CN113691261B - Delta-sigma modulator device and delta-sigma modulation method - Google Patents
Delta-sigma modulator device and delta-sigma modulation method Download PDFInfo
- Publication number
- CN113691261B CN113691261B CN202010423883.2A CN202010423883A CN113691261B CN 113691261 B CN113691261 B CN 113691261B CN 202010423883 A CN202010423883 A CN 202010423883A CN 113691261 B CN113691261 B CN 113691261B
- Authority
- CN
- China
- Prior art keywords
- signal
- reference voltage
- digital
- delta
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
三角积分调变器装置包含取样电路、数字模拟转换器电路、积分器电路以及模拟数字转换器电路。取样电路用于对输入信号取样,以产生第一信号。数字模拟转换器电路用于转换第一数字信号为第一参考电压与共模电压的组合,以产生第二信号,其中第一参考电压为正参考电压与负参考电压其中之一。积分器电路用于根据第一信号与第二信号进行积分操作,以产生第三信号。模拟数字转换器电路用于量化第三信号量化为输出信号,并根据输出信号产生第一数字信号。
The delta-sigma modulator device includes a sampling circuit, a digital-to-analog converter circuit, an integrator circuit, and an analog-to-digital converter circuit. The sampling circuit is used to sample an input signal to generate a first signal. The digital-to-analog converter circuit is used to convert the first digital signal into a combination of a first reference voltage and a common-mode voltage to generate a second signal, wherein the first reference voltage is one of a positive reference voltage and a negative reference voltage. The integrator circuit is used to perform an integration operation according to the first signal and the second signal to generate a third signal. The analog-to-digital converter circuit is used to quantize the third signal into an output signal, and generate a first digital signal according to the output signal.
Description
技术领域Technical Field
本发明申请是关于三角积分调变器,尤其是关于可降低数字模拟转换器电路与积分器电路的冗余电流的三角积分调变器与方法。The present invention relates to a delta-sigma modulator, and more particularly to a delta-sigma modulator and a method thereof for reducing redundant current of a digital-to-analog converter circuit and an integrator circuit.
背景技术Background technique
在现有的三角积分调变器中,数字模拟转换器电路会根据量化器产生的数字信号来设定多个参考电压,以产生对应的模拟电压。然而,在多数情形中,在转换过程中所使用的多余参考电压会造成不必要的负载电流,进而增加整体系统功耗。In conventional delta-sigma modulators, a digital-to-analog converter circuit sets multiple reference voltages according to the digital signal generated by the quantizer to generate corresponding analog voltages. However, in most cases, the redundant reference voltages used in the conversion process will cause unnecessary load current, thereby increasing the overall system power consumption.
发明内容Summary of the invention
在一些实施例中,三角积分调变器装置包含取样电路、数字模拟转换器电路、积分器电路以及模拟数字转换器电路。取样电路用于对输入信号取样,以产生第一信号。数字模拟转换器电路用于将第一数字信号转换为第一参考电压与共模电压的组合以产生第二信号,其中第一参考电压为正参考电压与负参考电压其中之一。积分器电路用于根据第一信号与第二信号进行积分操作,以产生第三信号。模拟数字转换器电路用于将第三信号量化为输出信号,并根据输出信号产生第一数字信号。In some embodiments, the delta-sigma modulator device includes a sampling circuit, a digital-to-analog converter circuit, an integrator circuit, and an analog-to-digital converter circuit. The sampling circuit is used to sample an input signal to generate a first signal. The digital-to-analog converter circuit is used to convert the first digital signal into a combination of a first reference voltage and a common-mode voltage to generate a second signal, wherein the first reference voltage is one of a positive reference voltage and a negative reference voltage. The integrator circuit is used to perform an integration operation based on the first signal and the second signal to generate a third signal. The analog-to-digital converter circuit is used to quantize the third signal into an output signal and generate the first digital signal based on the output signal.
在一些实施例中,三角积分调变方法包含下列操作:对输入信号取样,以产生第一信号;将第一数字信号转换为第一参考电压与共模电压的组合以产生第二信号,其中第一参考电压为正参考电压与负参考电压其中之一;根据第一信号与第二信号进行积分操作,以产生第三信号;以及将第三信号量化为输出信号,并根据输出信号产生第一数字信号。In some embodiments, the delta-sigma modulation method includes the following operations: sampling an input signal to generate a first signal; converting the first digital signal into a combination of a first reference voltage and a common-mode voltage to generate a second signal, wherein the first reference voltage is one of a positive reference voltage and a negative reference voltage; performing an integration operation based on the first signal and the second signal to generate a third signal; and quantizing the third signal into an output signal, and generating the first digital signal based on the output signal.
有关本发明申请的特征、操作与功效,在此结合附图对较佳实施例进行如下详细说明。The features, operations and effects of the present invention are described in detail below with reference to the accompanying drawings.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为根据本发明申请一些实施例示出一种三角积分调变器装置的示意图;FIG1 is a schematic diagram showing a delta-sigma modulator device according to some embodiments of the present application;
图2为根据本发明申请一些实施例示出图1的映射电路的操作示意图;以及FIG. 2 is a schematic diagram showing the operation of the mapping circuit of FIG. 1 according to some embodiments of the present application; and
图3为根据本发明申请一些实施例示出一种三角积分调变方法的流程图。FIG. 3 is a flow chart showing a delta-sigma modulation method according to some embodiments of the present invention.
符号说明:Symbol Description:
100:三角积分调变器装置100: Delta-sigma modulator device
110:取样电路110: Sampling circuit
111:切换电路111: Switching Circuit
120:数字模拟转换器电路120: Digital to Analog Converter Circuit
121:切换电路121: Switching Circuit
121A:多任务器电路121A: Multiplexer Circuit
130:积分器电路130: Integrator Circuit
132:放大器电路132: Amplifier Circuit
140:模拟数字转换器电路140: Analog-to-digital converter circuit
142:量化器电路142: Quantizer Circuit
144:编码器电路144: Encoder circuit
146:映射电路146: Mapping Circuit
B0~B2、D0~D6:位B0~B2、D0~D6:bit
C:电容C: Capacitance
CINT:积分电容CINT: Integral capacitor
CK1、CK2:频率信号CK1, CK2: frequency signal
CS:取样电容CS: sampling capacitor
N1:节点N1: Node
S1~S3:信号S1~S3:Signal
SD1、SD2:数字信号SD1, SD2: digital signal
SIN:输入信号SIN: Input signal
SO:输出信号SO: Output signal
SR:重置开关SR: Reset switch
SW1~SW5:开关SW1~SW5:Switch
VCM:共模电压VCM: Common mode voltage
VREFP:正参考电压VREFP: Positive reference voltage
VREFN:负参考电压VREFN: Negative reference voltage
+7,+5,+3,+1,-1,-3,-5,-7:量化电平+7,+5,+3,+1,-1,-3,-5,-7: quantization level
0~7:信号值0~7: signal value
300:三角积分调变方法300: Delta-sigma modulation method
S310、S320,、S330,、S340:操作S310, S320, S330, S340: Operation
具体实施方式Detailed ways
本文所使用的所有词汇具有其通常的含义。上述词汇在普遍常用字典中的定义,在本发明申请的内容中包含任一在此讨论的词汇的使用例子仅为示例,不应用于限制本发明申请的范围与含义。同样地,本发明申请也不仅仅限于在此说明书所示出的各种实施例。All words used herein have their ordinary meanings. The definitions of the above words in commonly used dictionaries and the use examples of any of the words discussed herein in the content of the present application are only illustrative and should not be used to limit the scope and meaning of the present application. Similarly, the present application is not limited to the various embodiments shown in this specification.
关于本文中所使用的“耦接”或“连接”,均可指两个或多个组件相互直接作实体或电性接触,或是相互间接作实体或电性接触,也可指两个或多个组件相互操作或动作。如本文所用,用语“电路系统(circuitry)”可以是由至少一个电路(circuit)所形成的单一系统,且用语“电路”可以是由至少一个晶体管与/或至少一个主被动组件按一定方式连接以处理信号的装置。As used herein, "coupled" or "connected" may refer to two or more components making physical or electrical contact directly with each other, or making physical or electrical contact indirectly with each other, or may refer to two or more components operating or acting on each other. As used herein, the term "circuitry" may be a single system formed by at least one circuit, and the term "circuit" may be a device composed of at least one transistor and/or at least one active and passive component connected in a certain manner to process signals.
如本文所用,用语“与/或”包含了列出的关联项目中的一个或多个的任何组合。在本文中,使用第一、第二与第三等词汇,是用于描述并辨别各个组件。因此,在本文中的第一组件也可被称为第二组件,而不脱离本发明申请的本意。为易于理解,在各附图中的类似组件将被指定为相同标号。As used herein, the term "and/or" includes any combination of one or more of the listed associated items. In this article, the words first, second, and third are used to describe and distinguish each component. Therefore, the first component in this article can also be called the second component without departing from the original intention of the present application. For ease of understanding, similar components in the various drawings will be designated with the same reference numerals.
图1为根据本发明申请一些实施例示出一种三角积分(sigma delta)调变器装置100的示意图。三角积分调变器装置100可根据输入信号SIN产生输出信号SO。在一些实施例中,三角积分调变器装置100包含取样电路110、数字模拟转换器(digital to analogconverter,DAC)电路120、积分器电路130以及模拟数字转换器(analog to digitalconverter,ADC)电路140。FIG. 1 is a schematic diagram of a sigma delta modulator device 100 according to some embodiments of the present invention. The sigma delta modulator device 100 can generate an output signal SO according to an input signal SIN. In some embodiments, the sigma delta modulator device 100 includes a sampling circuit 110, a digital to analog converter (DAC) circuit 120, an integrator circuit 130, and an analog to digital converter (ADC) circuit 140.
取样电路110对输入信号SIN取样以产生信号S1。例如,取样电路110包含多个切换电路111与重置开关SR。重置开关SR耦接于节点N1与用于接收共模电压VCM的一个节点之间。每一切换电路111包含开关SW1、开关SW2与取样电容CS。取样电容CS的第一端耦接至开关SW1与开关SW2,且取样电容CS的第二端耦接至节点N1。在取样阶段,开关SW1与重置开关SR根据频率信号CK1导通,且开关SW2根据频率信号CK2不导通。如此,输入信号SIN与共模电压VCM的压差可储存在取样电容CS中。在积分阶段,开关SW2根据频率信号CK2导通,且开关SW1与重置开关SR根据频率信号CK1不导通。如此,取样电容CS可将所储存的压差转换为信号S1。The sampling circuit 110 samples the input signal SIN to generate a signal S1. For example, the sampling circuit 110 includes a plurality of switching circuits 111 and a reset switch SR. The reset switch SR is coupled between the node N1 and a node for receiving the common mode voltage VCM. Each switching circuit 111 includes a switch SW1, a switch SW2, and a sampling capacitor CS. The first end of the sampling capacitor CS is coupled to the switch SW1 and the switch SW2, and the second end of the sampling capacitor CS is coupled to the node N1. In the sampling phase, the switch SW1 and the reset switch SR are turned on according to the clock signal CK1, and the switch SW2 is not turned on according to the clock signal CK2. In this way, the voltage difference between the input signal SIN and the common mode voltage VCM can be stored in the sampling capacitor CS. In the integration phase, the switch SW2 is turned on according to the clock signal CK2, and the switch SW1 and the reset switch SR are not turned on according to the clock signal CK1. In this way, the sampling capacitor CS can convert the stored voltage difference into a signal S1.
DAC电路120转换数字信号SD1为信号S2。在一些实施例中,DAC电路120转换数字信号SD1为第一参考电压与共模电压VCM的组合以产生信号S2,其中第一参考电压为正参考电压VREFP与负参考电压VREFN其中之一。在一些实施例中,共模电压VCM为交流地(ACground)电压。在一些实施例中,共模电压VCM可为正参考电压VREFP与负参考电压VREFN的平均电压。在一些实施例中,正参考电压VREFP可表示为VCM+VREF,负参考电压可表示为VCM-VREF,其中VREF为基准信号摆幅。The DAC circuit 120 converts the digital signal SD1 into a signal S2. In some embodiments, the DAC circuit 120 converts the digital signal SD1 into a combination of a first reference voltage and a common mode voltage VCM to generate the signal S2, wherein the first reference voltage is one of a positive reference voltage VREFP and a negative reference voltage VREFN. In some embodiments, the common mode voltage VCM is an AC ground voltage. In some embodiments, the common mode voltage VCM may be an average voltage of the positive reference voltage VREFP and the negative reference voltage VREFN. In some embodiments, the positive reference voltage VREFP may be expressed as VCM+VREF, and the negative reference voltage may be expressed as VCM-VREF, wherein VREF is a reference signal swing.
在此例中,DAC电路120包含多个切换电路121。多个切换电路121每一个切换电路包含电容C、开关SW3、开关SW4与多任务器电路121A。在一些实施例中,电容C与取样电容CS可设定为具有相同的容值。在一些实施例中,切换电路121的个数相同于切换电路111的个数。开关SW3的第一端接收共模电压VCM,且开关SW3的第二端耦接至电容C的第一端。电容C的第二端耦接至节点N1。开关SW3根据频率信号CK1导通,以将共模电压VCM传输至电容C。换言之,在取样阶段,电容C的第一端的电位与电容C的第二端(即节点N1)的电位分别经由开关SW3与重置开关SR重置至共模电压VCM。In this example, the DAC circuit 120 includes a plurality of switching circuits 121. Each of the plurality of switching circuits 121 includes a capacitor C, a switch SW3, a switch SW4, and a multiplexer circuit 121A. In some embodiments, the capacitor C and the sampling capacitor CS can be set to have the same capacitance. In some embodiments, the number of switching circuits 121 is the same as the number of switching circuits 111. The first end of the switch SW3 receives the common mode voltage VCM, and the second end of the switch SW3 is coupled to the first end of the capacitor C. The second end of the capacitor C is coupled to the node N1. The switch SW3 is turned on according to the clock signal CK1 to transmit the common mode voltage VCM to the capacitor C. In other words, in the sampling stage, the potential of the first end of the capacitor C and the potential of the second end of the capacitor C (i.e., the node N1) are reset to the common mode voltage VCM via the switch SW3 and the reset switch SR, respectively.
开关SW4的第一端耦接至多任务器电路121A,以自多任务器电路121A接收正参考电压VREFP、负参考电压VREFN或共模电压VCM。开关SW4的第二端耦接至电容C的第一端。在积分阶段,开关SW4根据频率信号CK2导通,以自对应的多任务器电路121A传输正参考电压VREFP、负参考电压VREFN或共模电压VCM至电容C。如此,在积分阶段时,多个电容C可依据所收到的电压产生信号S2至节点N1。在积分阶段中,若电容C接收到共模电压VCM,电容C的两端电位相等,所以此电容C将不会进行电荷转移(即此电容C不产生动态电流)。反之,若电容C接收到第一参考电压(正参考电压VREFP或负参考电压VREFN),电容C将进行电荷重置(charge redistribution)以产生对应的信号S2至后述的积分电容CINT。The first end of the switch SW4 is coupled to the multiplexer circuit 121A to receive the positive reference voltage VREFP, the negative reference voltage VREFN or the common mode voltage VCM from the multiplexer circuit 121A. The second end of the switch SW4 is coupled to the first end of the capacitor C. In the integration phase, the switch SW4 is turned on according to the clock signal CK2 to transmit the positive reference voltage VREFP, the negative reference voltage VREFN or the common mode voltage VCM from the corresponding multiplexer circuit 121A to the capacitor C. In this way, during the integration phase, the plurality of capacitors C can generate a signal S2 to the node N1 according to the received voltage. In the integration phase, if the capacitor C receives the common mode voltage VCM, the potentials at both ends of the capacitor C are equal, so the capacitor C will not perform charge transfer (i.e., the capacitor C does not generate dynamic current). On the contrary, if the capacitor C receives the first reference voltage (positive reference voltage VREFP or negative reference voltage VREFN), the capacitor C will perform charge reset (charge redistribution) to generate a corresponding signal S2 to the integration capacitor CINT described later.
多个多任务器电路121A中每一个多任务器电路接收数字信号SD1的对应位。例如,数字信号SD1包含7个位D0~D6。第1个多任务器电路121A接收第1个位D0。第2个多任务器电路121A接收第2个位D1。依此类推,第7个多任务器电路121A接收第7个位D6。多任务器电路121A可根据数字信号SD1中的该对应位传输正参考电压VREFP、负参考电压VREFN或共模电压VCM至开关SW4。关于DAC电路120的数字模拟转换操作将于后参照图2说明。Each of the multiplexer circuits 121A receives a corresponding bit of the digital signal SD1. For example, the digital signal SD1 includes 7 bits D0 to D6. The first multiplexer circuit 121A receives the first bit D0. The second multiplexer circuit 121A receives the second bit D1. Similarly, the seventh multiplexer circuit 121A receives the seventh bit D6. The multiplexer circuit 121A can transmit the positive reference voltage VREFP, the negative reference voltage VREFN or the common mode voltage VCM to the switch SW4 according to the corresponding bit in the digital signal SD1. The digital-to-analog conversion operation of the DAC circuit 120 will be described later with reference to FIG. 2.
积分器电路130用于根据信号S1与信号S2进行积分操作,以产生信号S3。例如,积分器电路130包含开关SW5、积分电容CINT与放大器电路132。开关SW5的第一端耦接至节点N1与放大器电路132的第一输入端(例如是负输入端)之间。放大器电路132的第二输入端(例如是正输入端)接收共模电压VCM。积分电容CINT耦接于放大器电路132的第一输入端与输出端之间。在积分阶段,开关SW5根据频率信号CK2导通,且开关SW1根据频率信号CK1不导通。在此条件下,耦接至节点N1上的多个电容C与多个取样电容CS所储存的信号可传递至放大器电路132的第一输入端与积分电容CINT。如先前所述,信号S1对应到取样电容CS所取样到的压差(SIN-VCM),而信号S2为由多个电容C根据数字信号SD1并响应于接收到的第一参考电压或共模电压VCM所产生。如此,在积分阶段中,对应于信号S2与信号SIN之间的差值的电荷量将自取样电路110与DAC电路120转移至积分电容CINT。信号S2与信号SIN之间的差值可再经由放大器电路132协同积分电容CINT进行积分而取得信号S3。The integrator circuit 130 is used to perform an integration operation according to the signal S1 and the signal S2 to generate a signal S3. For example, the integrator circuit 130 includes a switch SW5, an integration capacitor CINT and an amplifier circuit 132. The first end of the switch SW5 is coupled between the node N1 and the first input end (e.g., the negative input end) of the amplifier circuit 132. The second input end (e.g., the positive input end) of the amplifier circuit 132 receives the common mode voltage VCM. The integration capacitor CINT is coupled between the first input end and the output end of the amplifier circuit 132. In the integration stage, the switch SW5 is turned on according to the clock signal CK2, and the switch SW1 is not turned on according to the clock signal CK1. Under this condition, the signals stored in the multiple capacitors C coupled to the node N1 and the multiple sampling capacitors CS can be transmitted to the first input end of the amplifier circuit 132 and the integration capacitor CINT. As described above, the signal S1 corresponds to the voltage difference (SIN-VCM) sampled by the sampling capacitor CS, and the signal S2 is generated by the plurality of capacitors C according to the digital signal SD1 and in response to the received first reference voltage or common mode voltage VCM. Thus, in the integration phase, the charge corresponding to the difference between the signal S2 and the signal SIN is transferred from the sampling circuit 110 and the DAC circuit 120 to the integration capacitor CINT. The difference between the signal S2 and the signal SIN can be integrated by the amplifier circuit 132 in cooperation with the integration capacitor CINT to obtain the signal S3.
ADC电路140用于将信号S3量化为输出信号SO,并根据输出信号SO产生信号SD1。例如,ADC电路140包含量化器电路142、编码器电路144以及映射电路146。量化器电路142将信号S3量化为输出信号SO。在一些实施例中,量化器电路142可为(但不限于)比较器电路。编码器电路144用于编码输出信号SO为数字信号SD2。例如,输出信号SO包含3个位B0~B2,其为二位码(binary code)。编码器电路144可将此输出信号SO编码为具有7位的数字信号SD2,其中该些位为温度计码(thermometer code)。映射电路146将数字信号SD2映射为数字信号SD1。在一些实施例中,映射电路146可包含查找表,其储存有如后图2所述对应关系,以根据数字信号SD2输出数字信号SD1。The ADC circuit 140 is used to quantize the signal S3 into an output signal SO, and generate a signal SD1 according to the output signal SO. For example, the ADC circuit 140 includes a quantizer circuit 142, an encoder circuit 144, and a mapping circuit 146. The quantizer circuit 142 quantizes the signal S3 into the output signal SO. In some embodiments, the quantizer circuit 142 may be (but not limited to) a comparator circuit. The encoder circuit 144 is used to encode the output signal SO into a digital signal SD2. For example, the output signal SO includes 3 bits B0-B2, which are binary codes. The encoder circuit 144 may encode the output signal SO into a digital signal SD2 having 7 bits, wherein the bits are thermometer codes. The mapping circuit 146 maps the digital signal SD2 into a digital signal SD1. In some embodiments, the mapping circuit 146 may include a lookup table storing a corresponding relationship as described in FIG. 2 below, so as to output a digital signal SD1 according to the digital signal SD2.
图2为根据本发明申请一些实施例示出图1的映射电路146的操作示意图。为易于理解,图1的DAC电路120的操作将在此一并说明。在此例中,输出信号SO设定为3个位,且由输出信号SO编码而来的数字信号SD2设定为7个位。如图2所示,量化器电路142可将输出信号SO量化为+7、+5、+3、…、-3、-5、-7等多个量化电平,其中每一个量化电平对应于1个信号值。例如量化电平+7、+5、+3、…、-3、-5、-7分别对应于信号值7、6、5、4、…、1、0。信号值可由输出信号SO的3位B0~B2表示。例如,若多个位B0~B2为“010”,输出信号SO对应于信号值2。或者,若多个位B0~B2为“101”,输出信号SO对应于信号值5。FIG. 2 is a schematic diagram showing the operation of the mapping circuit 146 of FIG. 1 according to some embodiments of the present invention. For ease of understanding, the operation of the DAC circuit 120 of FIG. 1 will be described together here. In this example, the output signal SO is set to 3 bits, and the digital signal SD2 encoded by the output signal SO is set to 7 bits. As shown in FIG. 2, the quantizer circuit 142 can quantize the output signal SO into multiple quantization levels such as +7, +5, +3, ..., -3, -5, -7, where each quantization level corresponds to 1 signal value. For example, the quantization levels +7, +5, +3, ..., -3, -5, -7 correspond to signal values 7, 6, 5, 4, ..., 1, 0, respectively. The signal value can be represented by the 3 bits B0-B2 of the output signal SO. For example, if multiple bits B0-B2 are "010", the output signal SO corresponds to a signal value of 2. Alternatively, if multiple bits B0-B2 are "101", the output signal SO corresponds to a signal value of 5.
在此例中,每一单位量化电平D所代表的模拟电压为共模电压VCM与D/7倍的基准信号摆幅VREF的总和(其可表达为VCM+D×VREF/7),且共模电压VCM在此例为0伏特。例如,若多个位B0~B2为“010”,输出信号SO对应的量化电平为-3,并代表输出信号SO对应的模拟电压为-3/7倍的基准信号摆幅VREF。在此条件下,DAC电路120输出相同于3个负参考电压VREFN的信号S2。等效而言,输出信号SO经由DAC电路120转换为对应的模拟电压(即信号S2)。在一些相关技术中,DAC电路设定为将数字信号转换为正参考电压VREFP与负参考电压VREFN的组合。例如,在此些技术中,若数字信号的3位为“010”,在DAC电路中的2个电容(例如为电容C)将接收正参考电压VREFP,5个电容将接收负参考电压VREFN。如此,通过组合2个正参考电压VREFP以及5个负参考电压VREFN,DAC电路可产生等效为3个负参考电压VREFN的模拟电压,以表达前述的-3/7倍的基准信号摆幅VREF。如先前所述,若电容C接收到正参考电压VREFP或负参考电压VREFN,电容C将进行电荷转移而产生动态电流消耗。另外,在此些技术中,由于所有的电容C都会有电位变动,节点N1的等效电容值会提升,造成积分器电路的回授系数(feedback factor)与带宽下降。为了补偿积分器电路的速度,需加大积分器电路的驱动电流。如此一来,将造成三角积分调变器的功率明显增加。In this example, the analog voltage represented by each unit quantization level D is the sum of the common mode voltage VCM and D/7 times the reference signal swing VREF (which can be expressed as VCM+D×VREF/7), and the common mode voltage VCM is 0 volt in this example. For example, if the plurality of bits B0-B2 are "010", the quantization level corresponding to the output signal SO is -3, and it represents that the analog voltage corresponding to the output signal SO is -3/7 times the reference signal swing VREF. Under this condition, the DAC circuit 120 outputs a signal S2 that is the same as the three negative reference voltages VREFN. Equivalently, the output signal SO is converted into a corresponding analog voltage (i.e., signal S2) via the DAC circuit 120. In some related technologies, the DAC circuit is configured to convert a digital signal into a combination of a positive reference voltage VREFP and a negative reference voltage VREFN. For example, in these technologies, if the three bits of the digital signal are "010", two capacitors (e.g., capacitors C) in the DAC circuit will receive the positive reference voltage VREFP, and five capacitors will receive the negative reference voltage VREFN. In this way, by combining two positive reference voltages VREFP and five negative reference voltages VREFN, the DAC circuit can generate an analog voltage equivalent to three negative reference voltages VREFN to express the aforementioned -3/7 times reference signal swing VREF. As previously mentioned, if capacitor C receives a positive reference voltage VREFP or a negative reference voltage VREFN, capacitor C will transfer charge and generate dynamic current consumption. In addition, in these technologies, since all capacitors C will have potential changes, the equivalent capacitance value of node N1 will increase, causing the feedback factor and bandwidth of the integrator circuit to decrease. In order to compensate for the speed of the integrator circuit, the driving current of the integrator circuit needs to be increased. As a result, the power of the delta-sigma modulator will be significantly increased.
相较于上述相关技术,在此例中,若多个位B0~B2为“010”,映射电路146可根据输出信号SO对应的量化电平、第一参考电压与共模电压VCM之间的关系产生对应的数字信号SD1。响应于此数字信号SD1,3个电容C接收负参考电压VREFN且剩余的电容C接收共模电压VCM,以产生对应于3个负参考电压VREFN的信号S2。换言之,映射电路146可根据输出信号SO对应的量化电平产生数字信号SD1,以使对应数量的电容C接收第一参考电压(正参考电压VREFP或负参考电压VREFN),并使剩余的电容C接收共模电压VCM。例如,若输出信号SO对应的量化电平为-5,5个电容C接收负参考电压VREFN,剩余的电容C接收共模电压VCM。若输出信号SO对应的量化电平为+3,3个电容C接收正参考电压VREFP,剩余的电容C接收共模电压VCM。上述的对应关系可以预先设置为查找表(未示出),且映射电路146可根据数字信号SD2搜寻此查找表,以产生对应的多个位D0~D6(即数字信号SD1)。Compared to the above-mentioned related art, in this example, if the plurality of bits B0-B2 are "010", the mapping circuit 146 can generate a corresponding digital signal SD1 according to the relationship between the quantization level corresponding to the output signal SO, the first reference voltage and the common mode voltage VCM. In response to the digital signal SD1, three capacitors C receive the negative reference voltage VREFN and the remaining capacitors C receive the common mode voltage VCM to generate a signal S2 corresponding to the three negative reference voltages VREFN. In other words, the mapping circuit 146 can generate a digital signal SD1 according to the quantization level corresponding to the output signal SO, so that the corresponding number of capacitors C receive the first reference voltage (positive reference voltage VREFP or negative reference voltage VREFN), and the remaining capacitors C receive the common mode voltage VCM. For example, if the quantization level corresponding to the output signal SO is -5, five capacitors C receive the negative reference voltage VREFN, and the remaining capacitors C receive the common mode voltage VCM. If the quantization level corresponding to the output signal SO is +3, three capacitors C receive the positive reference voltage VREFP, and the remaining capacitors C receive the common mode voltage VCM. The above correspondence relationship may be pre-set as a lookup table (not shown), and the mapping circuit 146 may search the lookup table according to the digital signal SD2 to generate a corresponding plurality of bits D0 - D6 (ie, the digital signal SD1 ).
如先前所述,在积分阶段时,若电容C接收到共模电压VCM,电容C将不进行电荷转移。换言之,通过上述映射关系,在整体转换过程中,可以减少有造成动态电流消耗的电容C的个数。再者,由于有部分的电容C不会产生电位变动,所以节点N1上的等效电容值可以降低。在此条件下,积分器电路130的回授系数可被提升,所以可降低积分器电路130的驱动电流。如此一来,相较于前述的相关技术,三角积分调变器装置100的整体功耗可以降低。As previously mentioned, during the integration phase, if the capacitor C receives the common-mode voltage VCM, the capacitor C will not perform charge transfer. In other words, through the above mapping relationship, the number of capacitors C that cause dynamic current consumption can be reduced during the overall conversion process. Furthermore, since some of the capacitors C will not produce potential changes, the equivalent capacitance value on the node N1 can be reduced. Under this condition, the feedback coefficient of the integrator circuit 130 can be improved, so the driving current of the integrator circuit 130 can be reduced. In this way, compared with the aforementioned related technology, the overall power consumption of the delta-sigma modulator device 100 can be reduced.
在大部分的情形中,部分的电容C接收第一参考电压(即正参考电压VREFP或负参考电压VREFN),剩余部分的电容C接收共模电压VCM,以降低电流消耗。在一些极端情形中,若输出信号SO对应于最高的量化电平(例如为+7)或最低的量化电平(例如为-7),全部的电容C将接收正参考电压VREFP或负参考电压VREFN。上述图1与/或图2中提及的组件数量或位数量用于示例,且本发明申请并不此为限。In most cases, part of the capacitor C receives the first reference voltage (i.e., the positive reference voltage VREFP or the negative reference voltage VREFN), and the remaining part of the capacitor C receives the common mode voltage VCM to reduce current consumption. In some extreme cases, if the output signal SO corresponds to the highest quantization level (e.g., +7) or the lowest quantization level (e.g., -7), all of the capacitor C will receive the positive reference voltage VREFP or the negative reference voltage VREFN. The number of components or the number of bits mentioned in FIG. 1 and/or FIG. 2 are for example only, and the present invention is not limited thereto.
图3为根据本发明申请一些实施例示出一种三角积分调变方法300的流程图。在操作S310,对输入信号SIN取样,以产生信号S1。在操作S320,将数字信号SD1转换为第一参考电压与共模电压VCM的组合以产生信号S2,其中第一参考电压为正参考电压VREFP与负参考电压VREFN其中之一。在操作S330,根据信号S1与信号S2进行积分操作,以产生信号S3。在操作S340,量化信号S3为输出信号SO,并根据输出信号SO产生数字信号SD1。FIG. 3 is a flow chart showing a delta-sigma modulation method 300 according to some embodiments of the present invention. In operation S310, the input signal SIN is sampled to generate a signal S1. In operation S320, the digital signal SD1 is converted into a combination of a first reference voltage and a common mode voltage VCM to generate a signal S2, wherein the first reference voltage is one of a positive reference voltage VREFP and a negative reference voltage VREFN. In operation S330, an integration operation is performed according to the signal S1 and the signal S2 to generate a signal S3. In operation S340, the quantized signal S3 is an output signal SO, and a digital signal SD1 is generated according to the output signal SO.
上述三角积分调变方法300的多个操作说明可参考前述多个实施例,所以在此不再赘述。上述多个操作仅为示例,并非限定需依照此示例中的顺序执行。在不违背本发明申请的各实施例的操作方式与范围下,在三角积分调变方法300下的各种操作当可适当地增加、替换、省略或以不同顺序执行。或者,在三角积分调变方法300下的一个或多个操作可以是同时或部分同时执行。The description of the multiple operations of the above-mentioned delta-sigma modulation method 300 can refer to the above-mentioned multiple embodiments, so it will not be repeated here. The above-mentioned multiple operations are only examples and are not limited to being performed in the order in this example. Without violating the operation mode and scope of each embodiment of the present application, the various operations under the delta-sigma modulation method 300 can be appropriately added, replaced, omitted or performed in a different order. Alternatively, one or more operations under the delta-sigma modulation method 300 can be performed simultaneously or partially simultaneously.
综上所述,本发明申请一些实施例中的三角积分调变器装置与三角积分调变方法可依据输出信号对应的量化电平控制DAC电路接收共模电压,以执行数字模拟转换。如此一来,可以降低整体系统功率消耗。In summary, the sigma-delta modulator device and sigma-delta modulation method in some embodiments of the present invention can control the DAC circuit to receive the common mode voltage according to the quantization level corresponding to the output signal to perform digital-to-analog conversion, thereby reducing the overall system power consumption.
虽然本发明的实施例如上所述,但是这些实施例并非用来限定本发明,本技术领域普通技术人员可依据本发明明示或隐含的内容对本发明的技术特征做出改变,但是种种变化均可能属于本发明保护范畴之内,换言之,本发明的保护范围须视本发明申请的权利要求书界定的范围为准。Although the embodiments of the present invention are described above, these embodiments are not intended to limit the present invention. A person skilled in the art may make changes to the technical features of the present invention according to the explicit or implicit contents of the present invention, but all such changes may fall within the scope of protection of the present invention. In other words, the scope of protection of the present invention shall be subject to the scope defined in the claims of the present invention application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010423883.2A CN113691261B (en) | 2020-05-19 | 2020-05-19 | Delta-sigma modulator device and delta-sigma modulation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010423883.2A CN113691261B (en) | 2020-05-19 | 2020-05-19 | Delta-sigma modulator device and delta-sigma modulation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113691261A CN113691261A (en) | 2021-11-23 |
CN113691261B true CN113691261B (en) | 2024-07-09 |
Family
ID=78575794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010423883.2A Active CN113691261B (en) | 2020-05-19 | 2020-05-19 | Delta-sigma modulator device and delta-sigma modulation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113691261B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117767953B (en) * | 2023-12-29 | 2025-06-17 | 深圳市赛元微电子股份有限公司 | A digital-to-analog conversion circuit and a digital-to-analog conversion device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101399550A (en) * | 2007-09-28 | 2009-04-01 | 美国思睿逻辑有限公司 | Discrete-time programmable-gain analog-to-digital converter (adc) input circuit and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010245765A (en) * | 2009-04-03 | 2010-10-28 | Panasonic Corp | DEM (Dynamic Element Matching) |
CN106105039A (en) * | 2014-01-21 | 2016-11-09 | 联发科技(新加坡)私人有限公司 | Triangular integration modulator, analog-to-digital conversion circuit, trigonometric integral modulating method and analog-digital conversion method |
CN110011667B (en) * | 2018-01-05 | 2023-03-03 | 瑞昱半导体股份有限公司 | Trigonometric integral modulator |
US10735016B2 (en) * | 2018-10-04 | 2020-08-04 | Denso Corporation | D/A conversion circuit, quantization circuit, and A/D conversion circuit |
-
2020
- 2020-05-19 CN CN202010423883.2A patent/CN113691261B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101399550A (en) * | 2007-09-28 | 2009-04-01 | 美国思睿逻辑有限公司 | Discrete-time programmable-gain analog-to-digital converter (adc) input circuit and method |
Also Published As
Publication number | Publication date |
---|---|
CN113691261A (en) | 2021-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10158369B2 (en) | A/D converter | |
US11418209B2 (en) | Signal conversion circuit utilizing switched capacitors | |
KR100814255B1 (en) | Digital to Analog Converter | |
CN105591651A (en) | Successive approximation register analog-to-digital converter and related method thereof | |
KR20180105027A (en) | Successive approximation register analog-digital converter having split-capacitor based digital-analog converter | |
KR20180122235A (en) | Successive-approximation register analog to digital converter | |
US10735016B2 (en) | D/A conversion circuit, quantization circuit, and A/D conversion circuit | |
US10804920B2 (en) | A/D converter | |
CN110022157A (en) | Signal processing apparatus and delta-sigma modulator | |
US6437724B1 (en) | Fully differential flash A/D converter | |
CN113691261B (en) | Delta-sigma modulator device and delta-sigma modulation method | |
CN117318714A (en) | High-precision SAR ADC based on capacitor mismatch randomization nonlinear elimination technology | |
CN108540135B (en) | Digital-to-analog converter and conversion circuit | |
JP2017192099A (en) | Successive comparison type a-d converter | |
TWI718948B (en) | Sigma delta modulator device and sigma delta modulation method | |
US12063053B2 (en) | Analog-to-digital converter | |
CN117938170A (en) | Two-step analog-to-digital conversion circuit, analog-to-digital converter and electronic device | |
US5673045A (en) | Digital-to-analog conversion circuit and analog-to-digital conversion device using the circuit | |
CN114079466B (en) | Third-order continuous time Sigma-Delta analog-to-digital converter | |
CN114978188A (en) | Capacitance adaptation circuit based on second-order incremental sigma delta ADC | |
CN107517059B (en) | Circuit and method for improving conversion speed of analog-to-digital converter | |
CN115529043B (en) | Multi-bit quantizer circuit, modulator and analog-to-digital converter | |
TWI763525B (en) | Analog-to-digital converter and method of operating same | |
CN103905050B (en) | Hybrid Digital-to-Analog Converter and Its Method | |
US20240356560A1 (en) | Analog-to-digital converter and operating method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |