacacttct aaataagcga atttcttatg atttatgatt tttattatta aataagttat 180
aaaaaaaata agtgtataca aattttaaag tgactcttag gttttaaaac gaaaattctt 240
attcttgagt aactctttcc tgtaggtcag gttgctttct caggtatagc atgaggtcgc 300
tcttattgac cacacctcta ccggcatg 328
<210> 4
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
tatagttttt tctccttgac gttaaagtat ag 32
<210> 5
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
ttatattgaa ttttcaaaaa ttcttacttt ttttttggat gg 42
<210> 6
<211> 668
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
tatagttttt tctccttgac gttaaagtat agaggtatat taacaatttt ttgttgatac 60
ttttatgaca tttgaataag aagtaataca aaccgaaaat gttgaaagta ttagttaaag 120
tggttatgca gcttttgcat ttatatatct gttaatagat caaaaatcat cgcttcgctg 180
attaattacc ccagaaataa ggctaaaaaa ctaatcgcat tattatccta tggttgttaa 240
tttgattcgt tgatttgaag gtttgtgggg ccaggttact gccaattttt cctcttcata 300
accataaaag ctagtattgt agaatcttta ttgttcggag cagtgcggcg cgaggcacat 360
ctgcgtttca ggaacgcgac cggtgaagac caggacgcac ggaggagagt cttccgtcgg 420
agggctgtcg cccgctcggc ggcttctaat ccgtacttca atatagcaat gagcagttaa 480
gcgtattact gaaagttcca aagagaaggt ttttttaggc taagataatg gggctcttta 540
catttccaca acatataagt aagattagat atggatatgt atatggtggt attgccatgt 600
aatatgatta ttaaacttct ttgcgtccat ccaaaaaaaa agtaagaatt tttgaaaatt 660
caatataa 668
<210> 7
<211> 31
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
cagttcgagt ttatcattat caatactgcc a 31
<210> 8
<211> 30
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
tttgtttgtt tatgtgtgtt tattcgaaac 30
<210> 9
<211> 680
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
cagttcgagt ttatcattat caatactgcc atttcaaaga atacgtaaat aattaatagt 60
agtgattttc ctaactttat ttagtcaaaa aattagcctt ttaattctgc tgtaacccgt 120
acatgcccaa aatagggggc gggttacaca gaatatataa catcgtaggt gtctgggtga 180
acagtttatt cctggcatcc actaaatata atggagcccg ctttttaagc tggcatccag 240
aaaaaaaaag aatcccagca ccaaaatatt gttttcttca ccaaccatca gttcataggt 300
ccattctctt agcgcaacta cagagaacag gggcacaaac aggcaaaaaa cgggcacaac 360
ctcaatggag tgatgcaacc tgcctggagt aaatgatgac acaaggcaat tgacccacgc 420
atgtatctat ctcattttct tacaccttct attaccttct gctctctctg atttggaaaa 480
agctgaaaaa aaaggttgaa accagttccc tgaaattatt cccctacttg actaataagt 540
atataaagac ggtaggtatt gattgtaatt ctgtaaatct atttcttaaa cttcttaaat 600
tctactttta tagttagtct tttttttagt tttaaaacac caagaactta gtttcgaata 660
aacacacata aacaaacaaa 680
<210> 10
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
atttaactcc ttaagttact ttaatgattt ag 32
<210> 11
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
gcgaaaagcc aattagtgtg atac 24
<210> 12
<211> 400
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
atttaactcc ttaagttact ttaatgattt agtttttatt attaataatt catgctcatg 60
acatctcata tacacgttta taaaacttaa atagattgaa aatgtattaa agattcctca 120
gggattcgat ttttttggaa gtttttgttt ttttttcctt gagatgctgt agtatttggg 180
aacaattata caatcgaaag atatatgctt acattcgacc gttttagccg tgatcattat 240
cctatagtaa cataacctga agcataactg acactactat catcaatact tgtcacatga 300
gaactctgtg aataattagg ccactgaaat ttgatgcctg aaggaccggc atcacggatt 360
ttcgataaag cacttagtat cacactaatt ggcttttcgc 400
<210> 13
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
ggatcccatg ccggtagagg tgtggtc 27
<210> 14
<211> 49
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
tgaaaattca atataaatgg gagacgcgtc tcctaaagct ttggacttc 49
<210> 15
<211> 55
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
aagtccaaag ctttaggaga cgcgtctccc atttatattg aattttcaaa aattc 55
<210> 16
<211> 48
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
tgataaactc gaactgtata gttttttctc cttgacgtta aagtatag 48
<210> 17
<211> 48
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
gtcaaggaga aaaaactata cagttcgagt ttatcattat caatactg 48
<210> 18
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
ggagttaaat atttaggaga ccggtctccc attatttgtt tgtttatgtg 50
<210> 19
<211> 52
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
ataaacaaac aaataatggg agaccggtct cctaaatatt taactcctta ag 52
<210> 20
<211> 34
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
gtcgacgcga aaagccaatt agtgtgatac taag 34
<210> 21
<211> 2132
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
ggatcccatg ccggtagagg tgtggtcaat aagagcgacc tcatgctata cctgagaaag 60
caacctgacc tacaggaaag agttactcaa gaataagaat tttcgtttta aaacctaaga 120
gtcactttaa aatttgtata cacttatttt ttttataact tatttaataa taaaaatcat 180
aaatcataag aaattcgctt atttagaagt gtcaacaacg tatctaccaa cgatttgacc 240
cttttccatc ttttcgtaaa tttctggcaa ggtagacaag ccgacaacct tgattggaga 300
cttgaccaaa cctctggcga agaagtccaa agctttagga gacgcgtctc ccatttatat 360
tgaattttca aaaattctta cttttttttt ggatggacgc aaagaagttt aataatcata 420
ttacatggca ataccaccat atacatatcc atatctaatc ttacttatat gttgtggaaa 480
tgtaaagagc cccattatct tagcctaaaa aaaccttctc tttggaactt tcagtaatac 540
gcttaactgc tcattgctat attgaagtac ggattagaag ccgccgagcg ggcgacagcc 600
ctccgacgga agactctcct ccgtgcgtcc tggtcttcac cggtcgcgtt cctgaaacgc 660
agatgtgcct cgcgccgcac tgctccgaac aataaagatt ctacaatact agcttttatg 720
gttatgaaga ggaaaaattg gcagtaacct ggccccacaa accttcaaat caacgaatca 780
aattaacaac cataggataa taatgcgatt agttttttag ccttatttct ggggtaatta 840
atcagcgaag cgatgatttt tgatctatta acagatatat aaatgcaaaa gctgcataac 900
cactttaact aatactttca acattttcgg tttgtattac ttcttattca aatgtcataa 960
aagtatcaac aaaaaattgt taatatacct ctatacttta acgtcaagga gaaaaaacta 1020
tacagttcga gtttatcatt atcaatactg ccatttcaaa gaatacgtaa ataattaata 1080
gtagtgattt tcctaacttt atttagtcaa aaaattagcc ttttaattct gctgtaaccc 1140
gtacatgccc aaaatagggg gcgggttaca cagaatatat aacatcgtag gtgtctgggt 1200
gaacagttta ttcctggcat ccactaaata taatggagcc cgctttttaa gctggcatcc 1260
agaaaaaaaa agaatcccag caccaaaata ttgttttctt caccaaccat cagttcatag 1320
gtccattctc ttagcgcaac tacagagaac aggggcacaa acaggcaaaa aacgggcaca 1380
acctcaatgg agtgatgcaa cctgcctgga gtaaatgatg acacaaggca attgacccac 1440
gcatgtatct atctcatttt cttacacctt ctattacctt ctgctctctc tgatttggaa 1500
aaagctgaaa aaaaaggttg aaaccagttc cctgaaatta ttcccctact tgactaataa 1560
gtatataaag acggtaggta ttgattgtaa ttctgtaaat ctatttctta aacttcttaa 1620
attctacttt tatagttagt ctttttttta gttttaaaac accaagaact tagtttcgaa 1680
taaacacaca taaacaaaca aataatggga gaccggtctc ctaaatattt aactccttaa 1740
gttactttaa tgatttagtt tttattatta ataattcatg ctcatgacat ctcatataca 1800
cgtttataaa acttaaatag attgaaaatg tattaaagat tcctcaggga ttcgattttt 1860
ttggaagttt ttgttttttt ttccttgaga tgctgtagta tttgggaaca attatacaat 1920
cgaaagatat atgcttacat tcgaccgttt tagccgtgat cattatccta tagtaacata 1980
acctgaagca taactgacac tactatcatc aatacttgtc acatgagaac tctgtgaata 2040
attaggccac tgaaatttga tgcctgaagg accggcatca cggattttcg ataaagcact 2100
tagtatcaca ctaattggct tttcgcgtcg ac 2132
<210> 22
<211> 6979
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accataccac agcttttcaa ttcaattcat catttttttt ttattctttt ttttgatttc 240
ggtttctttg aaattttttt gattcggtaa tctccgaaca gaaggaagaa cgaaggaagg 300
agcacagact tagattggta tatatacgca tatgtagtgt tgaagaaaca tgaaattgcc 360
cagtattctt aacccaactg cacagaacaa aaacctgcag gaaacgaaga taaatcatgt 420
cgaaagctac atataaggaa cgtgctgcta ctcatcctag tcctgttgct gccaagctat 480
ttaatatcat gcacgaaaag caaacaaact tgtgtgcttc attggatgtt cgtaccacca 540
aggaattact ggagttagtt gaagcattag gtcccaaaat ttgtttacta aaaacacatg 600
tggatatctt gactgatttt tccatggagg gcacagttaa gccgctaaag gcattatccg 660
ccaagtacaa ttttttactc ttcgaagaca gaaaatttgc tgacattggt aatacagtca 720
aattgcagta ctctgcgggt gtatacagaa tagcagaatg ggcagacatt acgaatgcac 780
acggtgtggt gggcccaggt attgttagcg gtttgaagca ggcggcagaa gaagtaacaa 840
aggaacctag aggccttttg atgttagcag aattgtcatg caagggctcc ctatctactg 900
gagaatatac taagggtact gttgacattg cgaagagcga caaagatttt gttatcggct 960
ttattgctca aagagacatg ggtggaagag atgaaggtta cgattggttg attatgacac 1020
ccggtgtggg tttagatgac aagggagacg cattgggtca acagtataga accgtggatg 1080
atgtggtctc tacaggatct gacattatta ttgttggaag aggactattt gcaaagggaa 1140
gggatgctaa ggtagagggt gaacgttaca gaaaagcagg ctgggaagca tatttgagaa 1200
gatgcggcca gcaaaactaa aaaactgtat tataagtaaa tgcatgtata ctaaactcac 1260
aaattagagc ttcaatttaa ttatatcagt tattacccta tgcggtgtga aataccgcac 1320
agatgcgtaa ggagaaaata ccgcatcagg aaattgtaaa cgttaatatt ttgttaaaat 1380
tcgcgttaaa tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaaa 1440
tcccttataa atcaaaagaa tagaccgaga tagggttgag tgttgttcca gtttggaaca 1500
agagtccact attaaagaac gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg 1560
gcgatggccc actacgtgaa ccatcaccct aatcaagttt tttggggtcg aggtgccgta 1620
aagcactaaa tcggaaccct aaagggagcc cccgatttag agcttgacgg ggaaagccgg 1680
cgaacgtggc gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa 1740
gtgtagcggt cacgctgcgc gtaaccacca cacccgccgc gcttaatgcg ccgctacagg 1800
gcgcgtcgcg ccattcgcca ttcaggctgc gcaactgttg ggaagggcga tcggtgcggg 1860
cctcttcgct attacgccag ctggcgaaag ggggatgtgc tgcaaggcga ttaagttggg 1920
taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgag cgcgcgtaat 1980
acgactcact atagggcgaa ttgggtaccg ggccccccct cgaggtcgac gcgaaaagcc 2040
aattagtgtg atactaagtg ctttatcgaa aatccgtgat gccggtcctt caggcatcaa 2100
atttcagtgg cctaattatt cacagagttc tcatgtgaca agtattgatg atagtagtgt 2160
cagttatgct tcaggttatg ttactatagg ataatgatca cggctaaaac ggtcgaatgt 2220
aagcatatat ctttcgattg tataattgtt cccaaatact acagcatctc aaggaaaaaa 2280
aaacaaaaac ttccaaaaaa atcgaatccc tgaggaatct ttaatacatt ttcaatctat 2340
ttaagtttta taaacgtgta tatgagatgt catgagcatg aattattaat aataaaaact 2400
aaatcattaa agtaacttaa ggagttaaat atttaggaga ccggtctccc attatttgtt 2460
tgtttatgtg tgtttattcg aaactaagtt cttggtgttt taaaactaaa aaaaagacta 2520
actataaaag tagaatttaa gaagtttaag aaatagattt acagaattac aatcaatacc 2580
taccgtcttt atatacttat tagtcaagta ggggaataat ttcagggaac tggtttcaac 2640
cttttttttc agctttttcc aaatcagaga gagcagaagg taatagaagg tgtaagaaaa 2700
tgagatagat acatgcgtgg gtcaattgcc ttgtgtcatc atttactcca ggcaggttgc 2760
atcactccat tgaggttgtg cccgtttttt gcctgtttgt gcccctgttc tctgtagttg 2820
cgctaagaga atggacctat gaactgatgg ttggtgaaga aaacaatatt ttggtgctgg 2880
gattcttttt ttttctggat gccagcttaa aaagcgggct ccattatatt tagtggatgc 2940
caggaataaa ctgttcaccc agacacctac gatgttatat attctgtgta acccgccccc 3000
tattttgggc atgtacgggt tacagcagaa ttaaaaggct aattttttga ctaaataaag 3060
ttaggaaaat cactactatt aattatttac gtattctttg aaatggcagt attgataatg 3120
ataaactcga actgtatagt tttttctcct tgacgttaaa gtatagaggt atattaacaa 3180
ttttttgttg atacttttat gacatttgaa taagaagtaa tacaaaccga aaatgttgaa 3240
agtattagtt aaagtggtta tgcagctttt gcatttatat atctgttaat agatcaaaaa 3300
tcatcgcttc gctgattaat taccccagaa ataaggctaa aaaactaatc gcattattat 3360
cctatggttg ttaatttgat tcgttgattt gaaggtttgt ggggccaggt tactgccaat 3420
ttttcctctt cataaccata aaagctagta ttgtagaatc tttattgttc ggagcagtgc 3480
ggcgcgaggc acatctgcgt ttcaggaacg cgaccggtga agaccaggac gcacggagga 3540
gagtcttccg tcggagggct gtcgcccgct cggcggcttc taatccgtac ttcaatatag 3600
caatgagcag ttaagcgtat tactgaaagt tccaaagaga aggttttttt aggctaagat 3660
aatggggctc tttacatttc cacaacatat aagtaagatt agatatggat atgtatatgg 3720
tggtattgcc atgtaatatg attattaaac ttctttgcgt ccatccaaaa aaaaagtaag 3780
aatttttgaa aattcaatat aaatgggaga cgcgtctcct aaagctttgg acttcttcgc 3840
cagaggtttg gtcaagtctc caatcaaggt tgtcggcttg tctaccttgc cagaaattta 3900
cgaaaagatg gaaaagggtc aaatcgttgg tagatacgtt gttgacactt ctaaataagc 3960
gaatttctta tgatttatga tttttattat taaataagtt ataaaaaaaa taagtgtata 4020
caaattttaa agtgactctt aggttttaaa acgaaaattc ttattcttga gtaactcttt 4080
cctgtaggtc aggttgcttt ctcaggtata gcatgaggtc gctcttattg accacacctc 4140
taccggcatg ggatccacta gttctagagc ggccgccacc gcggtggagc tccagctttt 4200
gttcccttta gtgagggtta attgcgcgct tggcgtaatc atggtcatag ctgtttcctg 4260
tgtgaaattg ttatccgctc acaattccac acaacatagg agccggaagc ataaagtgta 4320
aagcctgggg tgcctaatga gtgaggtaac tcacattaat tgcgttgcgc tcactgcccg 4380
ctttccagtc gggaaacctg tcgtgccagc tgcattaatg aatcggccaa cgcgcgggga 4440
gaggcggttt gcgtattggg cgctcttccg cttcctcgct cactgactcg ctgcgctcgg 4500
tcgttcggct gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg ttatccacag 4560
aatcagggga taacgcagga aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc 4620
gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg cccccctgac gagcatcaca 4680
aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt 4740
ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc 4800
tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc 4860
tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc 4920
ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta agacacgact 4980
tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg 5040
ctacagagtt cttgaagtgg tggcctaact acggctacac tagaaggaca gtatttggta 5100
tctgcgctct gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca 5160
aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa 5220
aaaaaggatc tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaacg 5280
aaaactcacg ttaagggatt ttggtcatga gattatcaaa aaggatcttc acctagatcc 5340
ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa acttggtctg 5400
acagttacca atgcttaatc agtgaggcac ctatctcagc gatctgtcta tttcgttcat 5460
ccatagttgc ctgactcccc gtcgtgtaga taactacgat acgggagggc ttaccatctg 5520
gccccagtgc tgcaatgata ccgcgagacc cacgctcacc ggctccagat ttatcagcaa 5580
taaaccagcc agccggaagg gccgagcgca gaagtggtcc tgcaacttta tccgcctcca 5640
tccagtctat taattgttgc cgggaagcta gagtaagtag ttcgccagtt aatagtttgc 5700
gcaacgttgt tgccattgct acaggcatcg tggtgtcacg ctcgtcgttt ggtatggctt 5760
cattcagctc cggttcccaa cgatcaaggc gagttacatg atcccccatg ttgtgcaaaa 5820
aagcggttag ctccttcggt cctccgatcg ttgtcagaag taagttggcc gcagtgttat 5880
cactcatggt tatggcagca ctgcataatt ctcttactgt catgccatcc gtaagatgct 5940
tttctgtgac tggtgagtac tcaaccaagt cattctgaga atagtgtatg cggcgaccga 6000
gttgctcttg cccggcgtca atacgggata ataccgcgcc acatagcaga actttaaaag 6060
tgctcatcat tggaaaacgt tcttcggggc gaaaactctc aaggatctta ccgctgttga 6120
gatccagttc gatgtaaccc actcgtgcac ccaactgatc ttcagcatct tttactttca 6180
ccagcgtttc tgggtgagca aaaacaggaa ggcaaaatgc cgcaaaaaag ggaataaggg 6240
cgacacggaa atgttgaata ctcatactct tcctttttca atattattga agcatttatc 6300
agggttattg tctcatgagc ggatacatat ttgaatgtat ttagaaaaat aaacaaatag 6360
gggttccgcg cacatttccc cgaaaagtgc cacctgggtc cttttcatca cgtgctataa 6420
aaataattat aatttaaatt ttttaatata aatatataaa ttaaaaatag aaagtaaaaa 6480
aagaaattaa agaaaaaata gtttttgttt tccgaagatg taaaagactc tagggggatc 6540
gccaacaaat actacctttt atcttgctct tcctgctctc aggtattaat gccgaattgt 6600
ttcatcttgt ctgtgtagaa gaccacacac gaaaatcctg tgattttaca ttttacttat 6660
cgttaatcga atgtatatct atttaatctg cttttcttgt ctaataaata tatatgtaaa 6720
gtacgctttt tgttgaaatt ttttaaacct ttgtttattt ttttttcttc attccgtaac 6780
tcttctacct tctttattta ctttctaaaa tccaaataca aaacataaaa ataaataaac 6840
acagagtaaa ttcccaaatt attccatcat taaaagatac gaggcgcgtg taagttacag 6900
gcaagcgatc cgtcctaaga aaccattatt atcatgacat taacctataa aaataggcgt 6960
atcacgaggc cctttcgtc 6979
<210> 23
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
ggtctccaat gactaacttc ttgatcgttg ttg 33
<210> 24
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
ggtctccatt taagttcttt cttgagcttc ag 32
<210> 25
<211> 506
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
ggtctccaat gactaacttc ttgatcgttg ttgctactgt tttggttatg gaattgactg 60
cttactctgt tcacagatgg atcatgcacg gtccattggg ttggggttgg cacaagtctc 120
accacgaaga acacgaccac gctttggaaa agaacgactt gtacggtttg gttttcgctg 180
ttatcgctac tgttttgttc actgttggtt ggatctgggc tccagttttg tggtggatcg 240
ctttgggtat gactgtttac ggtttgatct acttcgtttt gcacgacggt ttggttcacc 300
aaagatggcc attcagatac atcccaagaa agggttacgc tagaagattg taccaagctc 360
acagattgca ccacgctgtt gaaggtagag accactgtgt ttctttcggt ttcatctacg 420
ctccaccagt tgacaagttg aagcaagact tgaagatgtc tggtgttttg agagctgaag 480
ctcaagaaag aacttaaatg gagacc 506
<210> 26
<211> 29
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
ggtctccaat gtccgctgtt actccaatg 29
<210> 27
<211> 34
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
ggtctccatt tatgaaaata aagaccacca aggc 34
<210> 28
<211> 743
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 28
ggtctccaat gtccgctgtt actccaatga gtagagttgt ccctaatcaa gcattgattg 60
gtttgacttt agcaggtttg attgctgctg cttggttgac attgcatata tacggtgtct 120
acttccacag atggacaatc tggtctgttt tgaccgtccc attaattgta gctggtcaaa 180
cttggttgtc cgtaggttta ttcatagttg ctcatgatgc aatgcacggt agtttggcac 240
cagccagacc tagattaaac acagcaatcg gttctttggc tttagcattg tatgccggtt 300
ttagattcac cccattgaaa actgcccatc acgctcatca cgctgcacca ggtacagcag 360
atgaccctga ttttcatgcc gacgctccaa gagcattttt gccttggttc tatggtttct 420
ttagaaccta cttcggttgg agagaattag cagttttgac tgtattagtt gcagtcgccg 480
tattaatatt gggtgctaga atgccaaatt tgttagtctt ttgggccgct cctgcattgt 540
tgtctgcctt acaattgttc actttcggta catggttgcc acatagacac accgatgacg 600
cctttcctga taatcataac gctagaacat ctccattcgg tcctgtttta tcattgttga 660
cctgtttcca tttcggtaga catcacgaac atcacttgac accttggaag ccttggtggt 720
ctttattttc ataaatggag acc 743
<210> 29
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 29
cgtctccaat gactaacttc ttgatcgttg ttg 33
<210> 30
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 30
cgtctccttt aagttctttc ttgagcttca gc 32
<210> 31
<211> 505
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 31
cgtctccaat gactaacttc ttgatcgttg ttgctactgt tttggttatg gaattgactg 60
cttactctgt tcacagatgg atcatgcacg gtccattggg ttggggttgg cacaagtctc 120
accacgaaga acacgaccac gctttggaaa agaacgactt gtacggtttg gttttcgctg 180
ttatcgctac tgttttgttc actgttggtt ggatctgggc tccagttttg tggtggatcg 240
ctttgggtat gactgtttac ggtttgatct acttcgtttt gcacgacggt ttggttcacc 300
aaagatggcc attcagatac atcccaagaa agggttacgc tagaagattg taccaagctc 360
acagattgca ccacgctgtt gaaggtagag accactgtgt ttctttcggt ttcatctacg 420
ctccaccagt tgacaagttg aagcaagact tgaagatgtc tggtgttttg agagctgaag 480
ctcaagaaag aacttaaagg agacg 505
<210> 32
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 32
cgtctccaat gtccgctgtt actcc 25
<210> 33
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 33
cgtctccttt atgaaaataa agaccaccaa ggc 33
<210> 34
<211> 742
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 34
cgtctccaat gtccgctgtt actccaatga gtagagttgt ccctaatcaa gcattgattg 60
gtttgacttt agcaggtttg attgctgctg cttggttgac attgcatata tacggtgtct 120
acttccacag atggacaatc tggtctgttt tgaccgtccc attaattgta gctggtcaaa 180
cttggttgtc cgtaggttta ttcatagttg ctcatgatgc aatgcacggt agtttggcac 240
cagccagacc tagattaaac acagcaatcg gttctttggc tttagcattg tatgccggtt 300
ttagattcac cccattgaaa actgcccatc acgctcatca cgctgcacca ggtacagcag 360
atgaccctga ttttcatgcc gacgctccaa gagcattttt gccttggttc tatggtttct 420
ttagaaccta cttcggttgg agagaattag cagttttgac tgtattagtt gcagtcgccg 480
tattaatatt gggtgctaga atgccaaatt tgttagtctt ttgggccgct cctgcattgt 540
tgtctgcctt acaattgttc actttcggta catggttgcc acatagacac accgatgacg 600
cctttcctga taatcataac gctagaacat ctccattcgg tcctgtttta tcattgttga 660
cctgtttcca tttcggtaga catcacgaac atcacttgac accttggaag ccttggtggt 720
ctttattttc ataaaggaga cg 742
<210> 35
<211> 8154
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 35
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accataccac agcttttcaa ttcaattcat catttttttt ttattctttt ttttgatttc 240
ggtttctttg aaattttttt gattcggtaa tctccgaaca gaaggaagaa cgaaggaagg 300
agcacagact tagattggta tatatacgca tatgtagtgt tgaagaaaca tgaaattgcc 360
cagtattctt aacccaactg cacagaacaa aaacctgcag gaaacgaaga taaatcatgt 420
cgaaagctac atataaggaa cgtgctgcta ctcatcctag tcctgttgct gccaagctat 480
ttaatatcat gcacgaaaag caaacaaact tgtgtgcttc attggatgtt cgtaccacca 540
aggaattact ggagttagtt gaagcattag gtcccaaaat ttgtttacta aaaacacatg 600
tggatatctt gactgatttt tccatggagg gcacagttaa gccgctaaag gcattatccg 660
ccaagtacaa ttttttactc ttcgaagaca gaaaatttgc tgacattggt aatacagtca 720
aattgcagta ctctgcgggt gtatacagaa tagcagaatg ggcagacatt acgaatgcac 780
acggtgtggt gggcccaggt attgttagcg gtttgaagca ggcggcagaa gaagtaacaa 840
aggaacctag aggccttttg atgttagcag aattgtcatg caagggctcc ctatctactg 900
gagaatatac taagggtact gttgacattg cgaagagcga caaagatttt gttatcggct 960
ttattgctca aagagacatg ggtggaagag atgaaggtta cgattggttg attatgacac 1020
ccggtgtggg tttagatgac aagggagacg cattgggtca acagtataga accgtggatg 1080
atgtggtctc tacaggatct gacattatta ttgttggaag aggactattt gcaaagggaa 1140
gggatgctaa ggtagagggt gaacgttaca gaaaagcagg ctgggaagca tatttgagaa 1200
gatgcggcca gcaaaactaa aaaactgtat tataagtaaa tgcatgtata ctaaactcac 1260
aaattagagc ttcaatttaa ttatatcagt tattacccta tgcggtgtga aataccgcac 1320
agatgcgtaa ggagaaaata ccgcatcagg aaattgtaaa cgttaatatt ttgttaaaat 1380
tcgcgttaaa tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaaa 1440
tcccttataa atcaaaagaa tagaccgaga tagggttgag tgttgttcca gtttggaaca 1500
agagtccact attaaagaac gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg 1560
gcgatggccc actacgtgaa ccatcaccct aatcaagttt tttggggtcg aggtgccgta 1620
aagcactaaa tcggaaccct aaagggagcc cccgatttag agcttgacgg ggaaagccgg 1680
cgaacgtggc gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa 1740
gtgtagcggt cacgctgcgc gtaaccacca cacccgccgc gcttaatgcg ccgctacagg 1800
gcgcgtcgcg ccattcgcca ttcaggctgc gcaactgttg ggaagggcga tcggtgcggg 1860
cctcttcgct attacgccag ctggcgaaag ggggatgtgc tgcaaggcga ttaagttggg 1920
taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgag cgcgcgtaat 1980
acgactcact atagggcgaa ttgggtaccg ggccccccct cgaggtcgac gcgaaaagcc 2040
aattagtgtg atactaagtg ctttatcgaa aatccgtgat gccggtcctt caggcatcaa 2100
atttcagtgg cctaattatt cacagagttc tcatgtgaca agtattgatg atagtagtgt 2160
cagttatgct tcaggttatg ttactatagg ataatgatca cggctaaaac ggtcgaatgt 2220
aagcatatat ctttcgattg tataattgtt cccaaatact acagcatctc aaggaaaaaa 2280
aaacaaaaac ttccaaaaaa atcgaatccc tgaggaatct ttaatacatt ttcaatctat 2340
ttaagtttta taaacgtgta tatgagatgt catgagcatg aattattaat aataaaaact 2400
aaatcattaa agtaacttaa ggagttaaat aatttatgaa aataaagacc accaaggctt 2460
ccaaggtgtc aagtgatgtt cgtgatgtct accgaaatgg aaacaggtca acaatgataa 2520
aacaggaccg aatggagatg ttctagcgtt atgattatca ggaaaggcgt catcggtgtg 2580
tctatgtggc aaccatgtac cgaaagtgaa caattgtaag gcagacaaca atgcaggagc 2640
ggcccaaaag actaacaaat ttggcattct agcacccaat attaatacgg cgactgcaac 2700
taatacagtc aaaactgcta attctctcca accgaagtag gttctaaaga aaccatagaa 2760
ccaaggcaaa aatgctcttg gagcgtcggc atgaaaatca gggtcatctg ctgtacctgg 2820
tgcagcgtga tgagcgtgat gggcagtttt caatggggtg aatctaaaac cggcatacaa 2880
tgctaaagcc aaagaaccga ttgctgtgtt taatctaggt ctggctggtg ccaaactacc 2940
gtgcattgca tcatgagcaa ctatgaataa acctacggac aaccaagttt gaccagctac 3000
aattaatggg acggtcaaaa cagaccagat tgtccatctg tggaagtaga caccgtatat 3060
atgcaatgtc aaccaagcag cagcaatcaa acctgctaaa gtcaaaccaa tcaatgcttg 3120
attagggaca actctactca ttggagtaac agcggacatt tttgtttgtt tatgtgtgtt 3180
tattcgaaac taagttcttg gtgttttaaa actaaaaaaa agactaacta taaaagtaga 3240
atttaagaag tttaagaaat agatttacag aattacaatc aatacctacc gtctttatat 3300
acttattagt caagtagggg aataatttca gggaactggt ttcaaccttt tttttcagct 3360
ttttccaaat cagagagagc agaaggtaat agaaggtgta agaaaatgag atagatacat 3420
gcgtgggtca attgccttgt gtcatcattt actccaggca ggttgcatca ctccattgag 3480
gttgtgcccg ttttttgcct gtttgtgccc ctgttctctg tagttgcgct aagagaatgg 3540
acctatgaac tgatggttgg tgaagaaaac aatattttgg tgctgggatt cttttttttt 3600
ctggatgcca gcttaaaaag cgggctccat tatatttagt ggatgccagg aataaactgt 3660
tcacccagac acctacgatg ttatatattc tgtgtaaccc gccccctatt ttgggcatgt 3720
acgggttaca gcagaattaa aaggctaatt ttttgactaa ataaagttag gaaaatcact 3780
actattaatt atttacgtat tctttgaaat ggcagtattg ataatgataa actcgaactg 3840
tatagttttt tctccttgac gttaaagtat agaggtatat taacaatttt ttgttgatac 3900
ttttatgaca tttgaataag aagtaataca aaccgaaaat gttgaaagta ttagttaaag 3960
tggttatgca gcttttgcat ttatatatct gttaatagat caaaaatcat cgcttcgctg 4020
attaattacc ccagaaataa ggctaaaaaa ctaatcgcat tattatccta tggttgttaa 4080
tttgattcgt tgatttgaag gtttgtgggg ccaggttact gccaattttt cctcttcata 4140
accataaaag ctagtattgt agaatcttta ttgttcggag cagtgcggcg cgaggcacat 4200
ctgcgtttca ggaacgcgac cggtgaagac caggacgcac ggaggagagt cttccgtcgg 4260
agggctgtcg cccgctcggc ggcttctaat ccgtacttca atatagcaat gagcagttaa 4320
gcgtattact gaaagttcca aagagaaggt ttttttaggc taagataatg gggctcttta 4380
catttccaca acatataagt aagattagat atggatatgt atatggtggt attgccatgt 4440
aatatgatta ttaaacttct ttgcgtccat ccaaaaaaaa agtaagaatt tttgaaaatt 4500
caatataaat gactaacttc ttgatcgttg ttgctactgt tttggttatg gaattgactg 4560
cttactctgt tcacagatgg atcatgcacg gtccattggg ttggggttgg cacaagtctc 4620
accacgaaga acacgaccac gctttggaaa agaacgactt gtacggtttg gttttcgctg 4680
ttatcgctac tgttttgttc actgttggtt ggatctgggc tccagttttg tggtggatcg 4740
ctttgggtat gactgtttac ggtttgatct acttcgtttt gcacgacggt ttggttcacc 4800
aaagatggcc attcagatac atcccaagaa agggttacgc tagaagattg taccaagctc 4860
acagattgca ccacgctgtt gaaggtagag accactgtgt ttctttcggt ttcatctacg 4920
ctccaccagt tgacaagttg aagcaagact tgaagatgtc tggtgttttg agagctgaag 4980
ctcaagaaag aacttaaagc tttggacttc ttcgccagag gtttggtcaa gtctccaatc 5040
aaggttgtcg gcttgtctac cttgccagaa atttacgaaa agatggaaaa gggtcaaatc 5100
gttggtagat acgttgttga cacttctaaa taagcgaatt tcttatgatt tatgattttt 5160
attattaaat aagttataaa aaaaataagt gtatacaaat tttaaagtga ctcttaggtt 5220
ttaaaacgaa aattcttatt cttgagtaac tctttcctgt aggtcaggtt gctttctcag 5280
gtatagcatg aggtcgctct tattgaccac acctctaccg gcatgggatc cactagttct 5340
agagcggccg ccaccgcggt ggagctccag cttttgttcc ctttagtgag ggttaattgc 5400
gcgcttggcg taatcatggt catagctgtt tcctgtgtga aattgttatc cgctcacaat 5460
tccacacaac ataggagccg gaagcataaa gtgtaaagcc tggggtgcct aatgagtgag 5520
gtaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa acctgtcgtg 5580
ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta ttgggcgctc 5640
ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc 5700
agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa 5760
catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt 5820
tttccatagg ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg 5880
gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg 5940
ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag 6000
cgtggcgctt tctcatagct cacgctgtag gtatctcagt tcggtgtagg tcgttcgctc 6060
caagctgggc tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa 6120
ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg 6180
taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc 6240
taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac 6300
cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggtgg 6360
tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag aagatccttt 6420
gatcttttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag ggattttggt 6480
catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat gaagttttaa 6540
atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct taatcagtga 6600
ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcctgac tccccgtcgt 6660
gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa tgataccgcg 6720
agacccacgc tcaccggctc cagatttatc agcaataaac cagccagccg gaagggccga 6780
gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt gttgccggga 6840
agctagagta agtagttcgc cagttaatag tttgcgcaac gttgttgcca ttgctacagg 6900
catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt cccaacgatc 6960
aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg gttagctcct tcggtcctcc 7020
gatcgttgtc agaagtaagt tggccgcagt gttatcactc atggttatgg cagcactgca 7080
taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg agtactcaac 7140
caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg cgtcaatacg 7200
ggataatacc gcgccacata gcagaacttt aaaagtgctc atcattggaa aacgttcttc 7260
ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt aacccactcg 7320
tgcacccaac tgatcttcag catcttttac tttcaccagc gtttctgggt gagcaaaaac 7380
aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt gaatactcat 7440
actcttcctt tttcaatatt attgaagcat ttatcagggt tattgtctca tgagcggata 7500
catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat ttccccgaaa 7560
agtgccacct gggtcctttt catcacgtgc tataaaaata attataattt aaatttttta 7620
atataaatat ataaattaaa aatagaaagt aaaaaaagaa attaaagaaa aaatagtttt 7680
tgttttccga agatgtaaaa gactctaggg ggatcgccaa caaatactac cttttatctt 7740
gctcttcctg ctctcaggta ttaatgccga attgtttcat cttgtctgtg tagaagacca 7800
cacacgaaaa tcctgtgatt ttacatttta cttatcgtta atcgaatgta tatctattta 7860
atctgctttt cttgtctaat aaatatatat gtaaagtacg ctttttgttg aaatttttta 7920
aacctttgtt tatttttttt tcttcattcc gtaactcttc taccttcttt atttactttc 7980
taaaatccaa atacaaaaca taaaaataaa taaacacaga gtaaattccc aaattattcc 8040
atcattaaaa gatacgaggc gcgtgtaagt tacaggcaag cgatccgtcc taagaaacca 8100
ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt cgtc 8154
<210> 36
<211> 8154
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 36
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accataccac agcttttcaa ttcaattcat catttttttt ttattctttt ttttgatttc 240
ggtttctttg aaattttttt gattcggtaa tctccgaaca gaaggaagaa cgaaggaagg 300
agcacagact tagattggta tatatacgca tatgtagtgt tgaagaaaca tgaaattgcc 360
cagtattctt aacccaactg cacagaacaa aaacctgcag gaaacgaaga taaatcatgt 420
cgaaagctac atataaggaa cgtgctgcta ctcatcctag tcctgttgct gccaagctat 480
ttaatatcat gcacgaaaag caaacaaact tgtgtgcttc attggatgtt cgtaccacca 540
aggaattact ggagttagtt gaagcattag gtcccaaaat ttgtttacta aaaacacatg 600
tggatatctt gactgatttt tccatggagg gcacagttaa gccgctaaag gcattatccg 660
ccaagtacaa ttttttactc ttcgaagaca gaaaatttgc tgacattggt aatacagtca 720
aattgcagta ctctgcgggt gtatacagaa tagcagaatg ggcagacatt acgaatgcac 780
acggtgtggt gggcccaggt attgttagcg gtttgaagca ggcggcagaa gaagtaacaa 840
aggaacctag aggccttttg atgttagcag aattgtcatg caagggctcc ctatctactg 900
gagaatatac taagggtact gttgacattg cgaagagcga caaagatttt gttatcggct 960
ttattgctca aagagacatg ggtggaagag atgaaggtta cgattggttg attatgacac 1020
ccggtgtggg tttagatgac aagggagacg cattgggtca acagtataga accgtggatg 1080
atgtggtctc tacaggatct gacattatta ttgttggaag aggactattt gcaaagggaa 1140
gggatgctaa ggtagagggt gaacgttaca gaaaagcagg ctgggaagca tatttgagaa 1200
gatgcggcca gcaaaactaa aaaactgtat tataagtaaa tgcatgtata ctaaactcac 1260
aaattagagc ttcaatttaa ttatatcagt tattacccta tgcggtgtga aataccgcac 1320
agatgcgtaa ggagaaaata ccgcatcagg aaattgtaaa cgttaatatt ttgttaaaat 1380
tcgcgttaaa tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaaa 1440
tcccttataa atcaaaagaa tagaccgaga tagggttgag tgttgttcca gtttggaaca 1500
agagtccact attaaagaac gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg 1560
gcgatggccc actacgtgaa ccatcaccct aatcaagttt tttggggtcg aggtgccgta 1620
aagcactaaa tcggaaccct aaagggagcc cccgatttag agcttgacgg ggaaagccgg 1680
cgaacgtggc gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa 1740
gtgtagcggt cacgctgcgc gtaaccacca cacccgccgc gcttaatgcg ccgctacagg 1800
gcgcgtcgcg ccattcgcca ttcaggctgc gcaactgttg ggaagggcga tcggtgcggg 1860
cctcttcgct attacgccag ctggcgaaag ggggatgtgc tgcaaggcga ttaagttggg 1920
taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgag cgcgcgtaat 1980
acgactcact atagggcgaa ttgggtaccg ggccccccct cgaggtcgac gcgaaaagcc 2040
aattagtgtg atactaagtg ctttatcgaa aatccgtgat gccggtcctt caggcatcaa 2100
atttcagtgg cctaattatt cacagagttc tcatgtgaca agtattgatg atagtagtgt 2160
cagttatgct tcaggttatg ttactatagg ataatgatca cggctaaaac ggtcgaatgt 2220
aagcatatat ctttcgattg tataattgtt cccaaatact acagcatctc aaggaaaaaa 2280
aaacaaaaac ttccaaaaaa atcgaatccc tgaggaatct ttaatacatt ttcaatctat 2340
ttaagtttta taaacgtgta tatgagatgt catgagcatg aattattaat aataaaaact 2400
aaatcattaa agtaacttaa ggagttaaat aatttaagtt ctttcttgag cttcagctct 2460
caaaacacca gacatcttca agtcttgctt caacttgtca actggtggag cgtagatgaa 2520
accgaaagaa acacagtggt ctctaccttc aacagcgtgg tgcaatctgt gagcttggta 2580
caatcttcta gcgtaaccct ttcttgggat gtatctgaat ggccatcttt ggtgaaccaa 2640
accgtcgtgc aaaacgaagt agatcaaacc gtaaacagtc atacccaaag cgatccacca 2700
caaaactgga gcccagatcc aaccaacagt gaacaaaaca gtagcgataa cagcgaaaac 2760
caaaccgtac aagtcgttct tttccaaagc gtggtcgtgt tcttcgtggt gagacttgtg 2820
ccaaccccaa cccaatggac cgtgcatgat ccatctgtga acagagtaag cagtcaattc 2880
cataaccaaa acagtagcaa caacgatcaa gaagttagtc atttttgttt gtttatgtgt 2940
gtttattcga aactaagttc ttggtgtttt aaaactaaaa aaaagactaa ctataaaagt 3000
agaatttaag aagtttaaga aatagattta cagaattaca atcaatacct accgtcttta 3060
tatacttatt agtcaagtag gggaataatt tcagggaact ggtttcaacc ttttttttca 3120
gctttttcca aatcagagag agcagaaggt aatagaaggt gtaagaaaat gagatagata 3180
catgcgtggg tcaattgcct tgtgtcatca tttactccag gcaggttgca tcactccatt 3240
gaggttgtgc ccgttttttg cctgtttgtg cccctgttct ctgtagttgc gctaagagaa 3300
tggacctatg aactgatggt tggtgaagaa aacaatattt tggtgctggg attctttttt 3360
tttctggatg ccagcttaaa aagcgggctc cattatattt agtggatgcc aggaataaac 3420
tgttcaccca gacacctacg atgttatata ttctgtgtaa cccgccccct attttgggca 3480
tgtacgggtt acagcagaat taaaaggcta attttttgac taaataaagt taggaaaatc 3540
actactatta attatttacg tattctttga aatggcagta ttgataatga taaactcgaa 3600
ctgtatagtt ttttctcctt gacgttaaag tatagaggta tattaacaat tttttgttga 3660
tacttttatg acatttgaat aagaagtaat acaaaccgaa aatgttgaaa gtattagtta 3720
aagtggttat gcagcttttg catttatata tctgttaata gatcaaaaat catcgcttcg 3780
ctgattaatt accccagaaa taaggctaaa aaactaatcg cattattatc ctatggttgt 3840
taatttgatt cgttgatttg aaggtttgtg gggccaggtt actgccaatt tttcctcttc 3900
ataaccataa aagctagtat tgtagaatct ttattgttcg gagcagtgcg gcgcgaggca 3960
catctgcgtt tcaggaacgc gaccggtgaa gaccaggacg cacggaggag agtcttccgt 4020
cggagggctg tcgcccgctc ggcggcttct aatccgtact tcaatatagc aatgagcagt 4080
taagcgtatt actgaaagtt ccaaagagaa ggttttttta ggctaagata atggggctct 4140
ttacatttcc acaacatata agtaagatta gatatggata tgtatatggt ggtattgcca 4200
tgtaatatga ttattaaact tctttgcgtc catccaaaaa aaaagtaaga atttttgaaa 4260
attcaatata aatgtccgct gttactccaa tgagtagagt tgtccctaat caagcattga 4320
ttggtttgac tttagcaggt ttgattgctg ctgcttggtt gacattgcat atatacggtg 4380
tctacttcca cagatggaca atctggtctg ttttgaccgt cccattaatt gtagctggtc 4440
aaacttggtt gtccgtaggt ttattcatag ttgctcatga tgcaatgcac ggtagtttgg 4500
caccagccag acctagatta aacacagcaa tcggttcttt ggctttagca ttgtatgccg 4560
gttttagatt caccccattg aaaactgccc atcacgctca tcacgctgca ccaggtacag 4620
cagatgaccc tgattttcat gccgacgctc caagagcatt tttgccttgg ttctatggtt 4680
tctttagaac ctacttcggt tggagagaat tagcagtttt gactgtatta gttgcagtcg 4740
ccgtattaat attgggtgct agaatgccaa atttgttagt cttttgggcc gctcctgcat 4800
tgttgtctgc cttacaattg ttcactttcg gtacatggtt gccacataga cacaccgatg 4860
acgcctttcc tgataatcat aacgctagaa catctccatt cggtcctgtt ttatcattgt 4920
tgacctgttt ccatttcggt agacatcacg aacatcactt gacaccttgg aagccttggt 4980
ggtctttatt ttcataaagc tttggacttc ttcgccagag gtttggtcaa gtctccaatc 5040
aaggttgtcg gcttgtctac cttgccagaa atttacgaaa agatggaaaa gggtcaaatc 5100
gttggtagat acgttgttga cacttctaaa taagcgaatt tcttatgatt tatgattttt 5160
attattaaat aagttataaa aaaaataagt gtatacaaat tttaaagtga ctcttaggtt 5220
ttaaaacgaa aattcttatt cttgagtaac tctttcctgt aggtcaggtt gctttctcag 5280
gtatagcatg aggtcgctct tattgaccac acctctaccg gcatgggatc cactagttct 5340
agagcggccg ccaccgcggt ggagctccag cttttgttcc ctttagtgag ggttaattgc 5400
gcgcttggcg taatcatggt catagctgtt tcctgtgtga aattgttatc cgctcacaat 5460
tccacacaac ataggagccg gaagcataaa gtgtaaagcc tggggtgcct aatgagtgag 5520
gtaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa acctgtcgtg 5580
ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta ttgggcgctc 5640
ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc 5700
agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg caggaaagaa 5760
catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt 5820
tttccatagg ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg 5880
gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg 5940
ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag 6000
cgtggcgctt tctcatagct cacgctgtag gtatctcagt tcggtgtagg tcgttcgctc 6060
caagctgggc tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa 6120
ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg 6180
taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc 6240
taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac 6300
cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggtgg 6360
tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag aagatccttt 6420
gatcttttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag ggattttggt 6480
catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat gaagttttaa 6540
atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct taatcagtga 6600
ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcctgac tccccgtcgt 6660
gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa tgataccgcg 6720
agacccacgc tcaccggctc cagatttatc agcaataaac cagccagccg gaagggccga 6780
gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt gttgccggga 6840
agctagagta agtagttcgc cagttaatag tttgcgcaac gttgttgcca ttgctacagg 6900
catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt cccaacgatc 6960
aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg gttagctcct tcggtcctcc 7020
gatcgttgtc agaagtaagt tggccgcagt gttatcactc atggttatgg cagcactgca 7080
taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg agtactcaac 7140
caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg cgtcaatacg 7200
ggataatacc gcgccacata gcagaacttt aaaagtgctc atcattggaa aacgttcttc 7260
ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt aacccactcg 7320
tgcacccaac tgatcttcag catcttttac tttcaccagc gtttctgggt gagcaaaaac 7380
aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt gaatactcat 7440
actcttcctt tttcaatatt attgaagcat ttatcagggt tattgtctca tgagcggata 7500
catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat ttccccgaaa 7560
agtgccacct gggtcctttt catcacgtgc tataaaaata attataattt aaatttttta 7620
atataaatat ataaattaaa aatagaaagt aaaaaaagaa attaaagaaa aaatagtttt 7680
tgttttccga agatgtaaaa gactctaggg ggatcgccaa caaatactac cttttatctt 7740
gctcttcctg ctctcaggta ttaatgccga attgtttcat cttgtctgtg tagaagacca 7800
cacacgaaaa tcctgtgatt ttacatttta cttatcgtta atcgaatgta tatctattta 7860
atctgctttt cttgtctaat aaatatatat gtaaagtacg ctttttgttg aaatttttta 7920
aacctttgtt tatttttttt tcttcattcc gtaactcttc taccttcttt atttactttc 7980
taaaatccaa atacaaaaca taaaaataaa taaacacaga gtaaattccc aaattattcc 8040
atcattaaaa gatacgaggc gcgtgtaagt tacaggcaag cgatccgtcc taagaaacca 8100
ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt cgtc 8154
<210> 37
<211> 4669
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 37
ttacagtctt tgtagataat gaatctgacc atctaaattt tttgtacaga aaaaaaagaa 60
aaatttgaaa tataaataac gttcttaata ctaacataac tattaaaaaa aataaatagg 120
gacctagact tcaggttgtc taactccttc cttttcggtt agagcggatg tgggaggagg 180
gcgtgaatgt aagcgtgaca taactaatta catgatatcg acaaaggaaa aggggcctgt 240
tttatatcct aatatcgtta gagttctgtc cttggaagac gtttggcaac aactgattaa 300
taaaagatgc tggagtagta gtgtcgtccc taggaaagaa atagaagaac aagaaagtga 360
caaagtagca tgctaagcag taataaatcc agtgtgactc agtcttcctt gtttgctcag 420
gtgcatattt cttctgagag tcctgtaact tcctaggcaa agggttttgt ccgaatgact 480
tacagacctg gtcagaagtt aatttagatc ctgccaagac tattgggact cctgtaccag 540
ggtgagttga tgcaccgacg aaaaataaat tgtcatatct gttagtagag tcctttgttg 600
aaggtctgaa ccacaaaacc tgaaagacat catgtgataa acctaatatt gatcccctcc 660
acaagttgaa cttagattgc cagactgatg ggtcgttgac ctcctcgtgt tctatcaagt 720
tagcgaagtt gttgactccc aacctcctct ctatgacctc caagaccatc tttctagccc 780
tgttgaccaa ctctgggtag ttctcctctg ctgagttacc tgtcttagac ttcatgtgac 840
caattggaac taaaactata attgagtcct tatttggagg tgctgcagac tcgtctatcc 900
ttgaaggaac gttgacgtag aaagatgctt cagaaggcaa accgaaatcg ttaaaaatct 960
cgtcgaatga ctccttgtaa gcctcagcca agaaaatgtt gtggacgtcc aattgaggga 1020
ccttagtaga cattgaccag taaaaagaaa ttgatgaaga tgttaatttc ttagatgcca 1080
aagtcttctt tgtccagttg caaggtggca acaagtggtg gtaagcgtag accaagtcag 1140
cgttgcagac gacagcgtct gcctcaatga cttctccaga ctccaaagtg acaccagtga 1200
ccctcttgtc tttatcgaca gtgttaatct tagcgacagg agattggtac ctgaactcag 1260
ctccgtactt cttagaagct atagactcca acttttggac gaccatgttg aaaccacccc 1320
ttgggtacca aattccctct gcgaactctg tatattgcaa caatgagtag actgcaggtg 1380
cgtcgtaagg tgacataccc atgtacattg tttgaaaagt aaaagccatc ctcatctttt 1440
ttgtttggaa gtattttgat gctctgtcgt atatcttacc gaataagtgc aacctaaaaa 1500
tctctgggac gtactgtaac cttattaagt cccatatagt ttcgaagttt ctctttatag 1560
caatgaatgt accctgctcg tagtggacgt gtgtctcttt catgaaatct aagaacctac 1620
cgaatcctaa aggtccctca atcctgtcca actcaccctt catctttgtt aagtctgatg 1680
acaattggac agcgtcaccg tcgtcgaaat ggactttgta attgttgtca catcttaata 1740
agtccaagtg gtctcctatc ctctcgtcta agtcagcgaa agcgtcctca aacaacttag 1800
gcatcaagta caatgaaggt ccctggtcga acctgtgacc gtcgtggtga atgaaagagc 1860
accttcctcc agagaagtcg ttcttctcga cgacagtgac tctgaaaccc tcccttgcta 1920
accttgctgc tgttgcagta cctcctattc cagcacctat gacgacaatg tgcttcttct 1980
gatcagacat ttttttgatt aaaattaaaa aaactttttg tttttgtgtt tattctttgt 2040
tcttagaaaa gacaagttga gcttgtttgt tcttgatgtt ttattatttt acaatagctg 2100
caaatgaaga atagattcga acattgtgaa gtattggcat atatcgtctc tatttatact 2160
tttttttttt cagttctagt atattttgta ttttcctcct tttcattctt tcagttgcca 2220
ataagttaca ggggatctcg aaagatggtg gggatttttc cttgaaagac gactttttgc 2280
catctaattt ttccttgttg cctctgaaaa ttatccagca gaagcaaatg taaaagatga 2340
acctcagaag aacacgcagg ggcccgaaat tgttcctacg agaagtagtg ggtcataaaa 2400
agtttattcc ctggaaaaaa aattttgcgt tgcctttctg gagaattttt tcgaattagc 2460
gtgctgccac tgcatgcatt tctgagaagt gtgggcattc ttccaccagt tgttcctcct 2520
aaaaaaaaaa aagatttcct accccgcaca aattcctgca tacccctcat ttccacgggg 2580
taaaaaaaaa acatcccgta gcagcctctg acggagccgt atggaacaat cctggataaa 2640
tatggcggaa aaacggctct ggctgcggct ttgtttaagg cagaaactag acagttcgag 2700
tttatcatta tcaatactgc catttcaaag aatacgtaaa taattaatag tagtgatttt 2760
cctaacttta tttagtcaaa aaattagcct tttaattctg ctgtaacccg tacatgccca 2820
aaataggggg cgggttacac agaatatata acatcgtagg tgtctgggtg aacagtttat 2880
tcctggcatc cactaaatat aatggagccc gctttttaag ctggcatcca gaaaaaaaaa 2940
gaatcccagc accaaaatat tgttttcttc accaaccatc agttcatagg tccattctct 3000
tagcgcaact acagagaaca ggggcacaaa caggcaaaaa acgggcacaa cctcaatgga 3060
gtgatgcaac ctgcctggag taaatgatga cacaaggcaa ttgacccacg catgtatcta 3120
tctcattttc ttacaccttc tattaccttc tgctctctct gatttggaaa aagctgaaaa 3180
aaaaggttga aaccagttcc ctgaaattat tcccctactt gactaataag tatataaaga 3240
cggtaggtat tgattgtaat tctgtaaatc tatttcttaa acttcttaaa ttctactttt 3300
atagttagtc ttttttttag ttttaaaaca ccaagaactt agtttcgaat aaacacacat 3360
aaacaaacaa aatgtcacaa ccaccattat tggaccacgc tacacaaact atggcaaacg 3420
gttctaaatc tttcgctact gctgctaaat tattcgaccc agcaacaaga agatctgtat 3480
tgatgttgta cacctggtgt agacattgcg atgacgttat agatgaccaa actcacggtt 3540
ttgcttcaga agctgcagcc gaagaagaag ctacacaaag attggcaaga ttaagaactt 3600
tgacattagc tgcattcgaa ggtgccgaaa tgcaagatcc agcttttgcc gctttccaag 3660
aagttgcatt aacccatggt attactccta gaatggcttt ggatcactta gacggttttg 3720
caatggatgt cgcccaaaca agatacgtaa ccttcgaaga cactttaaga tattgttacc 3780
atgtcgccgg tgttgtcggt ttgatgatgg ctagagtaat gggtgttaga gatgaaagag 3840
ttttagatag agcatgtgac ttgggtttag ccttccaatt gacaaacata gctagagata 3900
taatagatga cgcagccata gacagatgct atttgccagc tgaatggtta caagatgcag 3960
gtttgactcc tgaaaattac gctgcaagag aaaacagagc cgctttagcc agagttgctg 4020
aaagattgat agatgcagcc gaaccatatt acatctcttc acaagctggt ttgcatgatt 4080
tgccacctag atgcgcatgg gccattgcta ccgcaagatc tgtttacaga gaaatcggta 4140
ttaaagtcaa ggctgcaggt ggttccgcat gggatagaag acaacacact tctaaaggtg 4200
aaaagatcgc tatgttgatg gccgctcctg gtcaagttat tagagcaaag accaccagag 4260
tcaccccaag accagccggt ttatggcaaa gacctgttta aagctttgga cttcttcgcc 4320
agaggtttgg tcaagtctcc aatcaaggtt gtcggcttgt ctaccttgcc agaaatttac 4380
gaaaagatgg aaaagggtca aatcgttggt agatacgttg ttgacacttc taaataagcg 4440
aatttcttat gatttatgat ttttattatt aaataagtta taaaaaaaat aagtgtatac 4500
aaattttaaa gtgactctta ggttttaaaa cgaaaattct tattcttgag taactctttc 4560
ctgtaggtca ggttgctttc tcaggtatag catgaggtcg ctcttattga ccacacctct 4620
accggcatgc tctaaaccag cattgggcag ctgtctatat gaattataa 4669
<210> 38
<211> 4533
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 38
atagaattgg attatgtaaa aggtgaagat accattgtag tttgtacaga aaaaaaagaa 60
aaatttgaaa tataaataac gttcttaata ctaacataac tattaaaaaa aataaatagg 120
gacctagact tcaggttgtc taactccttc cttttcggtt agagcggatg tgggaggagg 180
gcgtgaatgt aagcgtgaca taactaatta catgatatcg acaaaggaaa aggggcctgt 240
tttaacgatg agtcgtcata atggcttgca atgctgctaa taccggaaca ggcggcttgc 300
cgctcagaat acgtagccga tcggtcagcg tgagttttcc cgcataaaaa cgggcaatta 360
aatcttcagg taaaccataa aaacgctgca taacccgcca gcgtgaatcg gcgggtccgg 420
ctaaaaacag catgcgattc agcatgcgga aaaagcgctg ctgctgccag cgctcgcggg 480
caaaatgcgt aatggcctgg tgaattgagg ccgacgtaaa gacatcaagt gcgctcaggc 540
ggtcggccac ggcaaccgcc agcggcagtg aatagccggt ggtaggatgg aacagaccgg 600
cacgtaatcc actacaggcc agggggcgct gctgccagaa tgcgtcggca ttgcccgaca 660
gggtgatggg taaggcgccc tgttcttcac gcagcaatgt ctgaagctgc caaccctgtt 720
gcgcggcata gtcgcaaata ttttgccgcg cgcgttcagg atctaatgtc gcattatcga 780
tatagtgcgt gtcttcaatt aacaatctgg tcggcgagag cggcaggctg tacacgaagc 840
gataaccatt ttgctgatcg accgtggcat ccatgataat gggagacgat aaaccatgcg 900
gttggctcaa tcgccattcc tggccaataa acgcctggaa gcccacgctc agtgctgagt 960
ttgccgcata accccgcccg tcaatcaccg cgcgtgcacc gataacctga ccctttttca 1020
accgaacaga ttccgcatta acctctgcga ccgcggtatc catccacaag tgcgggccaa 1080
actgtcgctg taaaacctca gcgaaacgct gagaagtaat acagaagtag ccgctgttca 1140
gcttacgacg gcgtgtggga aagcgcacct gatagtcggg ccagtgatga accaccagcg 1200
gagctatcca gcgatgttgg ctctcagtca aatcatcgtg gtgaaatgac cacgtatgat 1260
tcccgcccgc ctggggtgcg gcgtcgataa gcaaaatacg catatcaggt tgctgctgct 1320
gaagacgcag ggcgataagg ccattcgcga gtccagcccc cacgagaatc agatcataat 1380
gcggttgcat ttttttgatt aaaattaaaa aaactttttg tttttgtgtt tattctttgt 1440
tcttagaaaa gacaagttga gcttgtttgt tcttgatgtt ttattatttt acaatagctg 1500
caaatgaaga atagattcga acattgtgaa gtattggcat atatcgtctc tatttatact 1560
tttttttttt cagttctagt atattttgta ttttcctcct tttcattctt tcagttgcca 1620
ataagttaca ggggatctcg aaagatggtg gggatttttc cttgaaagac gactttttgc 1680
catctaattt ttccttgttg cctctgaaaa ttatccagca gaagcaaatg taaaagatga 1740
acctcagaag aacacgcagg ggcccgaaat tgttcctacg agaagtagtg ggtcataaaa 1800
agtttattcc ctggaaaaaa aattttgcgt tgcctttctg gagaattttt tcgaattagc 1860
gtgctgccac tgcatgcatt tctgagaagt gtgggcattc ttccaccagt tgttcctcct 1920
aaaaaaaaaa aagatttcct accccgcaca aattcctgca tacccctcat ttccacgggg 1980
taaaaaaaaa acatcccgta gcagcctctg acggagccgt atggaacaat cctggataaa 2040
tatggcggaa aaacggctct ggctgcggct ttgtttaagg cagaaactag atccaactgg 2100
caccgctggc ttgaacaaca ataccagcct tccaacttct gtaaataacg gcggtacgcc 2160
agtgccacca gtaccgttac ctttcggtat acctcctttc cccatgtttc caatgccctt 2220
catgcctcca acggctacta tcacaaatcc tcatcaagct gacgcaagcc ctaagaaatg 2280
aataacaata ctgacagtac taaataattg cctacttggc ttcacatacg ttgcatacgt 2340
cgatatagat aataatgata atgacagcag gattatcgta atacgtaata gttgaaaatc 2400
tcaaaaatgt gtgggtcatt acgtaaataa tgataggaat gggattcttc tatttttcct 2460
ttttccattc tagcagccgt cgggaaaacg tggcatcctc tctttcgggc tcaattggag 2520
tcacgctgcc gtgagcatcc tctctttcca tatctaacaa ctgagcacgt aaccaatgga 2580
aaagcatgag cttagcgttg ctccaaaaaa gtattggatg gttaatacca tttgtctgtt 2640
ctcttctgac tttgactcct caaaaaaaaa aaatctacaa tcaacagatc gcttcaatta 2700
cgccctcaca aaaacttttt tccttcttct tcgcccacgt taaattttat ccctcatgtt 2760
gtctaacgga tttctgcact tgatttatta taaaaagaca aagacataat acttctctat 2820
caatttcagt tattgttctt ccttgcgtta ttcttctgtt cttctttttc ttttgtcata 2880
tataaccata accaagtaat acatattcaa aatggcttat accgcaatgg cagcaggaac 2940
tcagtcattg cagttgagga cagtcgcctc ttaccaggag tgcaactcaa tgaggtcttg 3000
cttcaagttg accccattca agtcattcca cggtgtcaac ttcaacgttc cttctttagg 3060
tgccgccaac tgcgaaatca tgggtcactt gaaattgggt tctttgccat acaaacagtg 3120
ttcagtatca tctaagtcaa ctaagactat ggcccagttg gtagatttgg cagagaccga 3180
gaaagccgag ggaaaggata tcgagttcga ttttaacgag tatatgaagt ctaaggctgt 3240
cgctgttgat gcagccttgg ataaggccat ccctttggag tatccagaga agatccatga 3300
gtctatgagg tactcattgt tggccggagg aaaaagggtc agacctgcat tatgcatcgc 3360
tgcttgcgag ttagtaggtg gttctcagga cttggccatg ccaaccgcat gtgccatgga 3420
aatgattcat accatgtcat tgattcacga tgatttgcct tgcatggaca acgacgactt 3480
cagaagggga aagcctacca atcacaaggt tttcggagag gacactgctg ttttagccgg 3540
tgacgcattg ttatctttcg cttttgaaca catcgccgtt gccacatcaa aaactgtccc 3600
atctgacagg accttgagag tcatttctga gttgggtaaa accatcggtt cacagggatt 3660
ggtcggaggt caggtagtcg acatcacttc tgagggagac gccaacgtcg acttaaagac 3720
attggagtgg attcacattc acaagactgc cgtcttgttg gaatgctctg ttgtttctgg 3780
aggaatcttg ggtggagcta ccgaggatga gattgctaga ataagaagat acgccaggtg 3840
cgtcggtttg ttgttccagg ttgtcgacga cattttggat gtcaccaagt cttcagagga 3900
attgggaaag accgccggta aagacttatt gaccgacaag gctacctacc ctaagttgat 3960
gggtttggag aaggccaaag agtttgcagc agaattagct accagggcaa aggaagagtt 4020
gtcatcattc gaccagatca aggcagcccc tttgttagga ttggccgatt acatcgcttt 4080
caggcaaaac taaatttaac tccttaagtt actttaatga tttagttttt attattaata 4140
attcatgctc atgacatctc atatacacgt ttataaaact taaatagatt gaaaatgtat 4200
taaagattcc tcagggattc gatttttttg gaagtttttg tttttttttc cttgagatgc 4260
tgtagtattt gggaacaatt atacaatcga aagatatatg cttacattcg accgttttag 4320
ccgtgatcat tatcctatag taacataacc tgaagcataa ctgacactac tatcatcaat 4380
acttgtcaca tgagaactct gtgaataatt aggccactga aatttgatgc ctgaaggacc 4440
ggcatcacgg attttcgata aagcacttag tatcacacta attggctttt cgcattgatc 4500
tcctcttggg aacggtgagt gcaacgaatg cga 4533

Claims (10)

1. A recombinant saccharomyces cerevisiae constitutively expresses a beta-carotene ketolase gene CrtW, inducibly expresses a beta-carotene hydroxylase gene CrtZ, and synthesizes an intermediate product beta-carotene into astaxanthin.
2. The recombinant saccharomyces cerevisiae of claim 1, wherein: the constitutive promoter for constitutive expression of the beta-carotene ketolase gene CrtW is TDH3 p; and/or
The inducible promoter used for inducible expression of the beta-carotene hydroxylase gene CrtZ is Gal 1.
3. A recombinant expression vector of Saccharomyces cerevisiae comprises a constitutive promoter and a beta-carotene ketolase gene CrtW under the control of the constitutive promoter, and an inducible promoter and a beta-carotene hydroxylase gene CrtZ under the control of the inducible promoter.
4. The recombinant expression vector of claim 3, wherein: the constitutive promoter is TDH3 p; and/or
The inducible promoter is Gal 1.
5. The recombinant expression vector according to claim 3 or 4, wherein: the recombinant expression vector is PRS416-ADH1t-AaCrtZ-Gal1-TDH3p-BDC263CrtW-TDH2t, and the sequence is shown in SEQ ID NO. 35.
6. A method for constructing the recombinant Saccharomyces cerevisiae of claim 1 or 2, comprising the steps of transferring the recombinant expression vector of any one of claims 3-5 into a starting Saccharomyces cerevisiae to obtain a recombinant Saccharomyces cerevisiae;
the starting saccharomyces cerevisiae is saccharomyces cerevisiae capable of synthesizing beta-carotene.
7. A method for producing astaxanthin comprising the steps of subjecting the recombinant Saccharomyces cerevisiae as set forth in claim 1 or 2 to fermentation culture such that the beta-carotene ketolase gene CrtW is constitutively expressed and adding D- (+) -galactose during the fermentation culture to induce the expression of the beta-carotene hydroxylase gene CrtZ to synthesize astaxanthin.
8. The method of claim 7, wherein: the fermentation culture comprises the steps of carrying out fermentation culture on the recombinant saccharomyces cerevisiae in an initial fermentation culture medium, wherein the fermentation pH is 5.8-6.2, and adding D- (+) -galactose to induce the expression of a beta-carotene hydroxylase gene CrtZ;
before adding D- (+) -galactose, feeding glucose and controlling the glucose to be in a range of 0-1 g/L; stopping adding glucose while adding D- (+) -galactose, adding ethanol while controlling at 0.5-10g/L, and controlling at 20-30 deg.C;
and supplementing a nitrogen source in an intermittent feeding mode with decreasing concentration gradient during the fermentation culture.
9. The method according to claim 7 or 8, characterized in that: before fermentation culture, the method also comprises the step of performing primary seed culture and secondary seed culture on the recombinant saccharomyces cerevisiae of claim 1 or 2;
the primary seed culture comprises inoculating the recombinant Saccharomyces cerevisiae of claim 1 or 2 into a shake flask containing SC-Ura liquid medium, and culturing to OD600A step of 6-7;
the second-stage seed culture comprises transferring the first-stage seed obtained by the first-stage seed culture to a shake flask containing SC-Ura liquid culture medium, and culturing to OD6005-6.
10. Use of a recombinant s.cerevisiae as claimed in claim 1 or 2 and/or a recombinant expression vector as claimed in any one of claims 3 to 5 for the production of astaxanthin.
CN202010430296.6A 2020-05-20 2020-05-20 Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof Active CN113699053B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010430296.6A CN113699053B (en) 2020-05-20 2020-05-20 Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010430296.6A CN113699053B (en) 2020-05-20 2020-05-20 Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof

Publications (2)

Publication Number Publication Date
CN113699053A true CN113699053A (en) 2021-11-26
CN113699053B CN113699053B (en) 2023-08-11

Family

ID=78645599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010430296.6A Active CN113699053B (en) 2020-05-20 2020-05-20 Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof

Country Status (1)

Country Link
CN (1) CN113699053B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214218A (en) * 2021-12-24 2022-03-22 华东理工大学 Engineering bacterium for producing astaxanthin and preparation method and application thereof
CN114350736A (en) * 2022-01-29 2022-04-15 万华化学(四川)有限公司 Method for increasing content of astaxanthin diester in haematococcus pluvialis culture
CN114574516A (en) * 2022-01-18 2022-06-03 浙江大学杭州国际科创中心 CRISPR/Cas 9-based yeast genome stable integration method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865818A (en) * 2012-12-07 2014-06-18 上海来益生物药物研究开发中心有限责任公司 Construction method of genetically engineered bacterium for producing astaxanthin
CN105087408A (en) * 2015-09-10 2015-11-25 武汉生物技术研究院 Yeast strain for producing beta-carotene and application of yeast strain
CN105779319A (en) * 2016-03-23 2016-07-20 天津大学 Recombinant yeast strain, and building method and application thereof
CN105861538A (en) * 2016-05-25 2016-08-17 天津大学 Recombinant plasmid and recombinant yeast strain and establishing method and application thereof
CN109943493A (en) * 2019-04-17 2019-06-28 天津大学 Realize the mutant strain and its construction method of general enzymatic functional diversity
CN109971664A (en) * 2019-04-23 2019-07-05 天津大学 The bacterial strain of high-yield astaxanthin and its application
CN110195023A (en) * 2019-06-27 2019-09-03 天津大学 A kind of Wine brewing yeast strain and its application
CN111057712A (en) * 2019-12-02 2020-04-24 森瑞斯生物科技(深圳)有限公司 Recombinant yeast strain and construction method and application thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865818A (en) * 2012-12-07 2014-06-18 上海来益生物药物研究开发中心有限责任公司 Construction method of genetically engineered bacterium for producing astaxanthin
CN105087408A (en) * 2015-09-10 2015-11-25 武汉生物技术研究院 Yeast strain for producing beta-carotene and application of yeast strain
CN105779319A (en) * 2016-03-23 2016-07-20 天津大学 Recombinant yeast strain, and building method and application thereof
CN105861538A (en) * 2016-05-25 2016-08-17 天津大学 Recombinant plasmid and recombinant yeast strain and establishing method and application thereof
CN109943493A (en) * 2019-04-17 2019-06-28 天津大学 Realize the mutant strain and its construction method of general enzymatic functional diversity
CN109971664A (en) * 2019-04-23 2019-07-05 天津大学 The bacterial strain of high-yield astaxanthin and its application
CN110195023A (en) * 2019-06-27 2019-09-03 天津大学 A kind of Wine brewing yeast strain and its application
CN111057712A (en) * 2019-12-02 2020-04-24 森瑞斯生物科技(深圳)有限公司 Recombinant yeast strain and construction method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIXIAN CHEN等: "Metabolic Engineering Strategies for Sustainable Terpenoid Flavor and Fragrance Synthesis" *
杨祖明: "适应性进化提高酿酒酵母中虾青素的生产", 《中国优秀硕士学位论文全文数据库_工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214218A (en) * 2021-12-24 2022-03-22 华东理工大学 Engineering bacterium for producing astaxanthin and preparation method and application thereof
CN114574516A (en) * 2022-01-18 2022-06-03 浙江大学杭州国际科创中心 CRISPR/Cas 9-based yeast genome stable integration method
CN114574516B (en) * 2022-01-18 2023-10-27 浙江大学杭州国际科创中心 CRISPR/Cas 9-based yeast genome stable integration method
CN114350736A (en) * 2022-01-29 2022-04-15 万华化学(四川)有限公司 Method for increasing content of astaxanthin diester in haematococcus pluvialis culture

Also Published As

Publication number Publication date
CN113699053B (en) 2023-08-11

Similar Documents

Publication Publication Date Title
CN113699053B (en) Recombinant saccharomyces cerevisiae for producing astaxanthin and application thereof
KR102698595B1 (en) Methods and compositions for expression of guide RNA based on polymerase II (POL-II)
KR102381610B1 (en) Genetic targeting in non-conventional yeast using an rna-guided endonuclease
KR20180081618A (en) Therapeutic Targets and Methods for Calibration of Human Dystrophin Gene by Gene Editing
CN102695796B (en) Cell, nucleic acid, enzyme and they be used to produce the purposes and method of sophorolipid
JP2023071855A (en) CRISPR-Cas effector polypeptides and methods of use thereof
CN114058604B (en) Fusion protein and application thereof in base editing
KR102021982B1 (en) Mnd promoter chimeric antigen receptors
KR20180056772A (en) Protective DNA templates and methods for intracellular gene modification and increased homologous recombination
CN110678202B (en) Systems and methods for in vivo nucleic acid expression
US20040062752A1 (en) Adeno-associated virus vectors encoding factor VIII and methods of using the same
CN106687578B (en) Targeted mutagenesis in spirulina
AU2022201838A1 (en) Bacteria engineered to reduce hyperphenylalaninemia
DK2576605T3 (en) PREPARATION OF METABOLITES
KR20170077238A (en) Peptide-mediated delivery of rna-guided endonuclease into cells
CN108779480A (en) The method for producing sphingosine and sphingolipid
CN106661573B (en) Recombinase-mediated integration of polynucleotide libraries
CN112088215A (en) CRISPR Transient Expression Constructs (CTEC)
KR20200028415A (en) Two-component vector library system for rapid assembly and diversification of full-length T-cell receptor open reading frames
CN114981423A (en) I-B type CRISPR-associated transposase system
DK2861727T3 (en) MUTERED ACYL-COA: LYSOPHOSPHATIDYLCHOLINE ACYL TRANSFERASES
CN107312800B (en) CIK capable of knocking down endogenous PD-1 expression and preparation method and application thereof
CN113862299B (en) Vector for homologous recombination and application thereof
TW202018088A (en) Test piece, detection method and detection device of dental caries factors
CN108424934A (en) A kind of slow virus CAG-CMV double-promoters transformation vector construction and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant