CN113690470B - 燃料电池系统的阴极泄露检测方法及装置 - Google Patents

燃料电池系统的阴极泄露检测方法及装置 Download PDF

Info

Publication number
CN113690470B
CN113690470B CN202010419744.2A CN202010419744A CN113690470B CN 113690470 B CN113690470 B CN 113690470B CN 202010419744 A CN202010419744 A CN 202010419744A CN 113690470 B CN113690470 B CN 113690470B
Authority
CN
China
Prior art keywords
fuel cell
valve
cell system
opening
back pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010419744.2A
Other languages
English (en)
Other versions
CN113690470A (zh
Inventor
曾夏
周飞鲲
李剑铮
朱凤强
何东轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Automobile Group Co Ltd
Original Assignee
Guangzhou Automobile Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Automobile Group Co Ltd filed Critical Guangzhou Automobile Group Co Ltd
Priority to CN202010419744.2A priority Critical patent/CN113690470B/zh
Publication of CN113690470A publication Critical patent/CN113690470A/zh
Application granted granted Critical
Publication of CN113690470B publication Critical patent/CN113690470B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种燃料电池系统的阴极泄露检测方法及装置,该方法包括:当接收到用于启动燃料电池系统的启动指令时,打开旁通阀,并关闭截止阀和背压阀;启动空压机;当空压机的实时工作参数在预设时长内达到预设的目标工作参数时,根据空压机出口处和增湿器出口处的压力差值判断燃料电池系统的阴极是否存在泄漏。实施本发明能够提供一种燃料电池系统的阴极泄露检测方法,能够实现对燃料电池系统的阴极进行在线的泄漏检测,进而有利于提高燃料电池系统的阴极泄漏检测效率。

Description

燃料电池系统的阴极泄露检测方法及装置
技术领域
本发明涉及计算机技术领域,尤其涉及一种燃料电池系统的阴极泄露检测方法及装置。
背景技术
燃料电池汽车是新能源汽车中常见的一种类型,能够将化学燃料的化学能转换为电能,然后将电能存储在汽车的电池中以供后续的行驶使用。其中,燃料电池系统作为燃料电池汽车的动力系统,是燃料电池汽车中非常重要的一部分。目前较为常见的燃料电池系统是一种能够将氢气和空气反应以产生电能的系统,其通常包括燃料电池电堆、空气供应系统(阴极侧)、氢气供应系统(阳极侧)和冷却系统。在燃料电池系统的工作过程中,系统里的气体往往会被压缩至高压状态以提高电堆发电效率。因此,保证燃料电池系统中的气体不发生泄漏,对于保证燃料电池系统的安全和效率尤为重要。
为此,燃料电池系统通常都会有对气体的泄漏进行检测的过程。但是,目前的气体泄漏检测多集中于阳极侧的氢气泄漏检测,而较少地对阴极侧的空气泄漏检测,且必须在燃料电池系统处于停止状态下进行泄漏检测,无法实现在系统运行启动的同时进行泄漏检测。而在燃料电池系统运行的过程中停止系统的运转以进行泄漏检测的技术会存在一些弊端,例如,多次中断运转容易造成汽车熄火,多次中断运转也会对系统的效率造成一定程度的影响等。可见,如何实现对燃料电池系统的阴极进行在线的泄漏检测,以提高燃料电池系统的阴极泄漏检测效率显得尤为重要。
发明内容
本发明所要解决的技术问题在于,提供一种燃料电池系统的阴极泄露检测方法及装置,能够实现对燃料电池系统的阴极进行在线的泄漏检测,进而有利于提高燃料电池系统的阴极泄漏检测效率。
为了解决上述技术问题,本发明第一方面公开了一种燃料电池系统的阴极泄露检测方法,所述方法包括:
当接收到用于启动所述燃料电池系统的启动指令时,打开旁通阀,并关闭截止阀和背压阀;
启动空压机;
当所述空压机的实时工作参数在预设时长内达到预设的目标工作参数时,根据所述空压机出口处和所述增湿器出口处的压力差值判断所述燃料电池系统的阴极是否存在泄漏。
本发明第二方面公开了一种燃料电池系统的阴极泄露检测装置,所述装置包括:
开关模块,用于在接收到用于启动所述燃料电池系统的启动指令时,打开旁通阀,并关闭截止阀和背压阀;
启动模块,用于启动空压机;
第一判断模块,用于在所述空压机的实时工作参数在预设时长内达到预设的目标工作参数时,根据所述空压机出口处和所述增湿器出口处的压力差值判断所述燃料电池系统的阴极是否存在泄漏。
本发明第三方面公开了一种燃料电池系统的阴极泄露检测装置,所述装置包括:
存储有可执行程序代码的存储器;
与所述存储器耦合的处理器;
所述处理器调用所述存储器中存储的所述可执行程序代码,执行本发明第一方面任一所述的燃料电池系统的阴极泄露检测方法。
本发明第四方面公开了计算机存储介质,所述计算机存储介质存储有计算机指令,所述计算机指令被调用时,用于执行本发明第一方面任一所述的燃料电池系统的阴极泄露检测方法。
与现有技术相比,本发明的有益效果在于:
实施本发明能够在接收到用于启动燃料电池系统的启动指令时,打开旁通阀,并关闭截止阀和背压阀,此时,由阴极的空压机供应的空气将会通过燃料电池系统的旁通回路排出,而不再通过燃料电池系统的电堆排出,然后启动空压机,当空压机的实时工作参数在预设时长内达到预设的目标工作参数时,根据空压机出口处和增湿器出口处的压力差值判断燃料电池系统的阴极是否存在泄漏。由此,能够在燃料电池系统启动的过程中实现阴极泄漏情况的检测,从而实现对燃料电池系统的阴极进行在线的泄漏检测,进而有利于提高燃料电池系统的阴极泄漏检测效率。
附图说明
图1为本发明实施例公开的一种燃料电池系统的阴极泄露检测方法的流程示意图;
图2为本发明实施例公开的另一种燃料电池系统的阴极泄露检测方法的流程示意图;
图3为本发明实施例公开的一种燃料电池系统的阴极泄露检测装置的结构示意图;
图4是本发明实施例公开的另一种燃料电池系统的阴极泄露检测装置的结构示意图;
图5是本发明实施例公开的又一种燃料电池系统的阴极泄露检测装置的结构示意图。
具体实施方式
为了更好地理解和实施,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。
本发明公开了一种燃料电池系统的阴极泄露检测方法及装置,能够实现对燃料电池系统的阴极进行在线的泄漏检测,进而有利于提高燃料电池系统的阴极泄漏检测效率。
实施例一
请参阅图1,图1是本发明实施例公开的一种燃料电池系统的阴极泄露检测方法的流程示意图。其中,图1所描述的燃料电池系统的阴极泄露检测方法可以应用于燃料电池系统的控制器中。如图1所示,该燃料电池系统的阴极泄露检测方法可以包括以下操作:
101、当接收到用于启动燃料电池系统的启动指令时,打开旁通阀,并关闭截止阀和背压阀。
在上述步骤101中,燃料电池系统的启动指令可以是由燃料电池汽车的整车控制器发出的,其中整车控制器用于进行该燃料电池汽车的总体控制。当燃料电池系统的控制器接收到由该整车控制器发出的启动指令后,燃料电池系统的控制器将控制该燃料电池系统进行相应的一系列的启动动作。在燃料电池系统的启动过程中,当旁通阀处于打开状态且截止阀和背压阀处于关闭状态时,由燃料电池系统阴极侧中的空压机供应的空气将通过燃料电池系统的旁通回路排出而不再经过燃料电池系统的电堆排出。在燃料电池系统的该旁通回路中,包括有空压机和增湿器。
102、启动空压机。
在上述步骤102中,空压机可以是燃料电池系统中阴极侧的一部分,其能够驱动空气流动,为燃料电池系统供应空气。在燃料电池系统正常运转的状态下,空压机所供应的空气将与阳极侧供应的氢气发生反应从而为燃料电池系统提供能量。
103、当空压机的实时工作参数在预设时长内达到预设的目标工作参数时,根据空压机出口处和增湿器出口处的压力差值判断燃料电池系统的阴极是否存在泄漏。
在上述步骤103中,空压机的实时工作参数可以包括空压机的转速值和/或流量值。其中,空压机的流量值表征的是空压机当前运转的空气回路中的空气流量,其同时受空压机的转速值和空压机当前运转的空气回路中的阀门的开度影响,故选取流量值为空压机的实时工作参数更能体现空压机当前运转的空气回路的状态。预设的目标工作参数也可以包括空压机的转速值和/或流量值,其可以对应空压机的实时工作参数设置。在空压机启动的过程中,空压机的转速将会被逐渐提升至预设的目标状态,若空压机长时间未能达到目标状态即空压机未能正常启动。当空压机的实时工作参数在预设时长内达到预设的目标工作参数时,即空压机已正常启动,且空压机工作在目标工作参数的状态下时,旁通回路的气体环境将被维持在稳定状态,此时,通过空压机出口处和增湿器出口处的压力差值能够判断出燃料电池系统的阴极是否存在泄漏。
实施例一所提供的燃料电池系统的阴极泄漏检测方法能够在接收到用于启动燃料电池系统的启动指令时,打开旁通阀,并关闭截止阀和背压阀,此时,由阴极的空压机供应的空气将会通过燃料电池系统的旁通回路排出,而不再通过燃料电池系统的电堆排出,然后启动空压机,当空压机的实时工作参数在预设时长内达到预设的目标工作参数时,根据空压机出口处和增湿器出口处的压力差值判断燃料电池系统的阴极是否存在泄漏。由此,能够在燃料电池系统启动的过程中实现阴极泄漏情况的检测,从而实现对燃料电池系统的阴极进行在线的泄漏检测,进而有利于提高燃料电池系统的阴极泄漏检测效率。
实施例二
请参阅图2,图2是本发明实施例公开的另一种燃料电池系统的阴极泄露检测方法的流程示意图。其中,图2所描述的燃料电池系统的阴极泄露检测方法可以应用于燃料电池系统的控制器中。如图2所示,该燃料电池系统的阴极泄露检测方法可以包括以下操作:
201、当接收到用于启动燃料电池系统的启动指令时,打开旁通阀,并关闭截止阀和背压阀。
对于步骤201的具体限定可以参照步骤101的具体限定,在此不再一一赘述。
202、在打开旁通阀,并关闭截止阀和背压阀之后,分别检测旁通阀、截止阀和背压阀各自对应的开度值。
203、根据旁通阀、截止阀和背压阀各自对应的开度值判断燃料电池系统是否处于正常状态;若是,执行步骤204;若否,执行步骤210。
在上述步骤202和上述步骤203中,开度值可以是一个表征阀门打开程度的一个值,例如,旁通阀完全关闭,即旁通阀对应的开度值为0,旁通阀打开一半,即旁通阀对应的开度值为0.5,旁通阀完全打开,即旁通阀对应的开度值为 1。通过各个阀门各自对应的开度值来判断各个阀门是否正常工作,从而判断燃料电池系统是否处于正常状态。
需要说明的是,上述步骤202和步骤203是可选的。即步骤201之后可以直接执行步骤204,而不执行步骤202和步骤203。
204、启动空压机。
对于步骤204的具体限定可以参照步骤102的具体限定,在此不再一一赘述。
205、判断在启动空压机之后,空压机的实时工作参数在预设时长内是否达到目标工作参数;若是,执行步骤206;若否,执行步骤210。
在上述步骤205中,空压机的实时工作参数可以包括空压机的转速值和/或流量值。目标工作参数也可以包括转速值和/或流量值,其可以对应空压机的实时工作参数设置。由于空压机的启动时间一般在8秒到15秒之间,故预设时长可以取值为20秒。
需要说明的是,在启动空压机之后,当判断出空压机的实时工作参数在预设时长内没有达到目标工作参数时,可以不执行步骤210。可选地,当判断出空压机的实时工作参数在预设时长内没有达到目标工作参数,且在执行步骤210 之前,可以再次启动空压机并在再次启动空压机之后,判断空压机的实时工作参数在预设时长内是否达到目标工作参数;若是,执行步骤206;若否,执行步骤210。进一步可选地,当判断出空压机的实时工作参数在预设时长内没有达到目标工作参数,且在执行步骤210之前,可以尝试多次启动空压机,并在每次启动空压机之后都执行一次步骤205,并在每次执行步骤205时,记录尝试启动空压机的次数,当次数达到预设阈值时,才执行步骤210。由于空压机的启动过程受较多的因素影响容易出现启动失败的情况,且空压机启动失败后容易通过重新启动空压机消除故障,故在空压机启动失败后,先尝试多次启动空压机来消除故障,当多次重启空压机后还未能消除故障才控制燃料电池系统进入故障响应模式,这样能够减少燃料电池系统进入故障响应模式的情况,提高燃料电池系统的工作效率。
206、判断空压机出口处和增湿器出口处的压力差值是否处于预先设定的正常压力差值范围内;若是,执行步骤208;若否,执行步骤207。
需要说明的是,在上述步骤206中,当判断出空压机出口处和增湿器出口处的压力差值不处于预先设定的正常压力差值范围内时,可以不执行步骤207,而是执行步骤209。
207、按照预设的时间间隔对空压机出口处和增湿器出口处的压力差值进行预设次数的检测以获得预设个数的压力差值,计算预设个数的压力差值的平均值;判断平均值是否处于正常压力差值范围内;若是,执行步骤208;若否,执行步骤209。
在上述步骤207中,预设的时间间隔可以是1秒/次,2秒/次等,预设次数的检测以获得预设个数的压力差值可以是通过10次检测以获得10个压力差值、 20次检测以获得20个压力差值等。通过在判断出压力差值未处于正常压力差值范围内之后,以及确定燃料电池系统的阴极存在泄漏之前,进行多次压力差值的检测并计算多个压力差值的平均值,然后根据平均值来确定燃料电池系统的阴极是否存在泄漏,能够减少压力差值出现偶然的偏差(例如,燃料电池系统的气体环境不稳定造成压力差值有时会出现跳变)而导致的误判,提高该燃料电池系统的阴极泄露检测方法检测的准确率。
208、确定燃料电池系统的阴极不存在泄漏。
209、确定燃料电池系统的阴极存在泄漏。
可选地,在上述步骤209之后,可以执行步骤210。
210、控制燃料电池系统进入故障响应模式。
在上述步骤210中,故障响应模式可以是燃料电池系统预先设置的一种特殊模式,当燃料电池系统进入故障响应模式时,燃料电池系统将停止工作,等待故障排除完成。
在一个可选的实施例中,在上述步骤202中,分别检测旁通阀、截止阀和背压阀各自对应的开度值,可以包括:
通过检测与旁通阀联动的旁通阀滑动电阻的电阻值来确定旁通阀对应的开度值;旁通阀滑动电阻的电阻值跟随旁通阀的开度变化而变化;
通过检测与截止阀联动的截止阀滑动电阻的电阻值来确定截止阀对应的开度值;截止阀滑动电阻的电阻值跟随截止阀的开度变化而变化;
通过检测与背压阀联动的背压阀滑动电阻的电阻值来确定背压阀对应的开度值;背压阀滑动电阻的电阻值跟随背压阀的开度变化而变化。
在本发明实施例中,滑动电阻和阀门联动的形式可以是将阀门与滑动电阻的滑片进行物理上的绑定来实现的。例如,阀门打开时将带动与其绑定的滑动电阻的滑片滑动从而改变对应的滑动电阻的电阻值,这样就能根据滑动电阻的电阻值确定出阀门的开度值。这种开度值检测的实现方式,硬件结构较为简单,成本相对较低。
在一个可选的实施例中,在上述步骤203中,根据旁通阀、截止阀和背压阀各自对应的开度值判断燃料电池系统是否处于正常状态,可以包括:
判断旁通阀对应的开度值是否大于第一开度阈值;当旁通阀对应的开度值大于第一开度阈值时,确定旁通阀处于正常状态;当旁通阀对应的开度值不大于第一开度阈值时,确定旁通阀处于异常状态;
判断截止阀对应的开度值是否小于第二开度阈值;当截止阀对应的开度值小于第二开度阈值时,确定截止阀处于正常状态;当截止阀对应的开度值不小于第二开度阈值时,确定截止阀处于异常状态;
判断背压阀对应的开度值是否小于第三开度阈值;当背压阀对应的开度值小于第三开度阈值时,确定背压阀处于正常状态;当背压阀对应的开度值不小于第三开度阈值时,确定背压阀处于异常状态;
当旁通阀、截止阀和背压阀都处于正常状态时,确定燃料电池系统处于正常状态;
当旁通阀、截止阀和背压阀中的任意一个处于异常状态时,确定燃料电池系统未处于正常状态。
在本发明实施例中,由于阀门的开度大于一定程度即可以认为该阀门是打开状态,阀门的开度小于一定程度即可以认为该阀门是关闭状态。故第一开度阈值可以取值在0.95至1之间,第二开度阈值和第三开度阈值可以取值在0至 0.05之间,这样就能够对应地判断出旁通阀是否打开,截止阀和背压阀是否关闭。
在一个可选的实施例中,在上述步骤210之后,该燃料电池系统的阴极泄露检测方法还可以包括:
根据燃料电池系统的故障情况执行对应的故障处理;其中,燃料电池系统的故障情况包括阴极异常、空压机异常和阀门异常中的至少一种;与阴极异常的故障情况对应的故障处理为发出燃料电池系统的阴极存在泄漏的警告提示;与空压机异常的故障情况对应的故障处理为在预设的时长后启动空压机并控制燃料电池系统退出故障响应模式;与阀门异常的故障情况对应的故障处理为发出阀门控制指令并控制燃料电池系统退出故障响应模式,阀门控制指令用于打开旁通阀,并关闭截止阀和背压阀。
本发明实施例中,可以通过燃料电池系统进入故障响应模式的方式确定燃料电池系统的故障情况。如果是在判断出燃料电池系统的阴极存在泄漏之后,进入的故障响应模式,即可以确定故障情况为阴极异常,如果是在通过阀门的开度值判断出燃料电池系统未处于正常状态之后,进入的故障响应模式,即可以确定故障情况为阀门异常,如果是在启动空压机之后,空压机的实时工作参数在预设时长内未达到目标工作参数之后,进入的故障响应模式,即可以确定故障情况为空压机异常。由于空压机异常或阀门异常的故障有可能通过重新启动空压机或重新控制阀门动作来消除故障,所以根据燃料电池系统的故障情况执行对应的故障处理,在阴极异常时发出警告提示,在空压机异常或阀门异常时,尝试通过重新启动空压机或重新控制阀门动作来消除故障,这样便能够在保证燃料电池系统安全的提前下,减少燃料电池系统进入故障响应模式的时间,提高燃料电池系统的效率。
在一个可选的实施例中,在上述步骤210之后,该燃料电池系统的阴极泄露检测方法还可以包括:
根据燃料电池系统的故障情况生成燃料电池系统的故障记录;故障记录包括故障情况、与故障情况对应的故障时间和与故障情况对应的驾驶员唯一标识中的至少一种。
本发明实施例中,也可以通过燃料电池系统进入故障响应模式的方式确定燃料电池系统的故障情况。如果是在判断出燃料电池系统的阴极存在泄漏之后,进入的故障响应模式,即可以确定故障情况为阴极异常,如果是在通过阀门的开度值判断出燃料电池系统未处于正常状态之后,进入的故障响应模式,即可以确定故障情况为阀门异常,如果是在启动空压机之后,空压机的实时工作参数在预设时长内未达到目标工作参数之后,进入的故障响应模式,即可以确定故障情况为空压机异常。与故障情况对应的故障时间可以通过获取系统进入故障响应模式时的系统时间来确定。与故障情况对应的驾驶员唯一标识可以通过随车的摄像头或身份证读取器或IC卡读取器等硬件设备来获取。通过根据燃料电池系统的故障情况生成燃料电池系统的故障记录,能够为维修人员提供燃料电池系统的运转情况的记录,便于维修人员对车辆进行检修。另外,当故障记录包括驾驶员唯一标识时,还可以通过对不同驾驶员的故障记录进行分析以判断驾驶员是否存在有不良的驾驶习惯,从而用于辅助矫正驾驶员不良的驾驶行为。
实施例三
请参阅图3,图3为本发明实施例公开的一种燃料电池系统的阴极泄露检测装置的结构示意图。其中,图3所描述的装置可以应用于燃料电池系统的控制器中。如图3所示,该燃料电池系统的阴极泄露检测装置可以包括:
开关模块301,用于在接收到用于启动燃料电池系统的启动指令时,打开旁通阀,并关闭截止阀和背压阀。
进一步的,在开关模块301打开旁通阀,并关闭截止阀和背压阀之后,可以触发启动模块302启动。
启动模块302,用于启动空压机。
进一步的,在启动模块302启动空压机之后,可以触发第一判断模块303 启动。
第一判断模块303,用于在空压机的实时工作参数在预设时长内达到预设的目标工作参数时,根据空压机出口处和增湿器出口处的压力差值判断燃料电池系统的阴极是否存在泄漏。
在一个可选的实施例中,如图4所示,第一判断模块303可以包括:
第一判断单元3031,用于在空压机的实时工作参数在预设时长内达到预设的目标工作参数时,判断空压机出口处和增湿器出口处的压力差值是否处于预先设定的正常压力差值范围内。
第一确定单元3032,用于在第一判断单元3031判断出压力差值处于正常压力差值范围内时,确定燃料电池系统的阴极不存在泄漏。
第二确定单元3033,用于在第一判断单元3031判断出压力差值未处于正常压力差值范围内时,确定燃料电池系统的阴极存在泄漏。
在一个可选的实施例中,如图4所示,第一判断模块303还可以包括:
计算单元3034,用于在第一判断单元3031判断出压力差值未处于正常压力差值范围内之后,以及第二确定单元3033确定燃料电池系统的阴极存在泄漏之前,按照预设的时间间隔对空压机出口处和增湿器出口处的压力差值进行预设次数的检测以获得预设个数的压力差值,计算预设个数的压力差值的平均值。
第一判断单元3031,还用于判断平均值是否处于正常压力差值范围内。
第二确定模块3033,具体用于当第一判断单元3031判断出压力差值未处于正常压力差值范围内以及判断出平均值未处于正常压力差值范围内时,确定燃料电池系统的阴极存在泄漏。
第一确定单元3032,还用于当第一判断单元3031判断出压力差值未处于正常压力差值范围内以及判断出平均值未处于正常压力差值范围内时,确定燃料电池系统的阴极不存在泄漏。
在一个可选的实施例中,如图4所示,该装置还可以包括:
第一控制模块304,用于在第一判断模块303判断出燃料电池系统的阴极存在泄漏之后,控制燃料电池系统进入故障响应模式;和/或,
检测模块305,用于在开关模块301打开旁通阀,并关闭截止阀和背压阀之后,分别检测旁通阀、截止阀和背压阀各自对应的开度值;
第二判断模块306,用于根据旁通阀、截止阀和背压阀各自对应的开度值判断燃料电池系统是否处于正常状态;
启动模块302,具体用于当第二判断模块306判断出燃料电池系统处于正常状态时,启动空压机;
第二控制模块307,用于当第二判断模块306判断出燃料电池系统未处于正常状态时,控制燃料电池系统进入故障响应模式;和/或,
第三控制模块308,用于在启动模块302启动空压机之后,当实时工作参数在预设时长内未达到目标工作参数时,控制燃料电池系统进入故障响应模式;
其中,实时工作参数包括实时转速值和/或实时流量值。
在一个可选的实施例中,检测模块305分别检测旁通阀、截止阀和背压阀各自对应的开度值的具体方式可以为:
通过检测与旁通阀联动的旁通阀滑动电阻的电阻值来确定旁通阀对应的开度值;旁通阀滑动电阻的电阻值跟随旁通阀的开度变化而变化;通过检测与截止阀联动的截止阀滑动电阻的电阻值来确定截止阀对应的开度值;截止阀滑动电阻的电阻值跟随截止阀的开度变化而变化;通过检测与背压阀联动的背压阀滑动电阻的电阻值来确定背压阀对应的开度值;背压阀滑动电阻的电阻值跟随背压阀的开度变化而变化。
在一个可选的实施例中,第二判断模块306根据旁通阀、截止阀和背压阀各自对应的开度值判断燃料电池系统是否处于正常状态的具体方式可以为:
判断旁通阀对应的开度值是否大于第一开度阈值;当旁通阀对应的开度值大于第一开度阈值时,确定旁通阀处于正常状态;当旁通阀对应的开度值不大于第一开度阈值时,确定旁通阀处于异常状态;
判断截止阀对应的开度值是否小于第二开度阈值;当截止阀对应的开度值小于第二开度阈值时,确定截止阀处于正常状态;当截止阀对应的开度值不小于第二开度阈值时,确定截止阀处于异常状态;
判断背压阀对应的开度值是否小于第三开度阈值;当背压阀对应的开度值小于第三开度阈值时,确定背压阀处于正常状态;当背压阀对应的开度值不小于第三开度阈值时,确定背压阀处于异常状态;
当旁通阀、截止阀和背压阀都处于正常状态时,确定燃料电池系统处于正常状态;
当旁通阀、截止阀和背压阀中的任意一个处于异常状态时,确定燃料电池系统未处于正常状态。
在一个可选的实施例中,该燃料电池系统的阴极泄露检测装置还可以包括:
执行模块(未在图中示出),用于根据燃料电池系统的故障情况执行对应的故障处理;其中,燃料电池系统的故障情况包括阴极异常、空压机异常和阀门异常中的至少一种;与阴极异常的故障情况对应的故障处理为发出燃料电池系统的阴极存在泄漏的警告提示;与空压机异常的故障情况对应的故障处理为在预设的时长后启动空压机并控制燃料电池系统退出故障响应模式;与阀门异常的故障情况对应的故障处理为发出阀门控制指令并控制燃料电池系统退出故障响应模式,阀门控制指令用于打开旁通阀,并关闭截止阀和背压阀。
在一个可选的实施例中,该燃料电池系统的阴极泄露检测装置还可以包括:
生成模块(未在图中示出),用于根据燃料电池系统的故障情况生成燃料电池系统的故障记录;故障记录包括故障情况、与故障情况对应的故障时间和与故障情况对应的驾驶员唯一标识中的至少一种。实施例三所提供的燃料电池系统的阴极泄漏检测装置的具体限定可以参照实施例一和实施例二所提供的燃料电池系统的阴极泄漏检测方法的具体限定,在此不再一一赘述。
实施例三所提供的燃料电池系统的阴极泄漏检测装置能够在接收到用于启动燃料电池系统的启动指令时,打开旁通阀,并关闭截止阀和背压阀,此时,由阴极的空压机供应的空气将会通过燃料电池系统的旁通回路排出,而不再通过燃料电池系统的电堆排出,然后启动空压机,当空压机的实时工作参数在预设时长内达到预设的目标工作参数时,根据空压机出口处和增湿器出口处的压力差值判断燃料电池系统的阴极是否存在泄漏。由此,能够在燃料电池系统启动的过程中实现阴极泄漏情况的检测,从而实现对燃料电池系统的阴极进行在线的泄漏检测,进而有利于提高燃料电池系统的阴极泄漏检测效率。
实施例四
请参阅图5,图5是本发明实施例公开的又一种燃料电池系统的阴极泄露检测装置的结构示意图。其中,图5所描述的装置可以应用于燃料电池汽车中。如图5所示,该装置可以包括:
存储有可执行程序代码的存储器501;
与存储器501耦合的处理器502;
处理器502调用存储器501中存储的可执行程序代码,用于执行实施例一或实施例二中所描述的燃料电池系统的阴极泄露检测方法。
实施例五
本发明实施例公开了一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,该计算机程序使得计算机执行实施例一或实施例二中所描述的燃料电池系统的阴极泄露检测方法。
实施例六
本发明实施例公开了一种计算机程序产品,该计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,且该计算机程序可操作来使计算机执行实施例一或实施例二中所描述的燃料电池系统的阴极泄露检测方法。
以上所描述的实施例仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施例的具体描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器 (Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(ErasableProgrammable Read Only Memory,EPROM)、一次可编程只读存储器(One-timeProgrammable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(CompactDisc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
最后应说明的是:本发明实施例公开的一种燃料电池系统的阴极泄露检测方法所揭露的仅为本发明较佳实施例而已,仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解;其依然可以对前述各项实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应的技术方案的本质脱离本发明各项实施例技术方案的精神和范围。

Claims (12)

1.一种燃料电池系统的阴极泄露检测方法,其特征在于,所述方法包括:
当接收到用于启动所述燃料电池系统的启动指令时,打开旁通阀,并关闭截止阀和背压阀,其中,在所述燃料电池系统的启动过程中,当所述旁通阀处于打开状态且所述截止阀和所述背压阀处于关闭状态时,由所述燃料电池系统阴极侧中的空压机供应的空气将通过所述燃料电池系统的旁通回路排出,所述旁通回路包括所述空压机和增湿器;
启动所述空压机;
当所述空压机的实时工作参数在预设时长内达到预设的目标工作参数时,判断所述空压机出口处和所述增湿器出口处的压力差值是否处于预先设定的正常压力差值范围内;
当所述压力差值未处于所述正常压力差值范围内时,按照预设的时间间隔对所述空压机出口处和所述增湿器出口处的所述压力差值进行预设次数的检测以获得预设个数的所述压力差值,计算所述预设个数的所述压力差值的平均值;判断所述平均值是否处于所述正常压力差值范围内;当所述平均值未处于所述正常压力差值范围内时,确定所述燃料电池系统的阴极存在泄漏。
2.根据权利要求1所述的燃料电池系统的阴极泄露检测方法,其特征在于,所述方法还包括:
当所述压力差值处于所述正常压力差值范围内时,确定所述燃料电池系统的阴极不存在泄漏。
3.根据权利要求2所述的燃料电池系统的阴极泄露检测方法,其特征在于,所述方法还包括:
当所述平均值处于所述正常压力差值范围内时,执行所述的确定所述燃料电池系统的阴极不存在泄漏的操作。
4.根据权利要求1-3任一项所述的燃料电池系统的阴极泄露检测方法,其特征在于,所述方法还包括:
在判断出所述燃料电池系统的阴极存在泄漏之后,控制所述燃料电池系统进入故障响应模式;和/或,
在打开所述旁通阀,并关闭所述截止阀和所述背压阀之后,分别检测所述旁通阀、所述截止阀和所述背压阀各自对应的开度值,根据所述旁通阀、所述截止阀和所述背压阀各自对应的开度值判断所述燃料电池系统是否处于正常状态,当判断出所述燃料电池系统处于所述正常状态时,执行启动空压机的操作;当判断出所述燃料电池系统未处于所述正常状态时,控制所述燃料电池系统进入故障响应模式;和/或,
在启动所述空压机之后,当所述实时工作参数在所述预设时长内未达到所述目标工作参数时,控制所述燃料电池系统进入故障响应模式;
其中,所述实时工作参数包括实时转速值和/或实时流量值。
5.根据权利要求4所述的燃料电池系统的阴极泄露检测方法,其特征在于,所述分别检测所述旁通阀、所述截止阀和所述背压阀各自对应的开度值,包括:
通过检测与所述旁通阀联动的旁通阀滑动电阻的电阻值来确定所述旁通阀对应的开度值;所述旁通阀滑动电阻的电阻值跟随所述旁通阀的开度变化而变化;
通过检测与所述截止阀联动的截止阀滑动电阻的电阻值来确定所述截止阀对应的开度值;所述截止阀滑动电阻的电阻值跟随所述截止阀的开度变化而变化;
通过检测与所述背压阀联动的背压阀滑动电阻的电阻值来确定所述背压阀对应的开度值;所述背压阀滑动电阻的电阻值跟随所述背压阀的开度变化而变化。
6.根据权利要求5所述的燃料电池系统的阴极泄露检测方法,其特征在于,所述根据所述旁通阀、所述截止阀和所述背压阀各自对应的开度值判断所述燃料电池系统是否处于正常状态,包括:
判断所述旁通阀对应的开度值是否大于第一开度阈值;当所述旁通阀对应的开度值大于所述第一开度阈值时,确定所述旁通阀处于正常状态;当所述旁通阀对应的开度值不大于所述第一开度阈值时,确定所述旁通阀处于异常状态;
判断所述截止阀对应的开度值是否小于第二开度阈值;当所述截止阀对应的开度值小于所述第二开度阈值时,确定所述截止阀处于正常状态;当所述截止阀对应的开度值不小于所述第二开度阈值时,确定所述截止阀处于异常状态;
判断所述背压阀对应的开度值是否小于第三开度阈值;当所述背压阀对应的开度值小于所述第三开度阈值时,确定所述背压阀处于正常状态;当所述背压阀对应的开度值不小于所述第三开度阈值时,确定所述背压阀处于异常状态;
当所述旁通阀、所述截止阀和所述背压阀都处于正常状态时,确定所述燃料电池系统处于正常状态;
当所述旁通阀、所述截止阀和所述背压阀中的任意一个处于异常状态时,确定所述燃料电池系统未处于正常状态。
7.一种燃料电池系统的阴极泄露检测装置,其特征在于,所述装置包括:
开关模块,用于在接收到用于启动所述燃料电池系统的启动指令时,打开旁通阀,并关闭截止阀和背压阀,其中,在所述燃料电池系统的启动过程中,当所述旁通阀处于打开状态且所述截止阀和所述背压阀处于关闭状态时,由所述燃料电池系统阴极侧中的空压机供应的空气将通过所述燃料电池系统的旁通回路排出,所述旁通回路包括所述空压机和增湿器;
启动模块,用于启动所述空压机;
第一判断模块,其中,所述第一判断模块包括:
第一判断单元,用于在所述空压机的实时工作参数在预设时长内达到预设的目标工作参数时,判断所述空压机出口处和所述增湿器出口处的压力差值是否处于预先设定的正常压力差值范围内;
计算单元,用于在所述第一判断单元判断出所述压力差值未处于所述正常压力差值范围内时,按照预设的时间间隔对所述空压机出口处和所述增湿器出口处的所述压力差值进行预设次数的检测以获得预设个数的所述压力差值,计算所述预设个数的所述压力差值的平均值;
所述第一判断单元,还用于判断所述平均值是否处于所述正常压力差值范围内;
第二确定单元,用于当所述第一判断单元判断出所述压力差值未处于所述正常压力差值范围内以及判断出所述平均值未处于所述正常压力差值范围内时,确定所述燃料电池系统的阴极存在泄漏。
8.根据权利要求7所述的燃料电池系统的阴极泄露检测装置,其特征在于,所述第一判断模块还包括:
第一确定单元,用于在所述第一判断单元判断出所述压力差值处于所述正常压力差值范围内时,确定所述燃料电池系统的阴极不存在泄漏。
9.根据权利要求8所述的燃料电池系统的阴极泄露检测装置,其特征在于,所述第一确定单元,还用于当所述第一判断单元判断出所述压力差值未处于所述正常压力差值范围内以及判断出所述平均值处于所述正常压力差值范围内时,确定所述燃料电池系统的阴极不存在泄漏。
10.根据权利要求7-9任一项所述的燃料电池系统的阴极泄露检测装置,其特征在于,所述装置还包括:
第一控制模块,用于在所述第一判断模块判断出所述燃料电池系统的阴极存在泄漏之后,控制所述燃料电池系统进入故障响应模式;和/或,
检测模块,用于在所述开关模块打开所述旁通阀,并关闭所述截止阀和所述背压阀之后,分别检测所述旁通阀、所述截止阀和所述背压阀各自对应的开度值;
第二判断模块,用于根据所述旁通阀、所述截止阀和所述背压阀各自对应的开度值判断所述燃料电池系统是否处于正常状态;
所述启动模块,具体用于当所述第二判断模块判断出所述燃料电池系统处于所述正常状态时,启动所述空压机;
第二控制模块,用于当所述第二判断模块判断出所述燃料电池系统未处于所述正常状态时,控制所述燃料电池系统进入故障响应模式;和/或,
第三控制模块,用于在所述启动模块启动所述空压机之后,当所述实时工作参数在所述预设时长内未达到所述目标工作参数时,控制所述燃料电池系统进入故障响应模式;
其中,所述实时工作参数包括实时转速值和/或实时流量值。
11.根据权利要求10所述的燃料电池系统的阴极泄露检测装置,其特征在于,所述检测模块分别检测所述旁通阀、所述截止阀和所述背压阀各自对应的开度值的具体方式为:
通过检测与所述旁通阀联动的旁通阀滑动电阻的电阻值来确定所述旁通阀对应的开度值;所述旁通阀滑动电阻的电阻值跟随所述旁通阀的开度变化而变化;通过检测与所述截止阀联动的截止阀滑动电阻的电阻值来确定所述截止阀对应的开度值;所述截止阀滑动电阻的电阻值跟随所述截止阀的开度变化而变化;通过检测与所述背压阀联动的背压阀滑动电阻的电阻值来确定所述背压阀对应的开度值;所述背压阀滑动电阻的电阻值跟随所述背压阀的开度变化而变化。
12.根据权利要求11所述的燃料电池系统的阴极泄露检测装置,其特征在于,所述第二判断模块根据所述旁通阀、所述截止阀和所述背压阀各自对应的开度值判断所述燃料电池系统是否处于正常状态的具体方式为:
判断所述旁通阀对应的开度值是否大于第一开度阈值;当所述旁通阀对应的开度值大于所述第一开度阈值时,确定所述旁通阀处于正常状态;当所述旁通阀对应的开度值不大于所述第一开度阈值时,确定所述旁通阀处于异常状态;
判断所述截止阀对应的开度值是否小于第二开度阈值;当所述截止阀对应的开度值小于所述第二开度阈值时,确定所述截止阀处于正常状态;当所述截止阀对应的开度值不小于所述第二开度阈值时,确定所述截止阀处于异常状态;
判断所述背压阀对应的开度值是否小于第三开度阈值;当所述背压阀对应的开度值小于所述第三开度阈值时,确定所述背压阀处于正常状态;当所述背压阀对应的开度值不小于所述第三开度阈值时,确定所述背压阀处于异常状态;
当所述旁通阀、所述截止阀和所述背压阀都处于正常状态时,确定所述燃料电池系统处于正常状态;
当所述旁通阀、所述截止阀和所述背压阀中的任意一个处于异常状态时,确定所述燃料电池系统未处于正常状态。
CN202010419744.2A 2020-05-18 2020-05-18 燃料电池系统的阴极泄露检测方法及装置 Active CN113690470B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010419744.2A CN113690470B (zh) 2020-05-18 2020-05-18 燃料电池系统的阴极泄露检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010419744.2A CN113690470B (zh) 2020-05-18 2020-05-18 燃料电池系统的阴极泄露检测方法及装置

Publications (2)

Publication Number Publication Date
CN113690470A CN113690470A (zh) 2021-11-23
CN113690470B true CN113690470B (zh) 2023-01-31

Family

ID=78575463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010419744.2A Active CN113690470B (zh) 2020-05-18 2020-05-18 燃料电池系统的阴极泄露检测方法及装置

Country Status (1)

Country Link
CN (1) CN113690470B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329965A (ja) * 1995-05-29 1996-12-13 Matsushita Electric Ind Co Ltd 燃料電池発電システム
JP2009026632A (ja) * 2007-07-20 2009-02-05 Toyota Motor Corp 燃料電池システム
CN103674445A (zh) * 2012-09-13 2014-03-26 通用汽车环球科技运作有限责任公司 燃料电池空气系统泄漏诊断的方法
JP2015095287A (ja) * 2013-11-08 2015-05-18 日産自動車株式会社 燃料電池システム
JP2016018611A (ja) * 2014-07-04 2016-02-01 株式会社デンソー 燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329965A (ja) * 1995-05-29 1996-12-13 Matsushita Electric Ind Co Ltd 燃料電池発電システム
JP2009026632A (ja) * 2007-07-20 2009-02-05 Toyota Motor Corp 燃料電池システム
CN103674445A (zh) * 2012-09-13 2014-03-26 通用汽车环球科技运作有限责任公司 燃料电池空气系统泄漏诊断的方法
JP2015095287A (ja) * 2013-11-08 2015-05-18 日産自動車株式会社 燃料電池システム
JP2016018611A (ja) * 2014-07-04 2016-02-01 株式会社デンソー 燃料電池システム

Also Published As

Publication number Publication date
CN113690470A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CN109286345A (zh) 一种电动汽车,旋变初始位置的诊断方法和装置
CN112467175B (zh) 一种氢燃料电池控制系统及方法
CN112519532B (zh) 热泵系统诊断控制方法及装置
CN113903960B (zh) 一种燃料电池系统故障诊断方法、装置、设备和介质
CN113690470B (zh) 燃料电池系统的阴极泄露检测方法及装置
WO2024066352A1 (zh) 热泵机组控制方法、装置及热泵机组
CN111577638A (zh) 风机过载保护控制方法、装置及风机过载保护电路
CN115306691A (zh) 压缩机控制方法、装置、介质及压缩机
CN111059696B (zh) 一种功率模块温度检测控制方法、计算机可读存储介质及空调
CN112664329A (zh) 一种燃气轮机故障监控系统及方法
EP3808980B1 (en) Compressor control method, control apparatus and control system
CN107339495A (zh) 调节阀控制方法、装置及空调
CN108870641B (zh) 一种驱动故障检测方法、装置及空调器
CN111290886A (zh) 设备自动恢复运行的方法及热水机
CN115172807A (zh) 一种燃料电池阳极排水控制方法、装置、控制器及介质
CN104218253A (zh) 确定燃料电池系统中的阴极入口压力极限的系统及方法
JP2003232250A (ja) 車両用電子制御装置
CN114583218A (zh) 一种燃料电池系统、氢系统瓶阀故障检测方法及装置
CN110057145A (zh) 压缩机高压差启动控制方法、装置及空调
JP2010003507A (ja) 燃料電池車両の制御装置書換システム
JP2020016368A (ja) コージェネレーションシステム
CN114824382B (zh) 燃料电池系统的尾排氢气浓度控制方法及装置
US20230131865A1 (en) Method of diagnosing abnormality of sensorless control of motor for air compressor
CN117747874A (zh) 氢气循环泵的异常处理方法、系统及电子设备
CN115199543A (zh) 空压机转子堵转处理方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant