CN113691362A - 基于超混沌系统和dna编码的位平面图像压缩加密算法 - Google Patents
基于超混沌系统和dna编码的位平面图像压缩加密算法 Download PDFInfo
- Publication number
- CN113691362A CN113691362A CN202111045260.7A CN202111045260A CN113691362A CN 113691362 A CN113691362 A CN 113691362A CN 202111045260 A CN202111045260 A CN 202111045260A CN 113691362 A CN113691362 A CN 113691362A
- Authority
- CN
- China
- Prior art keywords
- bit
- sequence
- image
- rule
- integer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007906 compression Methods 0.000 title claims abstract description 39
- 230000006835 compression Effects 0.000 title claims abstract description 36
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 44
- 239000011159 matrix material Substances 0.000 claims description 30
- 108020004414 DNA Proteins 0.000 claims description 28
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 8
- 238000010606 normalization Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 abstract description 2
- 238000005070 sampling Methods 0.000 abstract 1
- 235000002566 Capsicum Nutrition 0.000 description 14
- 239000006002 Pepper Substances 0.000 description 14
- 241000722363 Piper Species 0.000 description 14
- 235000016761 Piper aduncum Nutrition 0.000 description 14
- 235000017804 Piper guineense Nutrition 0.000 description 14
- 235000008184 Piper nigrum Nutrition 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 230000000295 complement effect Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 238000001583 randomness test Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000000739 chaotic effect Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/065—Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
- H04L9/0656—Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher
- H04L9/0662—Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher with particular pseudorandom sequence generator
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/001—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/0643—Hash functions, e.g. MD5, SHA, HMAC or f9 MAC
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0861—Generation of secret information including derivation or calculation of cryptographic keys or passwords
- H04L9/0866—Generation of secret information including derivation or calculation of cryptographic keys or passwords involving user or device identifiers, e.g. serial number, physical or biometrical information, DNA, hand-signature or measurable physical characteristics
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N1/32144—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
- H04N1/32149—Methods relating to embedding, encoding, decoding, detection or retrieval operations
- H04N1/32267—Methods relating to embedding, encoding, decoding, detection or retrieval operations combined with processing of the image
- H04N1/32272—Encryption or ciphering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N1/32144—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
- H04N1/32149—Methods relating to embedding, encoding, decoding, detection or retrieval operations
- H04N1/32267—Methods relating to embedding, encoding, decoding, detection or retrieval operations combined with processing of the image
- H04N1/32277—Compression
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/182—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/50—Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Multimedia (AREA)
- Power Engineering (AREA)
- Image Processing (AREA)
Abstract
本发明提供了一种新的基于超Lorenz系统,同时结合了二维压缩感知算法,图像的位平面分解法以及DNA编码的多过程图像压缩加密算法。该方法的主要步骤包括:根据压缩比,采用压缩感知算法对明文图像进行采样:基于压缩后的图像,通过超Lorenz系统得到指定长度的4组伪随机序列:对压缩后的图像进行分解得到8个位平面,结合整数化伪随机序列分别对其进行置乱,将置乱后的8个位平面重组得到置乱图像:对置乱图像以及整数化伪随机序列进行DNA编码,对两者应用基于DNA编码的异或运算,得到密文图像。本发明所提供的加密算法具有很强的明文相关性,在保证安全性的同时也提高了算法的执行效率。
Description
技术领域
本发明设计图像加密技术领域,特别是一种基于超混沌系统和DNA编码的位平面图像压缩加密方法。
背景技术
自上世纪90年代以来,基于计算机的信息科学技术的快速发展给人们的生活带来了极大的改变,与此同时,信息储存、传播的媒介也在逐渐朝着多样化、便利化的方向发展,而数字图像凭借其丰富的信息存储能力,直观的信息表达能力以及便于网络传输等特性逐渐取代了文本成为了当下社会重要的信息存储、传输的方式之一。
因此,在计算机科学技术高速发展的今天,针对数字图像的加密算法逐渐成为了研究热点。
然而,近年来不断有个人以及组织机构因为图像信息的泄露而蒙受了损失,这是由于数字图像与文本在存储方式、文件编码等方面存在巨大的差异,像AES、DES以及RSA这类传统的加密标准或技术无法为存储在数字图像中的信息提供有效的保护。同时,由于计算机算力的限制以及与数字图像加密相关的理论和标准发展缓慢,一些陈旧的数字图像加密算法往往存在安全性不足,无法抵御来自外部的破译攻击等缺陷。
发明内容
为了解决上述问题,特地引入一种基于超混沌系统和DNA编码的位平面图像压缩加密算法(使用超混沌系统中的超Lorenz系统),既能保证加密过程安全且随机,又能简化运算方法。
以灰度图像P作为明文图像,采用二维压缩感知算法对明文图像P的一组对称边进行压缩,生成压缩后的像素矩阵t1,压缩公式如下:
t1=Φ×P
由于压缩后t1中元素的取值存在大范围跳变的问题,不利于之后的处理,需要对t1进行规范化处理,使得其中元素的取值始终位于[0,255]这一区间范围内,生成规范化像素矩阵t2,其规范化过程为:
结合结合明文图像P的哈希值以及外部密钥信息,利用超Lorenz系统,生成4组伪随机序列s1、s2、s3和s4,其中超Lorenz系统的表达式为:
其中,a、b、c、d为系统参数,a=10,b=8/3,c=28,r=–1,w、x、y、z为系统变量,其初始值w0、x0、y0、z0可人为设定,通过将扰动后的w0、x0、y0、z0代入上述方程进行迭代,迭代次数大于等于所述规范像素矩阵t2的像素点数,得到4组等长的伪随机序列s1、s2、s3和s4;
将所述规范像素矩阵t2中的每一个像素值转化为8位无符号二进制数,将它们由最低位到最高位,按照对应的坐标依次放到8个矩阵中,这8个矩阵即为t2对应的8个位平面图像,再对这8个位平面图像Bi(i=1,2,…,8)的像素位置置乱,具体做法为:
其中,||表示绝对值运算,得出整数伪随机序列S1和S2;
步骤4、利用整数伪随机序列S1和S2按照公式来对8个位平面图像的行列进行位置置乱,生成8个置乱位平面图像,最后再将8个置乱位平面重新组合成一个新的像素矩阵,具体方法以及公式如下:
其中Bi(j,:)表示第i个位平面图像的第j行,《表示循环左移位操作,》表示循环下移位操作,S1(j)(或者S1(k))的值则代表该行循环左(下)移位的位数;
将8个置乱位平面图像重新组合为置乱后的像素矩阵t3,组合方法为步骤2的逆运算,将第一平面到第八平面的对应位置处的每一个二进制数组合起来并转化为十进制像素值;
然后将置乱后的像素矩阵t3重新排列为1维的长度为的序列t4,具体方法为:将第二行置于第一行的尾后,再将第三行置于第二行的尾后,第四行置于第三行的尾后,以此类推,直至第最后一行置于倒数第二行尾后,以此形成一维序列t4;
对4组伪随机序列s1、s2、s3、s4进行整数化处理得到I1、I2、I3、I4,整数化公式如下:
其中I1、I2、I3的取值范围是1~8,而I4的取值范围是0~255;
在生物学中,DNA序列由“A”、“T”、“G”和“C”4种含氮碱基组成。另一方面,由于灰度图像的像素可以由8位无符号2进制数表示,而在2进制数中,“0”与“1”是互补的,那么“00”与“11”以及“01”与“10”也是互补的。因此,灰度图像的像素值可以由长度为4的碱基序列表示,而将图像像素值映射为完全由碱基构成的序列的过程即为DNA编码过程。然而,与灰度图像的像素的二进制数表示相对应,且同时满足DNA碱基互补原则的编码规则却仅有8种,选取I2作为t4的规则选取项,选取I3作为I4的规则选取项,分别得到t5和R4,其中t5和R4均由碱基构成,运算公式和碱基序列编码与解码规则为:
8种标准的DNA序列编码与解码规则
其中I2的值表示选用几号规则来进行DNA编码;
按照碱基序列的异或运算规则,将碱基序列t5和R4进行运算得到新的碱基序列R,运算公式与异或运算规则如下:
R=bitxor(t5,R4)
将整数伪随机序列I1作为碱基序列R的解码规则,运算得到二进制序列bR,解码运算公式如下:
bR=decode(R,rule(I1))
碱基序列R按照DNA序列的解码规则进行解码,I1的值作为解码规则选取项,重新得到一个二进制编码的序列bR;
将明文图形P所有像素点相加得到常数t,并将其转化成8位无符号二进制常数tb,再将tb与二进制序列bR进行位异或运算,相关公式如下:
具体运算方法为:二进制数值相加,同为0,异为1,规则如下:
异或运算规则表
求出明文图像P的像素点数之和t,将十进制数t转换成8位无符号二进制数,然后在与二进制序列bR进行异或运算得到二进制序列t6,再将t6转换为十进制序列t7,最后将一维的序列t7重新排列为矩阵形式,得到密文图像C。
有益效果为:引入混沌系统产生伪随机序列以取代传统的伪随机序列算法,在简化了算法流程的同时获得了更强的随机性。将混沌系统的强随机性引入到图像序列中,有效地实现了针对数字图像的加密,将分子生物学的概念引入到密码学中,通过结合伪随机序列对图像像素进行编码、运算,进一步强化安全性。
附图说明
图1为本发明的方法流程图。
图2为基于压缩感知理论的图像压缩过程示意图。
图3为超Lorenz系统随参数a变化的李氏指数分岔图,其中3(a)展示了该系统随参数a变化的前3个李氏指数,3(b)展示了随参数a变化的分岔图。
图4为以Lena图像为例的灰度图像的8-bit位平面分解示意图。
图5为本发明用于仿真实验的图像,其中,5(a)为Lena,5(b)为Pepper,5(c)Cameraman。
图6为压缩比为0.5的前提下,Lena、Pepper以及Cameraman图像对应的密文图像,其中,6(a)为Lena的密文图像,6(b)为Pepper的密文图像,6(c)位Cameraman的密文图像。
图7为图6中各密文图像对应的解密图像,其中,7(a)为Lena的解密图像,7(b)为Pepper的解密图像,7(c)为Cameraman的解密图像。
图8为图5、6、7中各子图的灰度直方图,其中,图8(a)为Lena的明文图像、压缩比为0.5时的密文以及解密图像的灰度直方图,图8(b)为Pepper的明文图像、压缩比为0.5时的密文以及解密图像的灰度直方图,图8(c)为Cameraman的明文图像、压缩比为0.5时的密文以及解密图像的灰度直方图。
图9位图5、6、7中各子图的相关性图,其中,图9(a)、图9(b)以及图9(c)分别为Lena的明文图像、压缩比为0.5时的密文图像以及解密图像在水平、竖直以及斜线3个方向上的相关性图,图9(d)、图9(e)以及图9(f)分别为Pepper的明文图像、压缩比为0.5时的密文图像以及解密图像在水平、竖直以及斜线3个方向上的相关性图,图9(g)、图9(h)以及图9(i)分别为Lena的明文图像、压缩比为0.5时的密文图像以及解密图像在水平、竖直以及斜线3个方向上的相关性图。
具体实施方式
为了更好地说明本发明的技术方案,以下结合附图以及本发明的具体实施方式进行描述。
本发明为一种基于超混沌系统和DNA编码的位平面图像压缩加密方法,其流程图如图1所示,它大体上可分为4个部分。第1部分是基于压缩感知算法的图像压缩过程;第2部分为使用密钥以及超Lorenz系统,迭代产生得到伪随机序列的过程;第3部分主要是使用上一部分中生成的2组伪随机序列,针对由明文图像分解得到的8个位平面图像的行、列分别进行置乱,并重组为完整图像的过程;第4部分为以DNA编码以及碱基级的按位异或运算为基础的像素扩散过程,将该过程的结果重组为矩阵形式即可得到最终的密文图像。
1.基于压缩感知理论的图像压缩算法
图2显示了以Lena图像为例,在压缩比为0.5的前提下,采用基于压缩感知理论的图像压缩算法进行压缩的过程。对于尺寸为M×N的明文图像P,采用尺寸为(CR×M)×N的高斯随机矩阵作为测量矩阵Φ通过下式对P进行随机采样。
t1=Φ×P
其中,t1为压缩图像,其尺寸为CR∈[0.1,0.9]为预定义的压缩比。以压缩比CR=0.5为例对尺寸为512×512的Lena图像进行压缩采样,其简化后的过程以及压缩结果如图1所示。此外,考虑到t1中元素的取值跨度很大,不利于针对图像像素的算法处理,因此按照下式对t1进行规范化,将t1中元素的取值限制在区间[0,255]内。
2.基于外部密钥、明文哈希值以及超Lorenz系统的伪随机序列发生器
为了便于理解,分别用K、K1以及K2来表示完整的密钥,外部密钥以及内部密钥。其中,K1是长度为256的2进制序列(以64位16进制数形式输入),K2则是由SHA-256算法计算得来的明文图像的哈希值,而完整密钥K是由K1和K2直接拼接而来,其长度为512。将密钥K转化为10进制序列,得到长为64的10进制密钥d,使用d对超Lorenz系统的预设初值按照下式进行扰动。
其中,SUM()为求和函数。将上述经过扰动初值x0、y0、z0以及w0代入如下所示的超Lorenz系统方程中。
其中,a=10,b=8/3,c=28,r=-1,图3(a)显示了超Lorenz系统的前3个李氏指数图,表明该系统确实是一个超混沌系统,图3(b)则显示了该系统的分岔图。使用龙格—库塔法对上述系统进行迭代得到4组长度的伪随机序列s1,s2,s3以及s4。值得一提的是,由超Lorenz系统迭代得到的这4组伪随机序列均具有不错的随机性,以s1为例,它通过了如表1所示的NIST SP800-20随机性测试(其余3组同理)。
表1 NIST SP800-20随机性检测结果
注意到当p值>0.01即可认为序列通过了该项随机性测试,此外,“*”表示该项测试结果包含了2个以上的p值,但是由于它们均大于0.1,即序列通过了该项测试。
3.基于图像的位平面分解以及循环移位运算的像素置乱过程
如图4所示,以Lena图像为例,由它分解可以得到的8个仅由0和1组成的位平面图像,该像素置乱过程如下所示。
其中,||表示绝对值运算。将规范化后的像素矩阵t2分解为8个位平面图像,每个位平面图像仅由0和1构成。针对位平面图像Bi(i=1,2...,8),根据下式,使用整数伪随机序列S1和S2对其分别进行行置乱和列置乱,公式如下:
其中Bi(j,:)表示第i个位平面图像的第j行,《表示循环左移位操作,而Bi(j)则代表该行循环左移位的位数。同理,其中Bi(:,k)表示第i个位平面图像的第k列,》表示循环右(下)移位操作,而Bi(k)则代表该列循环右(下)移位的位数。例如,当i=2,S1(10)=100时表示将第2个位平面图像的第10行向左循环移动100位;同理,当i=4,S2(100)=32时表示将第4个位平面图像的第100列向下循环移动32位。将经过行置乱和列置乱的8个位平面图像重组即可得到置乱后的图像t3;
本实施例为循环左移位操作和循环下移位操作,但不排斥其他循环右移位操作和循环上移位操作方式。
4.基于DNA编码以及碱基运算的像素扩散过程
在生物学中,DNA序列由“A”、“T”、“G”和“C”4种含氮碱基组成。另一方面,由于灰度图像的像素可以由8位无符号2进制数表示,而在2进制数中,“0”与“1”是互补的,那么“00”与“11”以及“01”与“10”也是互补的。因此,灰度图像的像素值可以由长度为4的碱基序列表示,而将图像像素值映射为碱基序列的过程即为DNA编码过程。然而,与灰度图像的像素的2进制数表示相对应,且同时满足DNA碱基互补原则的编码规则却仅有8种,如表2所示。
表2 8种标准的DNA序列编码与解码规则
该像素扩散过程如下所示。根据下式重新对伪随机序列s1,s2,s3和s4进行整数化处理。
分别将I2和I3作为DNA编码过程中的规则选取序列,对t4和I4进行DNA编码得到碱基序列t5和R4,即仅由碱基“A”、“T”、“G”以及“C”的序列,其运算过程如下所示。
整数化不限于上述两种及其顺序。
I1、I2、I3以及I4均为整数伪随机序列,其中I1、I2和I3的取值范围为1~8,而I4的取值范围为0~255。将置乱后的图像t3重新排列为长度为的一维数组,其取值范围与I4相同。之后,将I2和I3分别作为DNA编码过程中的规则选取序列,对t4和I4进行DNA编码得到仅由碱基“A”、“T”、“G”以及“C”的序列构成的序列t5和R4,其运算过程如下。
其中,encode()表示针对二进制序列的DNA编码运算,例如,当t4(320)=124,I2(320)=4,那么encode(t4(320),I2(320))则表示按照规则4对位于第320位的像素值124(二进制值为01111100)进行编码,其结果为“GAAT”。此外,与2进制序列类似,碱基序列同样可以进行加、减以及异或运算,DNA序列的异或运算规则如表3所示。
表3DNA序列的异或运算规则
将碱基序列t5和R4按照碱基的按位异或运算的规则进行运算得到新的碱基序列R,其运算过程如下所示。
R=bitxor(t5,R4)
其中,bitxor()表示按位异或运算。例如,当t5(96)=“T”与R4(96)=“G”时,xor(t5(96),R4(96))表示t5(96)与R4(96)进行异或运算,其结果为碱基“C”。之后,将伪随机整数序列I1作为解码规则选取序列,对碱基序列R进行解码得到二进制序列bR,即:
bR=decode(R,rule(I1))
其中,decode()表示针对碱基序列的DNA解码运算,例如:假设R(127)=“A”,I1(127)=3,那么decode(R(127),I1(127))表示按照规则3对碱基“A”进行解码,即结果为2进制数组合“11”。之后,对bR按照下式执行进一步运算如下:
将明文图像P中所有像素点相加得到常数t,并将其转化成8位无符号二进制常数tb,再将tb与二进制序列bR进行位异或运算,相关公式如下:
具体运算方法为:二进制数值相加,同为0,异为1,规则如下:
异或运算规则表
求出明文图像P的像素点数之和t,将十进制数t转换成8位无符号二进制数,然后在与二进制序列bR进行异或运算得到二进制序列t6,再将t6转换为十进制序列t7,最后将一维的序列t7重新排列为矩阵形式,得到密文图像C。
图像的解密过程即为加密过程对应的逆过程,在此不再赘述。
为了进一步验证本发明的有效性,以Windows 10(Intel(R)Core(TM)i7-6700HQ,2.60GHz,RAM 16GB)和MATLAB 2020a为实验平台对本发明进行有效性测试。图5为仿真实验过程中所使用的到的明文图像:5(a)Lena,5(b)Pepper,5(c)Cameraman;图6为在取压缩比为0.5的前提下,图5中3幅明文图像对应的密文图像:6(a)Lena的密文图像,6(b)Pepper的密文图像,6(c)Cameraman的密文图像;图7为图6中3幅密文图像对应的解密图像:7(a)Lena的解密图像,7(b)Pepper的解密图像,7(c)Cameraman的解密图像;图8为图5、6、7中各子图对应的灰度直方图:a(1)为Lena的明文、a(2)为Lena的密文、a(3)为Lena的解密图像的灰度直方图,b(1)为Pepper的明文、b(2)为Pepper加密前、加密后以及解码后的密文、b(3)为Pepper的密图像的灰度直方图,c(1)为Cameraman的明文、c(2)为Cameraman的密文、c(3)为Cameraman的解密图像的灰度直方图;图9为图5、6、7中各子图对应的相关性图:a(1)、a(2)、a(3)为Lena加密前、加密后以及解码后的明文、b(1)、b(2)、b(3)为Lena加密前、加密后以及解码后的密文、c(1)、c(2)、c(3)为Lena加密前、加密后以及解码后的解密图像的相关性图,d(1)、d(2)、d(3)为Pepper加密前、加密后以及解码后的明文、e(1)、e(2)、e(3)为Pepper加密前、加密后以及解码后的密文、f(1)、f(2)、f(3)为Pepper加密前、加密后以及解码后的解密图像的相关性图,g(1)、g(2)、g(3)为Cameraman加密前、加密后以及解码后的明文、h(1)、h(2)、h(3)为Cameraman加密前、加密后以及解码后的密文、i(1)、i(2)、i(3)为Cameraman加密前、加密后以及解码后的解密图像的相关性图。结合图6-图9中的结果可以认为,通过结合高维本发明能够实现对输入的明文图像的压缩以及加密,它有效地扰乱了明文图像的像素分布以及相邻像素点之间的相关性等信息。同时,本发明在解密的过程中也能够实现对原明文图像信息的重构。综上,根据上述仿真实验的结果,可以证明本发明具备良好的压缩加密效果。
Claims (10)
1.一种基于超混沌系统和DNA编码的位平面图像压缩加密算法,其特征在于:包括如下步骤:
步骤1,以灰度图像为明文图像P,采用二维压缩感知算法对明文图像P的一组对称边进行压缩,生成压缩后的像素矩阵t1,压缩公式如下:
t1=Φ×P
步骤2,需要对所述像素矩阵t1进行规范化处理,使得其中元素的取值始终位于[0,255]这一区间范围内,生成规范像素矩阵t2,其取整公式为:
步骤3,利用超混沌系统,生成4组伪随机序列s1、s2、s3和s4;
步骤4,将所述规范像素矩阵t2中的像素值转化为8位无符号二进制数,并将这些二进制数按照由最低位到最高位的顺序依次放入8个矩阵中,这8个矩阵即为t2对应的位平面图像。对超混沌系统生成的伪随机序列s1与s2进行第一次整数化生成整数伪随机序列S1和S2,再利用整数伪随机序列S1和S2对8个位平面图像的像素位置置乱;
步骤5,将8个置乱后的平面图像重新组合成一个新的像素矩阵t3;
步骤7,对伪随机序列s1、s2、s3和s4进行第二次整数化得到整数伪随机序列I1、I2、I3、I4;
步骤8,将I2作为规则项对I4进行DNA编码的转换得到碱基序列t5,将I3作为规则项对t4进行DNA编码的转换得到碱基序列R4;
步骤9,使用碱基序列的按位异或运算规则将t5和R4重新整合成新的碱基序列R;
步骤10,用I1作为规则项对碱基序列R进行DNA解码转换得到二进制序列bR;
步骤11,求出明文图像P的像素点数之和t,将十进制数t转换成8位无符号二进制数,然后在与二进制序列bR进行异或运算得到二进制序列t6,再将t6转换为十进制序列t7,最后将一维的序列t7重新排列为矩阵形式,得到密文图像C。
2.根据权1所述的基于超混沌系统和DNA编码的位平面图像压缩加密算法,其特征在于:所述步骤3中,同时结合明文图像P的哈希值与外部密钥,利用超Lorenz系统,生成4组伪随机序列s1、s2、s3和s4,所述超Lorenz系统的表达式为:
其中,a、b、c、d为系统参数,a=10,b=8/3,c=28,r=–1,w、x、y、z为系统变量,其初始值w0、x0、y0、z0可人为设定,通过将扰动后的w0、x0、y0、z0代入上述方程进行迭代,迭代次数大于等于所述规范像素矩阵t2的像素点数,得到4组等长的伪随机序列s1(x1、x2、x3、x4、…)、s2(y1、y2、y3、y4、…)、s3(z1、z2、z3、z4、…)、s4(w1、w2、w3、w4、…),其中x1作为x2的输入,y1作为y2的输入、z1作为z2的输入、w1作为w2的输入。
3.根据权1所述的基于超混沌系统和DNA编码的位平面图像压缩加密算法,其特征在于:所述步骤4中,具体做法为:
步骤4.1、每个8位无符号二进制数的左起第1位数放入第一个位平面图像,左起第2位数放入第二个位平面图像,以此类推,将规范化后的像素矩阵t2分解为8个位平面图像Bi(i=1,2,…,8);
其中,||表示绝对值运算,得到整数伪随机序列S1和S2;
步骤4.3、利用整数伪随机序列S1和S2按照公式来对8个位平面图像的行、列进行位置置乱,得到8个置乱后位平面图像,最后再将8个置乱后的位平面矩阵重新组合成一个新的像素矩阵,具体方法以及公式如下:
其中其中Bi(j,:)表示第i个位平面图像的第j行,<<表示循环左移位操作,>>表示循环下移位操作,S1(j)(或者S1(k))的值则代表该行循环左(下)移位的位数。
4.根据权1所述的基于超混沌系统和DNA编码的位平面图像压缩加密算法,其特征在于:所述步骤5中,将8个置乱位平面图像重新组合为像素矩阵t3,组合方法为步骤4.1的逆运算,即将第一平面到第八平面的每一个对应位置处的二进制值组合起来并转化为1个十进制数,得到一个新的十进制像素矩阵t3。
5.根据权1所述的基于超混沌系统和DNA编码的位平面图像压缩加密算法,其特征在于:所述步骤6中,像素矩阵t3转换成一维的像素序列t4,具体方法为:将第二行置于第一行的尾后,再将第三行置于第二行的尾后,第四行置于第三行的尾后,以此类推,直至第最后一行置于倒数第二行尾后,以此形成一维像素序列t4。
9.根据权1或7所述的基于超混沌系统和DNA编码的位平面图像压缩加密算法,其特征在于:所述步骤11中,将伪随机整数序列I1作为碱基序列R的解码规则,运算得到二进制序列bR,碱基序列的解码运算公式如下:
bR=decode(R,rule(I1))
即将I1的值作为解码规则选取项,重新得到一个二进制序列bR。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111045260.7A CN113691362B (zh) | 2021-09-07 | 2021-09-07 | 基于超混沌系统和dna编码的位平面图像压缩加密方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111045260.7A CN113691362B (zh) | 2021-09-07 | 2021-09-07 | 基于超混沌系统和dna编码的位平面图像压缩加密方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113691362A true CN113691362A (zh) | 2021-11-23 |
CN113691362B CN113691362B (zh) | 2023-05-16 |
Family
ID=78585592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111045260.7A Active CN113691362B (zh) | 2021-09-07 | 2021-09-07 | 基于超混沌系统和dna编码的位平面图像压缩加密方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113691362B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115103080A (zh) * | 2022-05-07 | 2022-09-23 | 华南理工大学 | 一种基于dna三倍体变异的图像加密方法和系统 |
CN115396563A (zh) * | 2022-08-28 | 2022-11-25 | 苏州科技大学 | 一种比特循环位移式图像加密编码与解码方法 |
CN117896476A (zh) * | 2024-03-15 | 2024-04-16 | 成都甄识科技有限公司 | 一种基于变参数超混沌系统和压缩感知的多图像加密方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102231831A (zh) * | 2011-06-03 | 2011-11-02 | 东南大学 | 用于图像压缩的基于叉形编码路径的位平面编码方法 |
CN108898025A (zh) * | 2018-06-25 | 2018-11-27 | 河南大学 | 基于双重置乱和dna编码的混沌图像加密方法 |
CN110570344A (zh) * | 2019-08-27 | 2019-12-13 | 河南大学 | 基于随机数嵌入和dna动态编码的图像加密方法 |
CN112637441A (zh) * | 2020-12-14 | 2021-04-09 | 天津大学 | 一种基于压缩感知的彩色图像压缩加密方法 |
CN113225449A (zh) * | 2021-05-27 | 2021-08-06 | 郑州轻工业大学 | 一种基于混沌序列和dna编码的图像加密方法 |
CN113297607A (zh) * | 2021-06-25 | 2021-08-24 | 燕山大学 | 基于压缩感知和dna编码的图像压缩加密及解密方法 |
-
2021
- 2021-09-07 CN CN202111045260.7A patent/CN113691362B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102231831A (zh) * | 2011-06-03 | 2011-11-02 | 东南大学 | 用于图像压缩的基于叉形编码路径的位平面编码方法 |
CN108898025A (zh) * | 2018-06-25 | 2018-11-27 | 河南大学 | 基于双重置乱和dna编码的混沌图像加密方法 |
CN110570344A (zh) * | 2019-08-27 | 2019-12-13 | 河南大学 | 基于随机数嵌入和dna动态编码的图像加密方法 |
CN112637441A (zh) * | 2020-12-14 | 2021-04-09 | 天津大学 | 一种基于压缩感知的彩色图像压缩加密方法 |
CN113225449A (zh) * | 2021-05-27 | 2021-08-06 | 郑州轻工业大学 | 一种基于混沌序列和dna编码的图像加密方法 |
CN113297607A (zh) * | 2021-06-25 | 2021-08-24 | 燕山大学 | 基于压缩感知和dna编码的图像压缩加密及解密方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115103080A (zh) * | 2022-05-07 | 2022-09-23 | 华南理工大学 | 一种基于dna三倍体变异的图像加密方法和系统 |
CN115103080B (zh) * | 2022-05-07 | 2023-04-21 | 华南理工大学 | 一种基于dna三倍体变异的图像加密方法和系统 |
CN115396563A (zh) * | 2022-08-28 | 2022-11-25 | 苏州科技大学 | 一种比特循环位移式图像加密编码与解码方法 |
CN117896476A (zh) * | 2024-03-15 | 2024-04-16 | 成都甄识科技有限公司 | 一种基于变参数超混沌系统和压缩感知的多图像加密方法 |
CN117896476B (zh) * | 2024-03-15 | 2024-05-14 | 成都甄识科技有限公司 | 一种基于变参数超混沌系统和压缩感知的多图像加密方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113691362B (zh) | 2023-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chai et al. | Color image compression and encryption scheme based on compressive sensing and double random encryption strategy | |
Chen et al. | Cryptanalysis and improvement of medical image encryption using high-speed scrambling and pixel adaptive diffusion | |
Chen et al. | Exploiting chaos-based compressed sensing and cryptographic algorithm for image encryption and compression | |
Wang et al. | An image encryption algorithm based on Josephus traversing and mixed chaotic map | |
CN110086601B (zh) | 基于像素值关联的约瑟夫遍历和超混沌系统图像加密方法 | |
CN109903212B (zh) | 一种基于H几何分形和Hilbert曲线的图像加密方法 | |
Shahna et al. | Novel hyper chaotic color image encryption based on pixel and bit level scrambling with diffusion | |
CN109660696B (zh) | 一种新的图像加密方法 | |
Borujeni et al. | Chaotic image encryption design using tompkins-paige algorithm | |
CN112422266B (zh) | 一种基于约瑟夫遍历和位平面重构的超混沌加密方法 | |
CN113691362B (zh) | 基于超混沌系统和dna编码的位平面图像压缩加密方法 | |
CN107220923B (zh) | 基于映像网络的数字图像反馈加密方法 | |
CN109756322B (zh) | 基于des结构与dna编码的数字图像加密方法 | |
CN110086600B (zh) | 一种基于超混沌系统和变步长约瑟夫问题的图像加密方法 | |
Toktas et al. | Cross-channel color image encryption through 2D hyperchaotic hybrid map of optimization test functions | |
CN113129196B (zh) | 一种基于dna序列和忆阻混沌的图像加密方法 | |
CN112769545A (zh) | 基于相邻像素约瑟夫变换和Mealy状态机的图像加密方法 | |
Zheng et al. | An image encryption algorithm based on multichaotic system and DNA coding | |
Shakir et al. | A new four-dimensional hyper-chaotic system for image encryption | |
CN117579756B (zh) | 基于分块选取Zigzag置乱和轮盘旋转编码的图像加密方法 | |
Xiong et al. | A bit-plane encryption algorithm for RGB image based on modulo negabinary code and chaotic system | |
Das et al. | Diffusion and encryption of digital image using genetic algorithm | |
CN114374775A (zh) | 基于Julia集和DNA编码的图像加密方法 | |
CN113746997A (zh) | 一种基于压缩感知和分数阶混沌的图像压缩加密方法 | |
Momeni Asl et al. | Color image encryption using linear feedback shift registers by three dimensional permutation and substitution operations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |