CN113683667A - Engineering bacterium obtained by YH66-RS10865 gene transformation and application thereof in preparation of valine - Google Patents

Engineering bacterium obtained by YH66-RS10865 gene transformation and application thereof in preparation of valine Download PDF

Info

Publication number
CN113683667A
CN113683667A CN202110980059.1A CN202110980059A CN113683667A CN 113683667 A CN113683667 A CN 113683667A CN 202110980059 A CN202110980059 A CN 202110980059A CN 113683667 A CN113683667 A CN 113683667A
Authority
CN
China
Prior art keywords
protein
gly
ala
valine
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110980059.1A
Other languages
Chinese (zh)
Other versions
CN113683667B (en
Inventor
付丽霞
贾慧萍
孟刚
赵春光
魏爱英
田斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia Eppen Biotech Co ltd
Original Assignee
Ningxia Eppen Biotech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia Eppen Biotech Co ltd filed Critical Ningxia Eppen Biotech Co ltd
Priority to CN202110980059.1A priority Critical patent/CN113683667B/en
Publication of CN113683667A publication Critical patent/CN113683667A/en
Application granted granted Critical
Publication of CN113683667B publication Critical patent/CN113683667B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses an engineering bacterium obtained by modifying YH66-RS10865 gene and application thereof in preparation of valine. The invention provides an application of a substance for inhibiting YH66-RS10865 gene expression or a substance for reducing YH66-RS10865 protein abundance or a substance for reducing YH66-RS10865 protein activity in improving the yield of bacterial valine. The invention provides a recombinant bacterium, which is obtained by inhibiting YH66-RS10865 gene expression in bacteria. The invention also protects the preparationValine method: and fermenting the recombinant strain. The invention finds that the YH66-RS10865 protein negatively regulates the valine yield of bacteria, inhibits the expression of the YH66-RS10865 gene to improve the valine yield, and overexpresses the YH66-RS10865 gene to reduce the valine yield. Further, YH66-RS10865 was found in the present inventionA844C,C846AProtein and its coding gene and application. The invention has great application value for industrial production of valine.

Description

Engineering bacterium obtained by YH66-RS10865 gene transformation and application thereof in preparation of valine
Technical Field
The invention belongs to the technical field of biology, and relates to an engineering bacterium obtained by YH66-RS10865 gene modification and application thereof in valine preparation, wherein the modification specifically comprises A844C and C846A.
Background
Valine, which is one of 20 amino acids constituting proteins, is 8 amino acids and glycogenic amino acid essential to the human body, and works together with other two high-concentration amino acids (isoleucine and leucine) to promote the normal growth of the body, repair tissues, regulate blood glucose, and supply required energy. Valine can provide additional energy to the muscle to produce glucose when engaged in strenuous physical activity to prevent muscle weakness. Valine also helps to clear excess nitrogen (a potential toxin) from the liver and to transport the body's required nitrogen to various sites.
Valine is an essential amino acid, which means that the body cannot produce itself and must be supplemented by dietary sources. Its natural food sources include grains, dairy products, mushrooms, peanuts, soy protein, and meats. Although most people can obtain sufficient quantities from their diets, cases of valine deficiency are also rare. When valine is insufficient, the central nervous system of the brain is disturbed, and limb tremor occurs due to ataxia. When the brain tissue is dissected and sliced, the degeneration phenomenon of the red nucleus cells is found, hyperinsulinemia is easy to form due to the liver function damage of a patient with late cirrhosis, so that the branched chain amino acid in the blood is reduced, the ratio of the branched chain amino acid to the aromatic amino acid is reduced from 3.0-3.5 of a normal person to 1.0-1.5, and therefore, the injection of the branched chain amino acid such as valine is commonly used for treating liver failure and the damage to the organs caused by alcoholism and drug absorption. In addition, valine can also be used as a therapeutic agent for accelerating wound healing. L-valine, also known as 2-amino-3-methylbutyric acid, CAS number 72-18-4, MDL number MFCD00064220, EINECS number 200-773-6. The current method for preparing L-valine is mainly a chemical synthesis method. Limitations of chemical synthesis: the production cost is high, the reaction is complex, the steps are multiple, and a plurality of byproducts exist.
Disclosure of Invention
The invention aims to provide an engineering bacterium obtained by YH66-RS10865 gene modification and application thereof in valine preparation.
The invention provides application of a substance for inhibiting YH66-RS10865 gene expression or a substance for reducing YH66-RS10865 protein abundance or a substance for reducing YH66-RS10865 protein activity;
the application is as follows (I) or (II):
the application of (I) in improving the yield of the bacterial valine;
(II) the application in the production of valine.
The YH66-RS10865 gene is a gene encoding YH66-RS10865 protein;
the YH66-RS10865 protein is (a1) or (a2) or (a 3):
(a1) protein shown in a sequence 3 in a sequence table;
(a2) a protein derived from a bacterium, having 95% or more identity to (a1), and being associated with valine production by the bacterium;
(a3) and (b) a protein which is obtained by substituting and/or deleting and/or adding one or more amino acid residues to the protein shown in (a1) and is related to the production of valine by bacteria and derived from (a 1).
The term "identity" as used herein refers to sequence similarity to a native amino acid sequence. Identity can be assessed visually or by computer software. Using computer software, the identity between two or more sequences can be expressed in percent (%), which can be used to assess the identity between related sequences.
The identity of 95% or more may be 96% or more, 97% or more, 98% or more, or 99% or more.
Specifically, the YH66-RS10865 gene is (b1) or (b2) or (b 3):
(b1) the coding region is a DNA molecule shown as a sequence 4 in the sequence table;
(b2) a DNA molecule derived from a bacterium and having 95% or more identity to (b1) and encoding said protein;
(b3) a DNA molecule that hybridizes under stringent conditions to (b1) and encodes said protein.
The term "identity" as used herein refers to sequence similarity to a native nucleic acid sequence. Identity can be assessed visually or by computer software. Using computer software, the identity between two or more sequences can be expressed in percent (%), which can be used to assess the identity between related sequences.
The identity of 95% or more may be 96% or more, 97% or more, 98% or more, or 99% or more.
The stringent conditions may be hybridization and membrane washing at 65 ℃ in a solution of 0.1 XSSPE (or 0.1 XSSC), 0.1% SDS.
The suppression of the YH66-RS10865 gene expression can be realized by knocking out the YH66-RS10865 gene or mutating the YH66-RS10865 gene.
The knockout may be a partial segment of the knockout gene or may be the entire coding frame of the knockout gene.
Illustratively, the substance for inhibiting YH66-RS10865 gene expression may specifically be a DNA molecule represented by sequence 5 of the sequence table or a recombinant plasmid having a DNA molecule represented by sequence 5 of the sequence table.
Illustratively, the substance for inhibiting YH66-RS10865 gene expression may specifically be a DNA molecule represented by sequence 8 of the sequence table or a recombinant plasmid having a DNA molecule represented by sequence 8 of the sequence table.
The substance for inhibiting YH66-RS10865 gene expression can be exemplified by recombinant plasmid pK18-YH66-RS10865A844C,C846AOr recombinantPlasmid pK18- Δ YH66-RS 10865.
The invention also provides a recombinant bacterium obtained by inhibiting YH66-RS10865 gene expression in bacteria.
The YH66-RS10865 gene expression in the bacteria can be knocked out from YH66-RS10865 gene in the bacteria, and can also be YH66-RS10865 gene in mutant bacteria.
The knockout may be a partial segment of the knockout gene or may be the entire coding frame of the knockout gene.
Illustratively, the YH66-RS10865 gene in the knockout bacterium can be specifically: and (3) deleting the DNA molecule shown in the sequence 4 in the sequence table in the bacterial genome DNA.
For YH66-RS10865 gene in mutant bacteria, a person of ordinary skill in the art can easily adopt known methods such as directed mutation or gene editing, etc.
Illustratively, the YH66-RS10865 gene in the mutant bacterium specifically can be: the codon of amino acid 282 of YH66-RS10865 protein encoded in bacterial genomic DNA was mutated from the codon encoding N to the codon encoding other amino acid residues. In particular, the other amino acid residue is Q.
Illustratively, the YH66-RS10865 gene in the mutant bacterium specifically can be: the YH66-RS10865 gene in the bacterial genomic DNA was subjected to the following two point mutations: the 844 th nucleotide is mutated from A to other nucleotides (specifically C), and the 846 th nucleotide is mutated from C to other nucleotides (specifically A).
Illustratively, the manner of inhibiting YH66-RS10865 gene expression in bacteria may be: a substance for inhibiting YH66-RS10865 gene expression was introduced into the bacterium.
Illustratively, the substance for inhibiting YH66-RS10865 gene expression may specifically be a DNA molecule represented by sequence 5 of the sequence table or a recombinant plasmid having a DNA molecule represented by sequence 5 of the sequence table.
Illustratively, the substance for inhibiting YH66-RS10865 gene expression may specifically be a DNA molecule represented by sequence 8 of the sequence table or a recombinant plasmid having a DNA molecule represented by sequence 8 of the sequence table.
The substance for inhibiting YH66-RS10865 gene expression can be exemplified by recombinant plasmid pK18-YH66-RS10865A844C,C846AOr recombinant plasmid pK 18-delta YH66-RS 10865.
The invention also protects the application of the recombinant bacterium in the preparation of valine.
The invention also provides a method for preparing valine, which comprises the following steps: and fermenting the recombinant strain.
The fermentation can be carried out by a person skilled in the art using fermentation methods known in the art. Optimization and modification of the fermentation process can also be carried out by routine experimentation. Fermentation of the bacteria may be carried out in a suitable medium under fermentation conditions known in the art. The culture medium may comprise: carbon sources, nitrogen sources, trace elements, and combinations thereof. In the culture, the pH of the culture may be adjusted. Further, prevention of bubble generation, for example, by using an antifoaming agent, may be included in the culture. In addition, the culturing may include injecting a gas into the culture. The gas may include any gas capable of maintaining aerobic conditions of the culture. In the culture, the temperature of the culture may be 20 to 45 ℃.
The method may further comprise the steps of: valine was obtained from the culture. Obtaining valine from the culture can be accomplished in a variety of ways, including but not limited to: the culture is treated with sulfuric acid or hydrochloric acid or the like, followed by a combination of methods such as anion exchange chromatography, concentration, crystallization, and isoelectric precipitation.
In the fermentation, an exemplary fermentation medium formulation is shown in table 3, with the balance being water.
An exemplary fermentation control process for the fermentation is shown in table 4.
In the fermentation, the OD value of the system can be 0.3-0.5 at the initial moment of completing the inoculation.
Illustratively, the fermentation process of the fermentation is: ammonia water is used for adjusting the pH value; when foam exists in the fermentation system, adding a proper amount of antifoaming agent anifoam (CB-442); the sugar content (residual sugar) of the system is controlled by supplementing 70% glucose aqueous solution.
The invention also provides a method for improving the valine yield of bacteria, which comprises the following steps: inhibit YH66-RS10865 gene expression or reduce YH66-RS10865 protein abundance or reduce YH66-RS10865 protein activity in bacteria.
The YH66-RS10865 gene expression in the bacteria can be knocked out from YH66-RS10865 gene in the bacteria, and can also be YH66-RS10865 gene in mutant bacteria.
The knockout may be a partial segment of the knockout gene or may be the entire coding frame of the knockout gene.
Illustratively, the YH66-RS10865 gene in the knockout bacterium can be specifically: and (3) deleting the DNA molecule shown in the sequence 4 in the sequence table in the bacterial genome DNA.
For YH66-RS10865 gene in mutant bacteria, a person of ordinary skill in the art can easily adopt known methods such as directed mutation or gene editing, etc.
Illustratively, the YH66-RS10865 gene in the mutant bacterium specifically can be: the codon of amino acid 282 of YH66-RS10865 protein encoded in bacterial genomic DNA was mutated from the codon encoding N to the codon encoding other amino acid residues. In particular, the other amino acid residue is Q.
Illustratively, the YH66-RS10865 gene in the mutant bacterium specifically can be: the YH66-RS10865 gene in the bacterial genomic DNA was subjected to the following two point mutations: the 844 th nucleotide is mutated from A to other nucleotides (specifically C), and the 846 th nucleotide is mutated from C to other nucleotides (specifically A).
Illustratively, the manner of inhibiting YH66-RS10865 gene expression in bacteria may be: a substance for inhibiting YH66-RS10865 gene expression was introduced into the bacterium.
Illustratively, the substance for inhibiting YH66-RS10865 gene expression may specifically be a DNA molecule represented by sequence 5 of the sequence table or a recombinant plasmid having a DNA molecule represented by sequence 5 of the sequence table.
Illustratively, the substance for inhibiting YH66-RS10865 gene expression may specifically be a DNA molecule represented by sequence 8 of the sequence table or a recombinant plasmid having a DNA molecule represented by sequence 8 of the sequence table.
The substance for inhibiting YH66-RS10865 gene expression can be exemplified by recombinant plasmid pK18-YH66-RS10865A844C,C846AOr recombinant plasmid pK 18-delta YH66-RS 10865.
The invention also protects the application of YH66-RS10865 protein in regulating the valine yield of bacteria.
The regulation is negative regulation, namely YH66-RS10865 protein content is increased, and valine yield is reduced.
The regulation is negative regulation, namely YH66-RS10865 protein content is reduced, and valine yield is increased.
The invention also discloses a mutant protein named YH66-RS10865A844C,C846AThe protein is obtained by mutating YH66-RS10865 protein 282 amino acid residue from N to other amino acid residue.
In particular, the other amino acid residue is Q.
Illustratively, the mutant protein is shown as a sequence 1 in a sequence table.
The invention also protects YH66-RS10865A844C,C846AThe coding gene of the protein is named YH66-RS10865A844C ,C846AA gene.
Specifically, YH66-RS10865A844C,C846AThe genes are (c1) or (c2) or (c3) as follows:
(c1) the coding region is a DNA molecule shown as a sequence 2 in a sequence table;
(c2) a DNA molecule derived from a bacterium and having 95% or more identity to (c1) and encoding said protein;
(c3) a DNA molecule that hybridizes under stringent conditions to (c1) and encodes said protein.
The invention also protects the product with YH66-RS10865A844C,C846AExpression cassette for Gene or Gene having YH66-RS10865A844C ,C846ARecombinant vector of gene or gene with YH66-RS10865A844C,C846ARecombinant bacteria of genes.
The term "identity" as used herein refers to sequence similarity to a native nucleic acid sequence. Identity can be assessed visually or by computer software. Using computer software, the identity between two or more sequences can be expressed in percent (%), which can be used to assess the identity between related sequences.
The identity of 95% or more may be 96% or more, 97% or more, 98% or more, or 99% or more.
The stringent conditions may be hybridization and membrane washing at 65 ℃ in a solution of 0.1 XSSPE (or 0.1 XSSC), 0.1% SDS.
The invention also protects YH66-RS10865A844C,C846AProtein YH66-RS10865A844C,C846AGene, having YH66-RS10865A844C,C846AExpression cassette for Gene or Gene having YH66-RS10865A844C,C846ARecombinant vector of gene or gene with YH66-RS10865A844C,C846AApplication of recombinant bacteria of the gene in preparation of valine.
The invention also provides a method for improving the valine yield of bacteria, which comprises the following steps: the codon of amino acid 282 of YH66-RS10865 protein encoded in bacterial genomic DNA was mutated from the codon encoding N to the codon encoding other amino acid residues. In particular, the other amino acid residue is Q.
The method specifically comprises the following steps: the YH66-RS10865 gene in the bacterial genomic DNA was subjected to the following two point mutations: the 844 th nucleotide is mutated from A to other nucleotides (specifically C), and the 846 th nucleotide is mutated from C to other nucleotides (specifically A).
The method specifically comprises the following steps: introducing a DNA molecule shown in a sequence 5 of a sequence table or a recombinant plasmid having the DNA molecule shown in the sequence 5 of the sequence table into bacteria.
Any of the above bacteria include, but are not limited to, the following: corynebacterium bacteria, preferably Corynebacterium acetoacidophilum (Corynebacterium acetoacidophilum), Corynebacterium acetoglutamicum (Corynebacterium acetoglutamicum), Corynebacterium melallum (Corynebacterium glutamicum), Brevibacterium flavum (Brevibacterium lactofermentum), Corynebacterium ammoniagenes (Corynebacterium ammoniagenes), Corynebacterium pekinense (Corynebacterium pekinense), Brevibacterium saccharolyticum (Brevibacterium saccharolyticum), Brevibacterium roseum (Brevibacterium roseum), Brevibacterium thiolyticum (Brevibacterium thiogenitum), Brevibacterium thiogenitalis (Brevibacterium thiogeniticum), and Brevibacterium thiogenitalis (Brevibacterium thiogenitalis).
Any of the above-mentioned bacteria is a bacterium having an ability to produce valine.
"bacterium having an ability to produce valine" means that the bacterium has the following ability: the ability to produce and accumulate valine in the culture medium and/or in the cells of the bacterium. Thus, valine can be collected when the bacterium is cultured in a medium.
The bacteria may be naturally collected wild-type bacteria or modified bacteria.
"modified bacterium" refers to an engineered bacterium obtained by artificially mutating and/or mutagenizing a naturally collected wild-type bacterium.
Specifically, the corynebacterium glutamicum can be corynebacterium glutamicum CGMCC 21260.
Corynebacterium glutamicum YPFV1, which has been deposited in China general microbiological culture Collection center (CGMCC, address: No. 3, institute of microbiology, China academy of sciences, North West Lu 1, Kyoho, Beijing, Inc.) at 11 months and 30 days of 2020, with the deposition registration number of CGMCC No. 21260. Corynebacterium glutamicum YPFV1 (also called Corynebacterium glutamicum CGMCC 21260).
Any valine mentioned above is meant to be taken in the broad sense of valine including valine in free form, a salt of valine or a mixture of both.
Specifically, the valine is L-valine.
Any of the above methods or applications may also be used for the production of downstream products of valine.
YH66-RS10865 protein in Corynebacterium glutamicum is shown as sequence 3 in a sequence table, and coding genes thereof are shown as sequence 4 in the sequence table. In the invention, YH66-RS1 shown in sequence 1 of a sequence table is obtained by introducing point mutation0865A844C,C846AProtein, YH66-RS10865A844C,C846AThe coding gene of the protein is shown as a sequence 2 in a sequence table. Compared with YH66-RS10865 gene, YH66-RS10865A844C,C846AThe difference of the genes is that the 844 th nucleotide is mutated from A to C and the 846 th nucleotide is mutated from C to A. Compared with YH66-RS10865 protein, YH66-RS10865A844C,C846AThe difference between the proteins is that the 282 th amino acid residue is mutated from N to Q.
The invention finds that YH66-RS10865 protein has negative control on the valine yield of bacteria, namely YH66-RS10865 protein content is increased, valine yield is reduced, YH66-RS10865 protein content is reduced, and valine yield is increased. The suppression of the YH66-RS10865 gene expression can improve the valine yield, and the overexpression of the YH66-RS10865 gene can reduce the valine yield. Further, YH66-RS10865 was found in the present inventionA844C,C846AProtein and its coding gene and application. The invention has great application value for industrial production of valine.
Detailed Description
The present invention is described in further detail below with reference to specific embodiments, which are given for the purpose of illustration only and are not intended to limit the scope of the invention. The examples provided below serve as a guide for further modifications by a person skilled in the art and do not constitute a limitation of the invention in any way.
The experimental procedures in the following examples, unless otherwise indicated, are conventional and are carried out according to the techniques or conditions described in the literature in the field or according to the instructions of the products. Materials, reagents and the like used in the following examples are commercially available unless otherwise specified. pK18mobsacB plasmid: addgene, Inc.; the plasmid pK18mobsacB has the kanamycin resistance gene as a selection marker. plasmid pXMJ 19: biovector plasmid vector strain cell gene collection center; the plasmid pXMJ19 has a chloramphenicol resistance gene as a selection marker. NEBuilder enzyme: NEB corporation. Unless otherwise specified, the medium in the examples was a medium having the formulation shown in Table 1 (balance water, pH 7.0). The kanamycin-free medium was the medium shown in Table 1. The kanamycin-containing medium consisted of the medium shown in Table 1 and kanamycin at a content of 50. mu.g/ml. Unless otherwise specified, the culture in the examples refers to a static culture at 32 ℃. Single-stranded conformational polymorphic polyacrylamide gel electrophoresis (sscp-PAGE) in the examples: the concentration of the gel used was 8%, and the composition of the electrophoretic gel is shown in table 2; the electrophoresis conditions are as follows: 1 XTBE buffer, 120V voltage, electrophoresis time 10 h.
Unless otherwise stated, the quantitative tests in the following examples were performed in triplicate, and the results were averaged.
TABLE 1
Components Concentration in the culture Medium
Sucrose 10g/L
Polypeptone 10g/L
Beef extract 10g/L
Yeast powder 5g/L
Urea 2g/L
Sodium chloride 2.5g/L
Agar powder 20g/L
TABLE 2
Components Amount of addition
40% acrylamide 8mL
ddH2O 26mL
Glycerol 4mL
10×TBE 2mL
TEMED 40μL
10%AP 600μL
Example 1 obtaining of Corynebacterium glutamicum CGMCC21260
Corynebacterium glutamicum ATCC 15168: corynebacterium glutamicum (Corynebacterium glutamicum) No. 15168 in ATCC.
Corynebacterium glutamicum ATCC15168 was subjected to mutagenesis to obtain Corynebacterium glutamicum (Corynebacterium glutamicum) YPFV 1.
Corynebacterium glutamicum YPFV1, which has been deposited in China general microbiological culture Collection center (CGMCC, address: No. 3, institute of microbiology, China academy of sciences, North West Lu 1, Kyoho, Beijing, Inc.) at 11 months and 30 days of 2020, with the deposition registration number of CGMCC No. 21260. Corynebacterium glutamicum YPFV1 (also called Corynebacterium glutamicum CGMCC 21260).
Example 2 construction of recombinant bacterium YPV-031
P1:5'-CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGGCTTCGTTTGCTTGAGCGTG-3';
P2:5'-CGCTGCAGGTTGCATTGAACCACGAAGGTCAGGT-3';
P3:5'-ACCTGACCTTCGTGGTTCAATGCAACCTGCAGCG-3';
P4:5'-CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCTAGCCACCGAGCGCTGCGCG-3'。
P5:5'-ACGTTTCAACCGCTACCTCG-3';
P6:5'-ATCCCACTCGCGACCCCAAAC-3'。
Construction of recombinant plasmid
1. The Corynebacterium glutamicum ATCC15168 was used as a template, and a primer pair consisting of primer P1 and primer P2 was used for PCR amplification to recover an amplification product (720 bp).
2. The Corynebacterium glutamicum ATCC15168 was used as a template, and a primer pair consisting of primer P3 and primer P4 was used for PCR amplification to recover an amplification product (678 bp).
3. Meanwhile, the amplification product recovered in the step 1 and the amplification product recovered in the step 2 are used as templates, and PCR amplification (Overlap PCR) is carried out by adopting a primer pair consisting of a primer P1 and a primer P4, and the amplification product (1364bp) is recovered. And after sequencing, the amplification product is shown as a sequence 5 in the sequence table.
4. The pK18mobsacB plasmid was digested with restriction enzyme Xba I, and the linearized plasmid was recovered.
5. Co-incubating the amplification product recovered in step 3 with the linearized plasmid recovered in step 4 (with NEBuilder enzyme, incubation at 50 ℃ for 30min) to obtain recombinant plasmid pK18-YH66-RS10865A844C,C846A. Measured bySequence verification, recombinant plasmid pK18-YH66-RS10865A844C,C846AHas a DNA molecule shown in a sequence 5 of a sequence table.
Secondly, constructing recombinant bacteria YPV-031
1. Adopts a recombinant plasmid pK18-YH66-RS10865A844C,C846ACorynebacterium glutamicum CGMCC21260 was transformed by electric shock and then cultured.
2. The strain in step 1 is picked up and cultured by using a culture medium containing 15% of sucrose, then a single colony is picked up and cultured by using a culture medium containing kanamycin and a culture medium not containing kanamycin respectively, and strains which cannot grow on the culture medium containing kanamycin and can grow on the culture medium not containing kanamycin are screened.
3. And (3) taking the strain screened in the step (2), carrying out PCR amplification by adopting a primer pair consisting of a primer P5 and a primer P6, and then recovering an amplification product (283 bp).
4. Taking the amplification product in the step 3, firstly, denaturing at 95 ℃ for 10min, then, carrying out ice bath for 5min, and then, carrying out sscp-PAGE. During electrophoresis, the recombinant plasmid pK18-YH66-RS10865 is adoptedA844C,C846AThe amplified fragment of (1) (i.e., the recombinant plasmid pK18-YH66-RS 10865)A844C,C846AThe primer pair consisting of the primer P5 and the primer P6 is used as a template for PCR amplification, the amplification product) is used as a positive control, the amplification fragment of the Corynebacterium glutamicum CGMCC21260 (namely, the amplification product of the Corynebacterium glutamicum CGMCC21260 is used as a template and the primer pair consisting of the primer P5 and the primer P6 is used for PCR amplification) is used as a negative control, and water is used as a blank control. Due to different fragment structures and different electrophoresis positions, the strains with the electrophoresis positions inconsistent with the negative control and consistent with the positive control are the target strains for screening (recombinant strains with successful allelic replacement).
5. And (4) according to the result of the step (4), performing sequencing verification on the amplified product of the step (3) of the screened strain to obtain the recombinant bacterium YPV-031. Compared with Corynebacterium glutamicum CGMCC21260, the recombinant bacterium YPV-031 has the difference that: the YH66-RS10865 gene shown in sequence 4 of the sequence table in the Corynebacterium glutamicum CGMCC21260 genome is replaced by YH66-RS10865 gene shown in sequence 2 of the sequence tableA844C,C846AA gene. Sequence 2 and sequence 4 present only two nucleiA nucleotide difference between 844 th and 846 th. The recombinant strain YPV-031 is an engineering strain obtained by mutating (mutating at two sites) YH66-RS10865 gene in Corynebacterium glutamicum CGMCC 21260.
Example 2 construction of recombinant bacterium YPV-032 and recombinant bacterium YPV-033
P7:5'-CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGCATGACGGCTGACTGGACTC-3';
P8:5'-ACTGGGATTTCAGGTATCCAAATCGGACTCCTTAAATGGG-3';
P9:5'-CCCATTTAAGGAGTCCGATTTGGATACCTGAAATCCCAGT-3';
P10:5'-CTATGTGAGTAGTCGATTTATTATTCCTCAGGAGCGTTTG-3';
P11:5'-CAAACGCTCCTGAGGAATAATAAATCGACTACTCACATAG-3';
P12:5'-CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCTGCATAAGAAACAACCACTT-3'。
P13:5'-GTCCGCTCTGTTGGTGTTCA-3';
P14:5'-TGTTACCGCGGACAGGTCCG-3'。
P15:5'-GCAAGCAGCAGATCGCTACC-3';
P16:5'-TGGAGGAATATTCGGCCCAG-3'。
Firstly, constructing recombinant bacteria YPV-033
1. The recombinant bacterium YPV-031 is used as a template, a primer pair consisting of a primer P7 and a primer P8 is adopted for PCR amplification, and an amplification product (806bp) is recovered.
2. The recombinant bacterium YPV-031 is used as a template, a primer pair consisting of a primer P9 and a primer P10 is adopted for PCR amplification, and an amplification product (3014bp) is recovered.
3. The recombinant bacterium YPV-031 is used as a template, a primer pair consisting of a primer P11 and a primer P12 is adopted for PCR amplification, and an amplification product (783bp) is recovered.
4. The pK18mobsacB plasmid was digested with restriction enzyme Xba I, and the linearized plasmid was recovered.
5. And (3) co-incubating the amplification product recovered in the step (1), the amplification product recovered in the step (2), the amplification product recovered in the step (3) and the linearized plasmid recovered in the step (4) (incubating for 30min at 50 ℃ by using NEBuilder enzyme) to obtain a recombinant plasmid 033. Through sequencing verification, the recombinant plasmid 033 has a DNA molecule shown as a sequence 6 in a sequence table.
6. The corynebacterium glutamicum CGMCC21260 is subjected to electric shock transformation by adopting the recombinant plasmid 033, then cultured, and then each single colony is subjected to PCR identification (by adopting a primer pair consisting of a primer P13 and a primer P14), so that the strain capable of amplifying a 1921bp band is a positive strain.
7. And (3) selecting the positive strain in the step 6, culturing the positive strain by using a culture medium containing 15% of sucrose, then selecting a single colony, culturing the single colony by using a culture medium containing kanamycin and a culture medium not containing kanamycin respectively, and screening the strain which can not grow on the culture medium containing kanamycin and can grow on the culture medium not containing kanamycin.
8. Taking the strain screened in the step 7, carrying out PCR amplification by adopting a primer pair consisting of a primer P15 and a primer P16, and obtaining the strain YH66-RS10865 with 2013bp bandsA844C,C846AThe positive strain with gene integrated into the genome of Corynebacterium glutamicum CGMCC21260 was named recombinant strain YPV-033. Recombinant bacterium YPV-033 is overexpressed YH66-RS10865 on genomeA844C,C846AEngineering strain of gene.
Secondly, constructing recombinant bacteria YPV-032
Replacing the templates with recombinant bacteria YPV-031 to Corynebacterium glutamicum ATCC15168, and carrying out the same steps.
The positive strain integrating the YH66-RS10865 gene into the Corynebacterium glutamicum CGMCC21260 genome is obtained and named recombinant strain YPV-032. The recombinant strain YPV-032 is an engineering strain with YH66-RS10865 gene overexpression on genome. Compared with the recombinant bacterium YPV-033, the recombinant bacterium YPV-032 has the following differences: the sequence 4 replaces the sequence 2 in the sequence of the foreign DNA integrated into the genome of Corynebacterium glutamicum CGMCC 21260.
Example 3 construction of recombinant bacterium YPV-035 and recombinant bacterium YPV-034
Firstly, constructing recombinant bacteria YPV-035
1. The recombinant bacterium YPV-031 is used as a template, a primer pair consisting of a primer P17 and a primer P18 is adopted for PCR amplification, and an amplification product (3044bp) is recovered. And after sequencing, the amplification product is shown as a sequence 7 in the sequence table.
P17:5'-GCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCTGGATACCTGAAATCCCAGT-3';
P18:5'-ATCAGGCTGAAAATCTTCTCTCATCCGCCAAAACTTATTCCTCAGGAGCGTTTG-3'。
2. Taking pXMJ19 plasmid, adopting restriction enzyme EcoR I to perform single enzyme digestion, and recovering the linearized plasmid.
3. Co-incubating the amplification product recovered in step 1 with the linearized plasmid recovered in step 2 (with NEBuilder enzyme, incubation at 50 ℃ for 30min) to obtain recombinant plasmid pXMJ19-YH66-RS10865A844C,C846A. Sequencing verification shows that the recombinant plasmid pXMJ19-YH66-RS10865A844C,C846AHas a DNA molecule shown in a sequence 7 of a sequence table.
4. The recombinant plasmid pXMJ19-YH66-RS10865A844C,C846AThe Corynebacterium glutamicum CGMCC21260 is electrically transduced to obtain recombinant bacteria YPV-035. The recombinant bacterium YPV-035 is prepared by over-expressing pXMJ19-YH66-RS10865 by a plasmidA844C,C846AEngineering strain of gene.
Secondly, constructing recombinant bacteria YPV-034
The template is replaced by the recombinant bacterium YPV-031 to the Corynebacterium glutamicum ATCC15168, and the steps are the same as the first step.
The recombinant strain YPV-034 is obtained. The recombinant strain YPV-034 is an engineering strain for overexpressing YH66-RS10865 gene by a plasmid. Compared with the recombinant bacteria YPV-035, the recombinant bacteria YPV-034 only have the following differences: sequence 4 replaces sequence 2 in the sequence of the foreign DNA over-expressed by the plasmid.
Example 4 construction of engineered Strain with deletion of YH66-RS10865 Gene on genome
P19:5'-CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGTCGGCCACTTTAATAATCCT-3';
P20:5'-TATCTGTCCCTTGAGGTGATTTCCACACCTCCTGTTGGAA-3';
P21:5'-TTCCAACAGGAGGTGTGGAAATCACCTCAAGGGACAGATA-3';
P22:5'-CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCAACAATGTAAACAAGATGTC-3'。
P23:5'-TCGGCCACTTTAATAATCCT-3';
P24:5'-AACAATGTAAACAAGATGTC-3'。
Construction of recombinant plasmid
1. Using Corynebacterium glutamicum ATCC15168 as a template, PCR amplification was carried out using a primer pair consisting of primer P19 and primer P20, and an amplification product (upstream homology arm fragment, 730bp) was recovered.
2. Using Corynebacterium glutamicum ATCC15168 as a template, PCR amplification was carried out using a primer pair consisting of primer P21 and primer P22, and an amplification product (downstream homology arm fragment, 725bp) was recovered.
3. Meanwhile, the amplification product recovered in the step 1 and the amplification product recovered in the step 2 are used as templates, and PCR amplification (Overlap PCR) is carried out by using a primer pair consisting of a primer P19 and a primer P22, so that the amplification product is recovered. And after sequencing, the amplification product is shown as a sequence 8 in the sequence table.
4. The pK18mobsacB plasmid was digested with restriction enzyme Xba I, and the linearized plasmid was recovered.
5. And (3) co-incubating the amplification product recovered in the step (3) with the linearized plasmid recovered in the step (4) (by adopting NEBuilder enzyme, incubating at 50 ℃ for 30min) to obtain the recombinant plasmid pK 18-delta YH66-RS 10865. Through sequencing, the recombinant plasmid pK 18-delta YH66-RS10865 has a DNA molecule shown as a sequence 8 in a sequence table.
Secondly, constructing recombinant bacteria YPV-036
1. The Corynebacterium glutamicum CGMCC21260 is subjected to electric shock transformation by adopting a recombinant plasmid pK 18-delta YH66-RS10865, then cultured, and then PCR identification is respectively carried out on each single colony (by adopting a primer pair consisting of a primer P23 and a primer P24). The bacterial strain capable of amplifying bands of 1341bp and 4110bp simultaneously is a positive bacterial strain. The strain only amplifying the 4110bp band is a starting strain which fails in transformation, wherein the 4110bp fragment is shown as a sequence 9 in a sequence table.
2. Selecting the positive strain in the step 1, culturing the positive strain by using a culture medium containing 15% of sucrose, then selecting a single colony, culturing the single colony by using a culture medium containing kanamycin and a culture medium not containing kanamycin respectively, and screening the strain which can not grow on the culture medium containing kanamycin and can grow on the culture medium not containing kanamycin.
3. And (3) taking the strain screened in the step (2), carrying out PCR amplification by adopting a primer pair consisting of a primer P23 and a primer P24, wherein the strain only shows a single amplification product and has the size of 1341bp and is a positive strain with the YH66-RS10865 gene coding region knocked out.
4. And (3) taking the strain obtained by screening in the step (3), performing PCR amplification and sequencing by using a primer pair consisting of a primer P23 and a primer P24 again, and naming the strain with correct sequencing as recombinant bacteria YPV-036. Compared with the genome DNA of Corynebacterium glutamicum CGMCC21260, the recombinant bacterium YPV-036 is different only in that the DNA molecule shown in sequence 4 in the sequence table is deleted.
Example 5 fermentative preparation of L-valine
The test strains are respectively as follows: corynebacterium glutamicum CGMCC21260, recombinant bacteria YPV-031, recombinant bacteria YPV-032, recombinant bacteria YPV-033, recombinant bacteria YPV-034, recombinant bacteria YPV-035 and recombinant bacteria YPV-036.
Fermentation tank: BLBIO-5GC-4-H model fermenter (Shanghai Bailun Biotech Co., Ltd.).
The formulation of the fermentation medium is shown in Table 3, with the balance being water.
TABLE 3 fermentation Medium formulation
Composition (I) Content (wt.)
Ammonium sulfate 14g/L
Potassium dihydrogen phosphate 1g/L
Dipotassium hydrogen phosphate 1g/L
Magnesium sulfate 0.5g/L
Yeast powder 2g/L
Ferrous sulfate 18mg/L
Manganese sulfate 4.2mg/L
Biotin 0.02mg/L
Vitamin B1 2mg/L
Antifoaming agent antidioam (CB-442) 0.5mL/L
Glucose (base candy) 40g/L
The fermentation control process is shown in Table 4.
At the initial moment of completion of inoculation, the OD value of the system is 0.3-0.5.
In the fermentation process: ammonia water is used for adjusting the pH value; when foam exists in the fermentation system, adding a proper amount of antifoaming agent anifoam (CB-442); the sugar content (residual sugar) of the system is controlled by supplementing 70% glucose aqueous solution.
TABLE 4 fermentation control Process
Figure BDA0003228737220000101
Figure BDA0003228737220000111
After completion of the fermentation, the supernatant was collected, and the L-valine production in the supernatant was measured by HPLC.
The results are shown in Table 5. The L-valine yield of the recombinant bacteria YPV-031 and YPV-036 is obviously higher than that of Corynebacterium glutamicum CGMCC 21260. The results show that the suppression of YH66-RS10865 gene expression can increase L-valine production, and the overexpression of YH66-RS10865 gene can decrease L-valine production.
TABLE 5 results of L-valine fermentation experiments
Bacterial strains OD610 L-valine yield (g/L)
Corynebacterium glutamicum CGMCC21260 97.8 83.2
Recombinant bacterium YPV-031 98.1 85.6
Recombinant bacterium YPV-032 98.4 82.3
Recombinant bacterium YPV-033 98.2 83.1
Recombinant bacterium YPV-034 98.6 82.4
Recombinant bacterium YPV-035 98.3 82.6
Recombinant bacterium YPV-036 97.9 84.3
The present invention has been described in detail above. It will be apparent to those skilled in the art that the invention can be practiced in a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation. While the invention has been described with reference to specific embodiments, it will be appreciated that the invention can be further modified. In general, this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains. The use of some of the essential features is possible within the scope of the claims attached below.
Sequence listing
<110> Ningxia Yipin Biotechnology Ltd
Engineering bacterium obtained by YH66-RS10865 gene modification and application thereof in preparation of valine
<130> GNCYX211995
<160> 9
<170> SIPOSequenceListing 1.0
<210> 1
<211> 922
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 1
Met Ala Asp Gln Ala Lys Leu Gly Gly Lys Pro Ser Asp Asp Ser Asn
1 5 10 15
Phe Ala Met Ile Arg Asp Gly Val Ala Ser Tyr Leu Asn Asp Ser Asp
20 25 30
Pro Glu Glu Thr Asn Glu Trp Met Asp Ser Leu Asp Gly Leu Leu Gln
35 40 45
Glu Ser Ser Pro Glu Arg Ala Arg Tyr Leu Met Leu Arg Leu Leu Glu
50 55 60
Arg Ala Ser Ala Lys Arg Val Ser Leu Pro Pro Met Thr Ser Thr Asp
65 70 75 80
Tyr Val Asn Thr Ile Pro Thr Ser Met Glu Pro Glu Phe Pro Gly Asp
85 90 95
Glu Glu Met Glu Lys Arg Tyr Arg Arg Trp Ile Arg Trp Asn Ala Ala
100 105 110
Ile Met Val His Arg Ala Gln Arg Pro Gly Ile Gly Val Gly Gly His
115 120 125
Ile Ser Thr Tyr Ala Gly Ala Ala Pro Leu Tyr Glu Val Gly Phe Asn
130 135 140
His Phe Phe Arg Gly Lys Asp His Pro Gly Gly Gly Asp Gln Ile Phe
145 150 155 160
Phe Gln Gly His Ala Ser Pro Gly Met Tyr Ala Arg Ala Phe Met Glu
165 170 175
Gly Arg Leu Ser Glu Asp Asp Leu Asp Gly Phe Arg Gln Glu Val Ser
180 185 190
Arg Glu Gln Gly Gly Ile Pro Ser Tyr Pro His Pro His Gly Met Lys
195 200 205
Asp Phe Trp Glu Phe Pro Thr Val Ser Met Gly Leu Gly Pro Met Asp
210 215 220
Ala Ile Tyr Gln Ala Arg Phe Asn Arg Tyr Leu Glu Asn Arg Gly Ile
225 230 235 240
Lys Asp Thr Ser Asp Gln His Val Trp Ala Phe Leu Gly Asp Gly Glu
245 250 255
Met Asp Glu Pro Glu Ser Arg Gly Leu Ile Gln Gln Ala Ala Leu Asn
260 265 270
Asn Leu Asp Asn Leu Thr Phe Val Val Gln Cys Asn Leu Gln Arg Leu
275 280 285
Asp Gly Pro Val Arg Gly Asn Thr Lys Ile Ile Gln Glu Leu Glu Ser
290 295 300
Phe Phe Arg Gly Ala Gly Trp Ser Val Ile Lys Val Val Trp Gly Arg
305 310 315 320
Glu Trp Asp Glu Leu Leu Glu Lys Asp Gln Asp Gly Ala Leu Val Glu
325 330 335
Ile Met Asn Asn Thr Ser Asp Gly Asp Tyr Gln Thr Phe Lys Ala Asn
340 345 350
Asp Gly Ala Tyr Val Arg Glu His Phe Phe Gly Arg Asp Pro Arg Thr
355 360 365
Ala Lys Leu Val Glu Asn Met Thr Asp Glu Glu Ile Trp Lys Leu Pro
370 375 380
Arg Gly Gly His Asp Tyr Arg Lys Val Tyr Ala Ala Tyr Lys Arg Ala
385 390 395 400
Leu Glu Thr Lys Asp Arg Pro Thr Val Ile Leu Ala His Thr Ile Lys
405 410 415
Gly Tyr Gly Leu Gly His Asn Phe Glu Gly Arg Asn Ala Thr His Gln
420 425 430
Met Lys Lys Leu Thr Leu Asp Asp Leu Lys Leu Phe Arg Asp Lys Gln
435 440 445
Gly Ile Pro Ile Thr Asp Glu Gln Leu Glu Lys Asp Pro Tyr Leu Pro
450 455 460
Pro Tyr Tyr His Pro Gly Glu Asp Ala Pro Glu Ile Lys Tyr Met Lys
465 470 475 480
Glu Arg Arg Ala Ala Leu Gly Gly Tyr Leu Pro Glu Arg Arg Glu Asn
485 490 495
Tyr Asp Pro Ile Gln Val Pro Pro Leu Asp Lys Leu Arg Ser Val Arg
500 505 510
Lys Gly Ser Gly Lys Gln Gln Ile Ala Thr Thr Met Ala Thr Val Arg
515 520 525
Thr Phe Lys Glu Leu Met Arg Asp Lys Gly Leu Ala Asp Arg Leu Val
530 535 540
Pro Ile Ile Pro Asp Glu Ala Arg Thr Phe Gly Leu Asp Ser Trp Phe
545 550 555 560
Pro Thr Leu Lys Ile Tyr Asn Pro His Gly Gln Asn Tyr Val Pro Val
565 570 575
Asp His Asp Leu Met Leu Ser Tyr Arg Glu Ala Pro Glu Gly Gln Ile
580 585 590
Leu His Glu Gly Ile Asn Glu Ala Gly Ser Met Ala Ser Phe Ile Ala
595 600 605
Ala Gly Thr Ser Tyr Ala Thr His Gly Lys Ala Met Ile Pro Leu Tyr
610 615 620
Ile Phe Tyr Ser Met Phe Gly Phe Gln Arg Thr Gly Asp Ser Ile Trp
625 630 635 640
Ala Ala Ala Asp Gln Met Ala Arg Gly Phe Leu Leu Gly Ala Thr Ala
645 650 655
Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu Gln His Met Asp Gly His
660 665 670
Ser Pro Val Leu Ala Ser Thr Asn Glu Gly Val Glu Thr Tyr Asp Pro
675 680 685
Ser Phe Ala Tyr Glu Ile Ala His Leu Val His Arg Gly Ile Asp Arg
690 695 700
Met Tyr Gly Pro Gly Lys Gly Glu Asp Val Ile Tyr Tyr Ile Thr Ile
705 710 715 720
Tyr Asn Glu Pro Thr Pro Gln Pro Ala Glu Pro Glu Gly Leu Asp Val
725 730 735
Glu Gly Leu His Lys Gly Ile Tyr Leu Tyr Ser Arg Gly Glu Gly Thr
740 745 750
Gly His Glu Ala Asn Ile Leu Ala Ser Gly Val Gly Met Gln Trp Ala
755 760 765
Leu Lys Ala Ala Ser Ile Leu Glu Ala Asp Tyr Gly Val Arg Ala Asn
770 775 780
Ile Tyr Ser Ala Thr Ser Trp Val Asn Leu Ala Arg Asp Gly Ala Ala
785 790 795 800
Arg Asn Lys Ala Gln Leu Arg Asn Pro Gly Ala Asp Ala Gly Glu Ala
805 810 815
Phe Val Thr Thr Gln Leu Lys Gln Thr Ser Gly Pro Tyr Val Ala Val
820 825 830
Ser Asp Phe Ser Thr Asp Leu Pro Asn Gln Ile Arg Glu Trp Val Pro
835 840 845
Gly Asp Tyr Thr Val Leu Gly Ala Asp Gly Phe Gly Phe Ser Asp Thr
850 855 860
Arg Pro Ala Ala Arg Arg Phe Phe Asn Ile Asp Ala Glu Ser Ile Val
865 870 875 880
Val Ala Val Leu Asn Ser Leu Ala Arg Glu Gly Lys Ile Asp Val Ser
885 890 895
Val Ala Ala Gln Ala Ala Glu Lys Phe Lys Leu Asp Asp Pro Thr Ser
900 905 910
Val Ser Val Asp Pro Asn Ala Pro Glu Glu
915 920
<210> 2
<211> 2769
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
atggccgatc aagcaaaact tggtggcaag ccctcggatg actctaactt cgcgatgatc 60
cgcgatggcg tggcatctta tttgaacgac tcagatccgg aggagaccaa cgagtggatg 120
gattcactcg acggattact ccaggagtct tctccagaac gtgctcgtta cctcatgctt 180
cgtttgcttg agcgtgcatc tgcaaagcgc gtatctcttc ccccaatgac gtcaaccgac 240
tacgtcaaca ccattccaac ctctatggaa cctgaattcc caggcgatga ggaaatggag 300
aagcgttacc gtcgttggat tcgctggaac gcagccatca tggttcaccg cgctcagcga 360
ccaggcatcg gcgtcggcgg gcacatttcc acttacgcag gcgcagcccc tctgtacgaa 420
gttggcttca accacttctt ccgcggcaag gatcacccag gcggcggcga ccagatcttc 480
ttccagggcc acgcatcacc aggtatgtac gcacgtgcat tcatggaggg tcgcctttct 540
gaagacgatc tcgatggctt ccgtcaggaa gtttcccgtg agcagggtgg tattccgtcc 600
taccctcacc cacacggtat gaaggacttc tgggagttcc caactgtgtc catgggtctt 660
ggcccaatgg atgccattta ccaggcacgt ttcaaccgct acctcgaaaa ccgtggcatc 720
aaggacacct ctgaccagca cgtctgggcc ttccttggcg acggcgaaat ggacgagcca 780
gaatcacgtg gtctcatcca gcaggctgca ctgaacaacc tggacaacct gaccttcgtg 840
gttcaatgca acctgcagcg tctcgacgga cctgtccgcg gtaacaccaa gatcatccag 900
gaactcgagt ccttcttccg tggcgcaggc tggtctgtga tcaaggttgt ttggggtcgc 960
gagtgggatg aacttctgga gaaggaccag gatggtgcac ttgttgagat catgaacaac 1020
acctccgatg gtgactacca gaccttcaag gctaacgacg gcgcatatgt tcgtgagcac 1080
ttcttcggac gtgacccacg caccgcaaag ctcgttgaga acatgaccga cgaagaaatc 1140
tggaagctgc cacgtggcgg ccacgattac cgcaaggttt acgcagccta caagcgagct 1200
cttgagacca aggatcgccc aaccgtcatc cttgctcaca ccattaaggg ctacggactc 1260
ggccacaatt tcgaaggccg taacgcaacc caccagatga agaagctgac gcttgatgat 1320
ctgaagttgt tccgcgacaa gcagggcatc ccaatcaccg atgagcagct ggagaaggat 1380
ccttaccttc ctccttacta ccacccaggt gaagacgctc ctgaaatcaa gtacatgaag 1440
gaacgtcgcg cagcgctcgg tggctacctg ccagagcgtc gtgagaacta cgatccaatt 1500
caggttccac cactggataa gcttcgctct gtccgtaagg gctccggcaa gcagcagatc 1560
gctaccacca tggcgactgt tcgcaccttc aaggaactga tgcgcgataa gggcttggct 1620
gatcgccttg tcccaatcat tcctgatgag gcacgtacct tcggtcttga ctcttggttc 1680
ccaaccttga agatctacaa cccgcacggt cagaactacg tgcctgttga ccacgacctg 1740
atgctctcct accgtgaggc acctgaagga cagatcctgc acgaaggcat caacgaggct 1800
ggttccatgg catcgttcat cgctgcgggt acctcctacg ccacccacgg caaggccatg 1860
attccgctgt acatcttcta ctcgatgttc ggattccagc gcaccggtga ctccatctgg 1920
gcagcagccg atcagatggc acgtggcttc ctcttgggcg ctaccgcagg tcgcaccacc 1980
ctgaccggtg aaggcctcca gcacatggat ggacactccc ctgtcttggc ttccaccaac 2040
gagggtgtcg agacctacga cccatccttt gcgtacgaga tcgcacacct ggttcaccgt 2100
ggcatcgacc gcatgtacgg cccaggcaag ggcgaagatg ttatctacta catcaccatc 2160
tacaacgagc caaccccaca gccagctgag ccagaaggac tggacgtaga aggcctgcac 2220
aagggcatct acctctactc ccgcggtgaa ggcaccggcc atgaggcaaa catcttggct 2280
tccggtgttg gtatgcagtg ggctctcaag gctgcatcca tccttgaggc tgactacgga 2340
gttcgtgcaa acatttactc cgctacttct tgggttaact tggctcgcga tggcgctgct 2400
cgtaacaagg cacagctgcg caacccaggt gcagatgctg gcgaggcatt cgtaaccacc 2460
cagctgaagc agacctctgg cccatacgtc gcagtgtctg acttctccac tgatctgcca 2520
aaccagatcc gtgaatgggt cccaggcgac tacaccgttc tcggtgcaga tggcttcggt 2580
ttctctgata cccgcccagc tgctcgtcgc ttcttcaaca tcgacgctga gtccattgtt 2640
gttgcagtgc tgaactccct ggcacgcgaa ggcaagatcg acgtctccgt tgctgctcag 2700
gctgctgaga agttcaagtt ggatgatcct acgagtgttt ccgtagatcc aaacgctcct 2760
gaggaataa 2769
<210> 3
<211> 922
<212> PRT
<213> Corynebacterium glutamicum
<400> 3
Met Ala Asp Gln Ala Lys Leu Gly Gly Lys Pro Ser Asp Asp Ser Asn
1 5 10 15
Phe Ala Met Ile Arg Asp Gly Val Ala Ser Tyr Leu Asn Asp Ser Asp
20 25 30
Pro Glu Glu Thr Asn Glu Trp Met Asp Ser Leu Asp Gly Leu Leu Gln
35 40 45
Glu Ser Ser Pro Glu Arg Ala Arg Tyr Leu Met Leu Arg Leu Leu Glu
50 55 60
Arg Ala Ser Ala Lys Arg Val Ser Leu Pro Pro Met Thr Ser Thr Asp
65 70 75 80
Tyr Val Asn Thr Ile Pro Thr Ser Met Glu Pro Glu Phe Pro Gly Asp
85 90 95
Glu Glu Met Glu Lys Arg Tyr Arg Arg Trp Ile Arg Trp Asn Ala Ala
100 105 110
Ile Met Val His Arg Ala Gln Arg Pro Gly Ile Gly Val Gly Gly His
115 120 125
Ile Ser Thr Tyr Ala Gly Ala Ala Pro Leu Tyr Glu Val Gly Phe Asn
130 135 140
His Phe Phe Arg Gly Lys Asp His Pro Gly Gly Gly Asp Gln Ile Phe
145 150 155 160
Phe Gln Gly His Ala Ser Pro Gly Met Tyr Ala Arg Ala Phe Met Glu
165 170 175
Gly Arg Leu Ser Glu Asp Asp Leu Asp Gly Phe Arg Gln Glu Val Ser
180 185 190
Arg Glu Gln Gly Gly Ile Pro Ser Tyr Pro His Pro His Gly Met Lys
195 200 205
Asp Phe Trp Glu Phe Pro Thr Val Ser Met Gly Leu Gly Pro Met Asp
210 215 220
Ala Ile Tyr Gln Ala Arg Phe Asn Arg Tyr Leu Glu Asn Arg Gly Ile
225 230 235 240
Lys Asp Thr Ser Asp Gln His Val Trp Ala Phe Leu Gly Asp Gly Glu
245 250 255
Met Asp Glu Pro Glu Ser Arg Gly Leu Ile Gln Gln Ala Ala Leu Asn
260 265 270
Asn Leu Asp Asn Leu Thr Phe Val Val Asn Cys Asn Leu Gln Arg Leu
275 280 285
Asp Gly Pro Val Arg Gly Asn Thr Lys Ile Ile Gln Glu Leu Glu Ser
290 295 300
Phe Phe Arg Gly Ala Gly Trp Ser Val Ile Lys Val Val Trp Gly Arg
305 310 315 320
Glu Trp Asp Glu Leu Leu Glu Lys Asp Gln Asp Gly Ala Leu Val Glu
325 330 335
Ile Met Asn Asn Thr Ser Asp Gly Asp Tyr Gln Thr Phe Lys Ala Asn
340 345 350
Asp Gly Ala Tyr Val Arg Glu His Phe Phe Gly Arg Asp Pro Arg Thr
355 360 365
Ala Lys Leu Val Glu Asn Met Thr Asp Glu Glu Ile Trp Lys Leu Pro
370 375 380
Arg Gly Gly His Asp Tyr Arg Lys Val Tyr Ala Ala Tyr Lys Arg Ala
385 390 395 400
Leu Glu Thr Lys Asp Arg Pro Thr Val Ile Leu Ala His Thr Ile Lys
405 410 415
Gly Tyr Gly Leu Gly His Asn Phe Glu Gly Arg Asn Ala Thr His Gln
420 425 430
Met Lys Lys Leu Thr Leu Asp Asp Leu Lys Leu Phe Arg Asp Lys Gln
435 440 445
Gly Ile Pro Ile Thr Asp Glu Gln Leu Glu Lys Asp Pro Tyr Leu Pro
450 455 460
Pro Tyr Tyr His Pro Gly Glu Asp Ala Pro Glu Ile Lys Tyr Met Lys
465 470 475 480
Glu Arg Arg Ala Ala Leu Gly Gly Tyr Leu Pro Glu Arg Arg Glu Asn
485 490 495
Tyr Asp Pro Ile Gln Val Pro Pro Leu Asp Lys Leu Arg Ser Val Arg
500 505 510
Lys Gly Ser Gly Lys Gln Gln Ile Ala Thr Thr Met Ala Thr Val Arg
515 520 525
Thr Phe Lys Glu Leu Met Arg Asp Lys Gly Leu Ala Asp Arg Leu Val
530 535 540
Pro Ile Ile Pro Asp Glu Ala Arg Thr Phe Gly Leu Asp Ser Trp Phe
545 550 555 560
Pro Thr Leu Lys Ile Tyr Asn Pro His Gly Gln Asn Tyr Val Pro Val
565 570 575
Asp His Asp Leu Met Leu Ser Tyr Arg Glu Ala Pro Glu Gly Gln Ile
580 585 590
Leu His Glu Gly Ile Asn Glu Ala Gly Ser Met Ala Ser Phe Ile Ala
595 600 605
Ala Gly Thr Ser Tyr Ala Thr His Gly Lys Ala Met Ile Pro Leu Tyr
610 615 620
Ile Phe Tyr Ser Met Phe Gly Phe Gln Arg Thr Gly Asp Ser Ile Trp
625 630 635 640
Ala Ala Ala Asp Gln Met Ala Arg Gly Phe Leu Leu Gly Ala Thr Ala
645 650 655
Gly Arg Thr Thr Leu Thr Gly Glu Gly Leu Gln His Met Asp Gly His
660 665 670
Ser Pro Val Leu Ala Ser Thr Asn Glu Gly Val Glu Thr Tyr Asp Pro
675 680 685
Ser Phe Ala Tyr Glu Ile Ala His Leu Val His Arg Gly Ile Asp Arg
690 695 700
Met Tyr Gly Pro Gly Lys Gly Glu Asp Val Ile Tyr Tyr Ile Thr Ile
705 710 715 720
Tyr Asn Glu Pro Thr Pro Gln Pro Ala Glu Pro Glu Gly Leu Asp Val
725 730 735
Glu Gly Leu His Lys Gly Ile Tyr Leu Tyr Ser Arg Gly Glu Gly Thr
740 745 750
Gly His Glu Ala Asn Ile Leu Ala Ser Gly Val Gly Met Gln Trp Ala
755 760 765
Leu Lys Ala Ala Ser Ile Leu Glu Ala Asp Tyr Gly Val Arg Ala Asn
770 775 780
Ile Tyr Ser Ala Thr Ser Trp Val Asn Leu Ala Arg Asp Gly Ala Ala
785 790 795 800
Arg Asn Lys Ala Gln Leu Arg Asn Pro Gly Ala Asp Ala Gly Glu Ala
805 810 815
Phe Val Thr Thr Gln Leu Lys Gln Thr Ser Gly Pro Tyr Val Ala Val
820 825 830
Ser Asp Phe Ser Thr Asp Leu Pro Asn Gln Ile Arg Glu Trp Val Pro
835 840 845
Gly Asp Tyr Thr Val Leu Gly Ala Asp Gly Phe Gly Phe Ser Asp Thr
850 855 860
Arg Pro Ala Ala Arg Arg Phe Phe Asn Ile Asp Ala Glu Ser Ile Val
865 870 875 880
Val Ala Val Leu Asn Ser Leu Ala Arg Glu Gly Lys Ile Asp Val Ser
885 890 895
Val Ala Ala Gln Ala Ala Glu Lys Phe Lys Leu Asp Asp Pro Thr Ser
900 905 910
Val Ser Val Asp Pro Asn Ala Pro Glu Glu
915 920
<210> 4
<211> 2769
<212> DNA
<213> Corynebacterium glutamicum
<400> 4
atggccgatc aagcaaaact tggtggcaag ccctcggatg actctaactt cgcgatgatc 60
cgcgatggcg tggcatctta tttgaacgac tcagatccgg aggagaccaa cgagtggatg 120
gattcactcg acggattact ccaggagtct tctccagaac gtgctcgtta cctcatgctt 180
cgtttgcttg agcgtgcatc tgcaaagcgc gtatctcttc ccccaatgac gtcaaccgac 240
tacgtcaaca ccattccaac ctctatggaa cctgaattcc caggcgatga ggaaatggag 300
aagcgttacc gtcgttggat tcgctggaac gcagccatca tggttcaccg cgctcagcga 360
ccaggcatcg gcgtcggcgg gcacatttcc acttacgcag gcgcagcccc tctgtacgaa 420
gttggcttca accacttctt ccgcggcaag gatcacccag gcggcggcga ccagatcttc 480
ttccagggcc acgcatcacc aggtatgtac gcacgtgcat tcatggaggg tcgcctttct 540
gaagacgatc tcgatggctt ccgtcaggaa gtttcccgtg agcagggtgg tattccgtcc 600
taccctcacc cacacggtat gaaggacttc tgggagttcc caactgtgtc catgggtctt 660
ggcccaatgg atgccattta ccaggcacgt ttcaaccgct acctcgaaaa ccgtggcatc 720
aaggacacct ctgaccagca cgtctgggcc ttccttggcg acggcgaaat ggacgagcca 780
gaatcacgtg gtctcatcca gcaggctgca ctgaacaacc tggacaacct gaccttcgtg 840
gttaactgca acctgcagcg tctcgacgga cctgtccgcg gtaacaccaa gatcatccag 900
gaactcgagt ccttcttccg tggcgcaggc tggtctgtga tcaaggttgt ttggggtcgc 960
gagtgggatg aacttctgga gaaggaccag gatggtgcac ttgttgagat catgaacaac 1020
acctccgatg gtgactacca gaccttcaag gctaacgacg gcgcatatgt tcgtgagcac 1080
ttcttcggac gtgacccacg caccgcaaag ctcgttgaga acatgaccga cgaagaaatc 1140
tggaagctgc cacgtggcgg ccacgattac cgcaaggttt acgcagccta caagcgagct 1200
cttgagacca aggatcgccc aaccgtcatc cttgctcaca ccattaaggg ctacggactc 1260
ggccacaatt tcgaaggccg taacgcaacc caccagatga agaagctgac gcttgatgat 1320
ctgaagttgt tccgcgacaa gcagggcatc ccaatcaccg atgagcagct ggagaaggat 1380
ccttaccttc ctccttacta ccacccaggt gaagacgctc ctgaaatcaa gtacatgaag 1440
gaacgtcgcg cagcgctcgg tggctacctg ccagagcgtc gtgagaacta cgatccaatt 1500
caggttccac cactggataa gcttcgctct gtccgtaagg gctccggcaa gcagcagatc 1560
gctaccacca tggcgactgt tcgcaccttc aaggaactga tgcgcgataa gggcttggct 1620
gatcgccttg tcccaatcat tcctgatgag gcacgtacct tcggtcttga ctcttggttc 1680
ccaaccttga agatctacaa cccgcacggt cagaactacg tgcctgttga ccacgacctg 1740
atgctctcct accgtgaggc acctgaagga cagatcctgc acgaaggcat caacgaggct 1800
ggttccatgg catcgttcat cgctgcgggt acctcctacg ccacccacgg caaggccatg 1860
attccgctgt acatcttcta ctcgatgttc ggattccagc gcaccggtga ctccatctgg 1920
gcagcagccg atcagatggc acgtggcttc ctcttgggcg ctaccgcagg tcgcaccacc 1980
ctgaccggtg aaggcctcca gcacatggat ggacactccc ctgtcttggc ttccaccaac 2040
gagggtgtcg agacctacga cccatccttt gcgtacgaga tcgcacacct ggttcaccgt 2100
ggcatcgacc gcatgtacgg cccaggcaag ggcgaagatg ttatctacta catcaccatc 2160
tacaacgagc caaccccaca gccagctgag ccagaaggac tggacgtaga aggcctgcac 2220
aagggcatct acctctactc ccgcggtgaa ggcaccggcc atgaggcaaa catcttggct 2280
tccggtgttg gtatgcagtg ggctctcaag gctgcatcca tccttgaggc tgactacgga 2340
gttcgtgcaa acatttactc cgctacttct tgggttaact tggctcgcga tggcgctgct 2400
cgtaacaagg cacagctgcg caacccaggt gcagatgctg gcgaggcatt cgtaaccacc 2460
cagctgaagc agacctctgg cccatacgtc gcagtgtctg acttctccac tgatctgcca 2520
aaccagatcc gtgaatgggt cccaggcgac tacaccgttc tcggtgcaga tggcttcggt 2580
ttctctgata cccgcccagc tgctcgtcgc ttcttcaaca tcgacgctga gtccattgtt 2640
gttgcagtgc tgaactccct ggcacgcgaa ggcaagatcg acgtctccgt tgctgctcag 2700
gctgctgaga agttcaagtt ggatgatcct acgagtgttt ccgtagatcc aaacgctcct 2760
gaggaataa 2769
<210> 5
<211> 1364
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
cagtgccaag cttgcatgcc tgcaggtcga ctctaggctt cgtttgcttg agcgtgcatc 60
tgcaaagcgc gtatctcttc ccccaatgac gtcaaccgac tacgtcaaca ccattccaac 120
ctctatggaa cctgaattcc caggcgatga ggaaatggag aagcgttacc gtcgttggat 180
tcgctggaac gcagccatca tggttcaccg cgctcagcga ccaggcatcg gcgtcggcgg 240
gcacatttcc acttacgcag gcgcagcccc tctgtacgaa gttggcttca accacttctt 300
ccgcggcaag gatcacccag gcggcggcga ccagatcttc ttccagggcc acgcatcacc 360
aggtatgtac gcacgtgcat tcatggaggg tcgcctttct gaagacgatc tcgatggctt 420
ccgtcaggaa gtttcccgtg agcagggtgg tattccgtcc taccctcacc cacacggtat 480
gaaggacttc tgggagttcc caactgtgtc catgggtctt ggcccaatgg atgccattta 540
ccaggcacgt ttcaaccgct acctcgaaaa ccgtggcatc aaggacacct ctgaccagca 600
cgtctgggcc ttccttggcg acggcgaaat ggacgagcca gaatcacgtg gtctcatcca 660
gcaggctgca ctgaacaacc tggacaacct gaccttcgtg gttcaatgca acctgcagcg 720
tctcgacgga cctgtccgcg gtaacaccaa gatcatccag gaactcgagt ccttcttccg 780
tggcgcaggc tggtctgtga tcaaggttgt ttggggtcgc gagtgggatg aacttctgga 840
gaaggaccag gatggtgcac ttgttgagat catgaacaac acctccgatg gtgactacca 900
gaccttcaag gctaacgacg gcgcatatgt tcgtgagcac ttcttcggac gtgacccacg 960
caccgcaaag ctcgttgaga acatgaccga cgaagaaatc tggaagctgc cacgtggcgg 1020
ccacgattac cgcaaggttt acgcagccta caagcgagct cttgagacca aggatcgccc 1080
aaccgtcatc cttgctcaca ccattaaggg ctacggactc ggccacaatt tcgaaggccg 1140
taacgcaacc caccagatga agaagctgac gcttgatgat ctgaagttgt tccgcgacaa 1200
gcagggcatc ccaatcaccg atgagcagct ggagaaggat ccttaccttc ctccttacta 1260
ccacccaggt gaagacgctc ctgaaatcaa gtacatgaag gaacgtcgcg cagcgctcgg 1320
tggctagggt accgagctcg aattcgtaat catggtcata gctg 1364
<210> 6
<211> 4523
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
cagtgccaag cttgcatgcc tgcaggtcga ctctagcatg acggctgact ggactcgact 60
tccatacgag gttctggaga agatctccac ccgcatcacc aacgaagttc cagatgtgaa 120
ccgcgtggtt ttggacgtaa cctccaagcc accaggaacc atcgaatggg agtaggcctt 180
aaatgagcct tcgttaagcg gcaatcacct tattggagat tgtcgctttt cccatttctc 240
cgggttttct ggaacttttt gggcgtatgc tgggaatgat tctattattg ccaaatcaga 300
aagcaggaga gacccgatga gcgaaatcct agaaacctat tgggcacccc actttggaaa 360
aaccgaagaa gccacagcac tcgtttcata cctggcacaa gcttccggcg atcccattga 420
ggttcacacc ctgttcgggg atttaggttt agacggactc tcgggaaact acaccgacac 480
tgagattgac ggctacggcg acgcattcct gctggttgca gcgctatccg tgttgatggc 540
tgaaaacaaa gcaacaggtg gcgtgaatct gggtgagctt gggggagctg ataaatcgat 600
ccggctgcat gttgaatcca aggagaacac ccaaatcaac accgcattga agtattttgc 660
gctctcccca gaagaccacg cagcagcaga tcgcttcgat gaggatgacc tgtctgagct 720
tgccaacttg agtgaagagc tgcgcggaca gctggactaa ttgtctccca tttaaggagt 780
ccgatttgga tacctgaaat cccagtgagc gcaccactcc ccttacgtca cagtctgtaa 840
aacaaatctt cggtgttgcg tatccttgtt aataacttat gcgttgactc attcgtgcac 900
ttcggcgtgt cacaattagg tacgaccaag aatgggaccg ggaaaccggg acgtataaac 960
gaaataaaac attccaacag gaggtgtgga aatggccgat caagcaaaac ttggtggcaa 1020
gccctcggat gactctaact tcgcgatgat ccgcgatggc gtggcatctt atttgaacga 1080
ctcagatccg gaggagacca acgagtggat ggattcactc gacggattac tccaggagtc 1140
ttctccagaa cgtgctcgtt acctcatgct tcgtttgctt gagcgtgcat ctgcaaagcg 1200
cgtatctctt cccccaatga cgtcaaccga ctacgtcaac accattccaa cctctatgga 1260
acctgaattc ccaggcgatg aggaaatgga gaagcgttac cgtcgttgga ttcgctggaa 1320
cgcagccatc atggttcacc gcgctcagcg accaggcatc ggcgtcggcg ggcacatttc 1380
cacttacgca ggcgcagccc ctctgtacga agttggcttc aaccacttct tccgcggcaa 1440
ggatcaccca ggcggcggcg accagatctt cttccagggc cacgcatcac caggtatgta 1500
cgcacgtgca ttcatggagg gtcgcctttc tgaagacgat ctcgatggct tccgtcagga 1560
agtttcccgt gagcagggtg gtattccgtc ctaccctcac ccacacggta tgaaggactt 1620
ctgggagttc ccaactgtgt ccatgggtct tggcccaatg gatgccattt accaggcacg 1680
tttcaaccgc tacctcgaaa accgtggcat caaggacacc tctgaccagc acgtctgggc 1740
cttccttggc gacggcgaaa tggacgagcc agaatcacgt ggtctcatcc agcaggctgc 1800
actgaacaac ctggacaacc tgaccttcgt ggttcaatgc aacctgcagc gtctcgacgg 1860
acctgtccgc ggtaacacca agatcatcca ggaactcgag tccttcttcc gtggcgcagg 1920
ctggtctgtg atcaaggttg tttggggtcg cgagtgggat gaacttctgg agaaggacca 1980
ggatggtgca cttgttgaga tcatgaacaa cacctccgat ggtgactacc agaccttcaa 2040
ggctaacgac ggcgcatatg ttcgtgagca cttcttcgga cgtgacccac gcaccgcaaa 2100
gctcgttgag aacatgaccg acgaagaaat ctggaagctg ccacgtggcg gccacgatta 2160
ccgcaaggtt tacgcagcct acaagcgagc tcttgagacc aaggatcgcc caaccgtcat 2220
ccttgctcac accattaagg gctacggact cggccacaat ttcgaaggcc gtaacgcaac 2280
ccaccagatg aagaagctga cgcttgatga tctgaagttg ttccgcgaca agcagggcat 2340
cccaatcacc gatgagcagc tggagaagga tccttacctt cctccttact accacccagg 2400
tgaagacgct cctgaaatca agtacatgaa ggaacgtcgc gcagcgctcg gtggctacct 2460
gccagagcgt cgtgagaact acgatccaat tcaggttcca ccactggata agcttcgctc 2520
tgtccgtaag ggctccggca agcagcagat cgctaccacc atggcgactg ttcgcacctt 2580
caaggaactg atgcgcgata agggcttggc tgatcgcctt gtcccaatca ttcctgatga 2640
ggcacgtacc ttcggtcttg actcttggtt cccaaccttg aagatctaca acccgcacgg 2700
tcagaactac gtgcctgttg accacgacct gatgctctcc taccgtgagg cacctgaagg 2760
acagatcctg cacgaaggca tcaacgaggc tggttccatg gcatcgttca tcgctgcggg 2820
tacctcctac gccacccacg gcaaggccat gattccgctg tacatcttct actcgatgtt 2880
cggattccag cgcaccggtg actccatctg ggcagcagcc gatcagatgg cacgtggctt 2940
cctcttgggc gctaccgcag gtcgcaccac cctgaccggt gaaggcctcc agcacatgga 3000
tggacactcc cctgtcttgg cttccaccaa cgagggtgtc gagacctacg acccatcctt 3060
tgcgtacgag atcgcacacc tggttcaccg tggcatcgac cgcatgtacg gcccaggcaa 3120
gggcgaagat gttatctact acatcaccat ctacaacgag ccaaccccac agccagctga 3180
gccagaagga ctggacgtag aaggcctgca caagggcatc tacctctact cccgcggtga 3240
aggcaccggc catgaggcaa acatcttggc ttccggtgtt ggtatgcagt gggctctcaa 3300
ggctgcatcc atccttgagg ctgactacgg agttcgtgca aacatttact ccgctacttc 3360
ttgggttaac ttggctcgcg atggcgctgc tcgtaacaag gcacagctgc gcaacccagg 3420
tgcagatgct ggcgaggcat tcgtaaccac ccagctgaag cagacctctg gcccatacgt 3480
cgcagtgtct gacttctcca ctgatctgcc aaaccagatc cgtgaatggg tcccaggcga 3540
ctacaccgtt ctcggtgcag atggcttcgg tttctctgat acccgcccag ctgctcgtcg 3600
cttcttcaac atcgacgctg agtccattgt tgttgcagtg ctgaactccc tggcacgcga 3660
aggcaagatc gacgtctccg ttgctgctca ggctgctgag aagttcaagt tggatgatcc 3720
tacgagtgtt tccgtagatc caaacgctcc tgaggaataa taaatcgact actcacatag 3780
ggtcgggcta gtcattctga tcagcgaatt ccacgttcac atcgccaatt ccagagttca 3840
caaccagatt cagcattgga ccttctagat cagcattgtg ggcggtgaga tctccaacat 3900
cacagcgcgc tgtgcccaca ccggcggtac aacttaggct cacgggcaca tcatcgggca 3960
gggtgaccat gacttcgccg atccctgagg tgatttggat gttttgttcc tgatccaatt 4020
gggtgaggtg gctgaaatcg aggttcattt cacccacgcc agaggtgtag ctgctgagga 4080
gttcatcgtt ggtggggatg agattgacat cgccgattcc agggtcgtct tcaaagtaga 4140
tgggatcgat atttgaaata aacaggcctg cgagggcgct catgacaact ccggtaccaa 4200
ctacaccgcc gacaatccat ggccacacat ggcgcttttt ctgaggcttt tgtggaggga 4260
cttgtacatc ccaggtgttg tattggtttt gggcaagtgg atcccaatga ggcgcttcgg 4320
gggtttgttg cgcgaagggt gcatagtagc cctcaacggg ggtgatagtg cttagatctg 4380
gttggggttg tgggtagaga tcttcgtttt tcatggtggc atcctcagaa acagtgaatt 4440
cagtggtgag tagtccgcgg ggtggaagtg gttgtttctt atgcagggta ccgagctcga 4500
attcgtaatc atggtcatag ctg 4523
<210> 7
<211> 3044
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
gcttgcatgc ctgcaggtcg actctagagg atcccctgga tacctgaaat cccagtgagc 60
gcaccactcc ccttacgtca cagtctgtaa aacaaatctt cggtgttgcg tatccttgtt 120
aataacttat gcgttgactc attcgtgcac ttcggcgtgt cacaattagg tacgaccaag 180
aatgggaccg ggaaaccggg acgtataaac gaaataaaac attccaacag gaggtgtgga 240
aatggccgat caagcaaaac ttggtggcaa gccctcggat gactctaact tcgcgatgat 300
ccgcgatggc gtggcatctt atttgaacga ctcagatccg gaggagacca acgagtggat 360
ggattcactc gacggattac tccaggagtc ttctccagaa cgtgctcgtt acctcatgct 420
tcgtttgctt gagcgtgcat ctgcaaagcg cgtatctctt cccccaatga cgtcaaccga 480
ctacgtcaac accattccaa cctctatgga acctgaattc ccaggcgatg aggaaatgga 540
gaagcgttac cgtcgttgga ttcgctggaa cgcagccatc atggttcacc gcgctcagcg 600
accaggcatc ggcgtcggcg ggcacatttc cacttacgca ggcgcagccc ctctgtacga 660
agttggcttc aaccacttct tccgcggcaa ggatcaccca ggcggcggcg accagatctt 720
cttccagggc cacgcatcac caggtatgta cgcacgtgca ttcatggagg gtcgcctttc 780
tgaagacgat ctcgatggct tccgtcagga agtttcccgt gagcagggtg gtattccgtc 840
ctaccctcac ccacacggta tgaaggactt ctgggagttc ccaactgtgt ccatgggtct 900
tggcccaatg gatgccattt accaggcacg tttcaaccgc tacctcgaaa accgtggcat 960
caaggacacc tctgaccagc acgtctgggc cttccttggc gacggcgaaa tggacgagcc 1020
agaatcacgt ggtctcatcc agcaggctgc actgaacaac ctggacaacc tgaccttcgt 1080
ggttcaatgc aacctgcagc gtctcgacgg acctgtccgc ggtaacacca agatcatcca 1140
ggaactcgag tccttcttcc gtggcgcagg ctggtctgtg atcaaggttg tttggggtcg 1200
cgagtgggat gaacttctgg agaaggacca ggatggtgca cttgttgaga tcatgaacaa 1260
cacctccgat ggtgactacc agaccttcaa ggctaacgac ggcgcatatg ttcgtgagca 1320
cttcttcgga cgtgacccac gcaccgcaaa gctcgttgag aacatgaccg acgaagaaat 1380
ctggaagctg ccacgtggcg gccacgatta ccgcaaggtt tacgcagcct acaagcgagc 1440
tcttgagacc aaggatcgcc caaccgtcat ccttgctcac accattaagg gctacggact 1500
cggccacaat ttcgaaggcc gtaacgcaac ccaccagatg aagaagctga cgcttgatga 1560
tctgaagttg ttccgcgaca agcagggcat cccaatcacc gatgagcagc tggagaagga 1620
tccttacctt cctccttact accacccagg tgaagacgct cctgaaatca agtacatgaa 1680
ggaacgtcgc gcagcgctcg gtggctacct gccagagcgt cgtgagaact acgatccaat 1740
tcaggttcca ccactggata agcttcgctc tgtccgtaag ggctccggca agcagcagat 1800
cgctaccacc atggcgactg ttcgcacctt caaggaactg atgcgcgata agggcttggc 1860
tgatcgcctt gtcccaatca ttcctgatga ggcacgtacc ttcggtcttg actcttggtt 1920
cccaaccttg aagatctaca acccgcacgg tcagaactac gtgcctgttg accacgacct 1980
gatgctctcc taccgtgagg cacctgaagg acagatcctg cacgaaggca tcaacgaggc 2040
tggttccatg gcatcgttca tcgctgcggg tacctcctac gccacccacg gcaaggccat 2100
gattccgctg tacatcttct actcgatgtt cggattccag cgcaccggtg actccatctg 2160
ggcagcagcc gatcagatgg cacgtggctt cctcttgggc gctaccgcag gtcgcaccac 2220
cctgaccggt gaaggcctcc agcacatgga tggacactcc cctgtcttgg cttccaccaa 2280
cgagggtgtc gagacctacg acccatcctt tgcgtacgag atcgcacacc tggttcaccg 2340
tggcatcgac cgcatgtacg gcccaggcaa gggcgaagat gttatctact acatcaccat 2400
ctacaacgag ccaaccccac agccagctga gccagaagga ctggacgtag aaggcctgca 2460
caagggcatc tacctctact cccgcggtga aggcaccggc catgaggcaa acatcttggc 2520
ttccggtgtt ggtatgcagt gggctctcaa ggctgcatcc atccttgagg ctgactacgg 2580
agttcgtgca aacatttact ccgctacttc ttgggttaac ttggctcgcg atggcgctgc 2640
tcgtaacaag gcacagctgc gcaacccagg tgcagatgct ggcgaggcat tcgtaaccac 2700
ccagctgaag cagacctctg gcccatacgt cgcagtgtct gacttctcca ctgatctgcc 2760
aaaccagatc cgtgaatggg tcccaggcga ctacaccgtt ctcggtgcag atggcttcgg 2820
tttctctgat acccgcccag ctgctcgtcg cttcttcaac atcgacgctg agtccattgt 2880
tgttgcagtg ctgaactccc tggcacgcga aggcaagatc gacgtctccg ttgctgctca 2940
ggctgctgag aagttcaagt tggatgatcc tacgagtgtt tccgtagatc caaacgctcc 3000
tgaggaataa gttttggcgg atgagagaag attttcagcc tgat 3044
<210> 8
<211> 1415
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
cagtgccaag cttgcatgcc tgcaggtcga ctctagtcgg ccactttaat aatcctcctc 60
gtgtgggccc cgatgtgttt ttcgattaca tggattcaac atgaaaccgc ggggctattg 120
atatatccga attgcacatt accgtccaac cggtactttg aaccaccttt ccctggaatt 180
ttttcctttt cctccccctt tacgctcaag aatcaatgaa ttcaatcact ggccagcgat 240
taacttttcg agttttcagt cttggatttc cacaattctc ttcaaaataa tggtggctag 300
atttttcatc aaaccttcac caaaaggaca tcagacctgt agttttatgc gattcgcgtc 360
aaacgtgaga gaaacatcac atctcgcggg aaactacccg ataattcttt gcaaaacttt 420
gcaaagcgga atgaacatgc agctagtttc cgtagaaatg ttctttaaaa aatccacaac 480
aattgccagg aagcacaccg attgatggat acctgaaatc ccagtgagcg caccactccc 540
cttacgtcac agtctgtaaa acaaatcttc ggtgttgcgt atccttgtta ataacttatg 600
cgttgactca ttcgtgcact tcggcgtgtc acaattaggt acgaccaaga atgggaccgg 660
gaaaccggga cgtataaacg aaataaaaca ttccaacagg aggtgtggaa atcacctcaa 720
gggacagata aatcccgccg ccagacgtta gtctggcggc gggattcgtc gtaaagcaag 780
ctctttttag ccgaggaacg ccttgtcaga caatgttgcg cccttgatgt tggcgaactc 840
ctgcagcaaa tcgcgcacag tcaacttcga cttggtagcc tgatctgcct ggtagacaat 900
ctggccttca tgcatcatga tcaggcgatt gcccaggcga attgcctgtt ccatgttgtg 960
cgtgaccata agcgtagtca gagttccatc tgccacgatc ttttcggtca aggtggtcac 1020
aagctctgca cgctgtggat caagtgctgc ggtgtgctca tccaacagca tgattttagg 1080
ttgagtaaaa ccagccatca gcagggacaa tgcctgacgc tgaccgccag agagcaaacc 1140
aactttggca gtgagcctgt tttccagacc cagctcgagg cgctcaagtt cctgcttgaa 1200
ttgctcacgg cgcttcgagg tcagtgcaaa gcccaatcca cggcgcttgc cgcgcagcaa 1260
cgcgatggcc agattctctt caatggtgag attcggcgcg gtgccggcca gaggatcctg 1320
gaaaacgcgg ccgatgtagc gggcacgctt gtgctctgac atcttgttta cattgttggg 1380
taccgagctc gaattcgtaa tcatggtcat agctg 1415
<210> 9
<211> 4110
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
tcggccactt taataatcct cctcgtgtgg gccccgatgt gtttttcgat tacatggatt 60
caacatgaaa ccgcggggct attgatatat ccgaattgca cattaccgtc caaccggtac 120
tttgaaccac ctttccctgg aattttttcc ttttcctccc cctttacgct caagaatcaa 180
tgaattcaat cactggccag cgattaactt ttcgagtttt cagtcttgga tttccacaat 240
tctcttcaaa ataatggtgg ctagattttt catcaaacct tcaccaaaag gacatcagac 300
ctgtagtttt atgcgattcg cgtcaaacgt gagagaaaca tcacatctcg cgggaaacta 360
cccgataatt ctttgcaaaa ctttgcaaag cggaatgaac atgcagctag tttccgtaga 420
aatgttcttt aaaaaatcca caacaattgc caggaagcac accgattgat ggatacctga 480
aatcccagtg agcgcaccac tccccttacg tcacagtctg taaaacaaat cttcggtgtt 540
gcgtatcctt gttaataact tatgcgttga ctcattcgtg cacttcggcg tgtcacaatt 600
aggtacgacc aagaatggga ccgggaaacc gggacgtata aacgaaataa aacattccaa 660
caggaggtgt ggaaatggcc gatcaagcaa aacttggtgg caagccctcg gatgactcta 720
acttcgcgat gatccgcgat ggcgtggcat cttatttgaa cgactcagat ccggaggaga 780
ccaacgagtg gatggattca ctcgacggat tactccagga gtcttctcca gaacgtgctc 840
gttacctcat gcttcgtttg cttgagcgtg catctgcaaa gcgcgtatct cttcccccaa 900
tgacgtcaac cgactacgtc aacaccattc caacctctat ggaacctgaa ttcccaggcg 960
atgaggaaat ggagaagcgt taccgtcgtt ggattcgctg gaacgcagcc atcatggttc 1020
accgcgctca gcgaccaggc atcggcgtcg gcgggcacat ttccacttac gcaggcgcag 1080
cccctctgta cgaagttggc ttcaaccact tcttccgcgg caaggatcac ccaggcggcg 1140
gcgaccagat cttcttccag ggccacgcat caccaggtat gtacgcacgt gcattcatgg 1200
agggtcgcct ttctgaagac gatctcgatg gcttccgtca ggaagtttcc cgtgagcagg 1260
gtggtattcc gtcctaccct cacccacacg gtatgaagga cttctgggag ttcccaactg 1320
tgtccatggg tcttggccca atggatgcca tttaccaggc acgtttcaac cgctacctcg 1380
aaaaccgtgg catcaaggac acctctgacc agcacgtctg ggccttcctt ggcgacggcg 1440
aaatggacga gccagaatca cgtggtctca tccagcaggc tgcactgaac aacctggaca 1500
acctgacctt cgtggttaac tgcaacctgc agcgtctcga cggacctgtc cgcggtaaca 1560
ccaagatcat ccaggaactc gagtccttct tccgtggcgc aggctggtct gtgatcaagg 1620
ttgtttgggg tcgcgagtgg gatgaacttc tggagaagga ccaggatggt gcacttgttg 1680
agatcatgaa caacacctcc gatggtgact accagacctt caaggctaac gacggcgcat 1740
atgttcgtga gcacttcttc ggacgtgacc cacgcaccgc aaagctcgtt gagaacatga 1800
ccgacgaaga aatctggaag ctgccacgtg gcggccacga ttaccgcaag gtttacgcag 1860
cctacaagcg agctcttgag accaaggatc gcccaaccgt catccttgct cacaccatta 1920
agggctacgg actcggccac aatttcgaag gccgtaacgc aacccaccag atgaagaagc 1980
tgacgcttga tgatctgaag ttgttccgcg acaagcaggg catcccaatc accgatgagc 2040
agctggagaa ggatccttac cttcctcctt actaccaccc aggtgaagac gctcctgaaa 2100
tcaagtacat gaaggaacgt cgcgcagcgc tcggtggcta cctgccagag cgtcgtgaga 2160
actacgatcc aattcaggtt ccaccactgg ataagcttcg ctctgtccgt aagggctccg 2220
gcaagcagca gatcgctacc accatggcga ctgttcgcac cttcaaggaa ctgatgcgcg 2280
ataagggctt ggctgatcgc cttgtcccaa tcattcctga tgaggcacgt accttcggtc 2340
ttgactcttg gttcccaacc ttgaagatct acaacccgca cggtcagaac tacgtgcctg 2400
ttgaccacga cctgatgctc tcctaccgtg aggcacctga aggacagatc ctgcacgaag 2460
gcatcaacga ggctggttcc atggcatcgt tcatcgctgc gggtacctcc tacgccaccc 2520
acggcaaggc catgattccg ctgtacatct tctactcgat gttcggattc cagcgcaccg 2580
gtgactccat ctgggcagca gccgatcaga tggcacgtgg cttcctcttg ggcgctaccg 2640
caggtcgcac caccctgacc ggtgaaggcc tccagcacat ggatggacac tcccctgtct 2700
tggcttccac caacgagggt gtcgagacct acgacccatc ctttgcgtac gagatcgcac 2760
acctggttca ccgtggcatc gaccgcatgt acggcccagg caagggcgaa gatgttatct 2820
actacatcac catctacaac gagccaaccc cacagccagc tgagccagaa ggactggacg 2880
tagaaggcct gcacaagggc atctacctct actcccgcgg tgaaggcacc ggccatgagg 2940
caaacatctt ggcttccggt gttggtatgc agtgggctct caaggctgca tccatccttg 3000
aggctgacta cggagttcgt gcaaacattt actccgctac ttcttgggtt aacttggctc 3060
gcgatggcgc tgctcgtaac aaggcacagc tgcgcaaccc aggtgcagat gctggcgagg 3120
cattcgtaac cacccagctg aagcagacct ctggcccata cgtcgcagtg tctgacttct 3180
ccactgatct gccaaaccag atccgtgaat gggtcccagg cgactacacc gttctcggtg 3240
cagatggctt cggtttctct gatacccgcc cagctgctcg tcgcttcttc aacatcgacg 3300
ctgagtccat tgttgttgca gtgctgaact ccctggcacg cgaaggcaag atcgacgtct 3360
ccgttgctgc tcaggctgct gagaagttca agttggatga tcctacgagt gtttccgtag 3420
atccaaacgc tcctgaggaa taaatcacct caagggacag ataaatcccg ccgccagacg 3480
ttagtctggc ggcgggattc gtcgtaaagc aagctctttt tagccgagga acgccttgtc 3540
agacaatgtt gcgcccttga tgttggcgaa ctcctgcagc aaatcgcgca cagtcaactt 3600
cgacttggta gcctgatctg cctggtagac aatctggcct tcatgcatca tgatcaggcg 3660
attgcccagg cgaattgcct gttccatgtt gtgcgtgacc ataagcgtag tcagagttcc 3720
atctgccacg atcttttcgg tcaaggtggt cacaagctct gcacgctgtg gatcaagtgc 3780
tgcggtgtgc tcatccaaca gcatgatttt aggttgagta aaaccagcca tcagcaggga 3840
caatgcctga cgctgaccgc cagagagcaa accaactttg gcagtgagcc tgttttccag 3900
acccagctcg aggcgctcaa gttcctgctt gaattgctca cggcgcttcg aggtcagtgc 3960
aaagcccaat ccacggcgct tgccgcgcag caacgcgatg gccagattct cttcaatggt 4020
gagattcggc gcggtgccgg ccagaggatc ctggaaaacg cggccgatgt agcgggcacg 4080
cttgtgctct gacatcttgt ttacattgtt 4110

Claims (10)

1. The application of a substance for inhibiting YH66-RS10865 gene expression or reducing YH66-RS10865 protein abundance or reducing YH66-RS10865 protein activity;
the application is as follows (I) or (II):
the application of (I) in improving the yield of the bacterial valine;
(II) use in the production of valine;
the YH66-RS10865 gene is a gene encoding YH66-RS10865 protein;
the YH66-RS10865 protein is (a1) or (a2) or (a 3):
(a1) protein shown in a sequence 3 in a sequence table;
(a2) a protein derived from a bacterium, having 95% or more identity to (a1), and being associated with valine production by the bacterium;
(a3) and (b) a protein which is obtained by substituting and/or deleting and/or adding one or more amino acid residues to the protein shown in (a1) and is related to the production of valine by bacteria and derived from (a 1).
2. A recombinant bacterium is obtained by inhibiting YH66-RS10865 gene expression in bacteria; the YH66-RS10865 gene is the YH66-RS10865 gene described in claim 1.
3. Use of the recombinant bacterium of claim 2 for producing valine.
4. A process for producing valine, comprising the steps of: fermenting the recombinant bacterium of claim 2.
5. A method for increasing valine production in a bacterium, comprising the steps of: inhibiting YH66-RS10865 gene expression or reducing YH66-RS10865 protein abundance or reducing YH66-RS10865 protein activity in bacteria;
the YH66-RS10865 gene described in claim 1;
the YH66-RS10865 protein as set forth in claim 1, which is YH66-RS10865 protein.
Use of the YH66-RS10865 protein for regulating valine production in a bacterium; the YH66-RS10865 protein as set forth in claim 1, which is YH66-RS10865 protein.
7. The mutant protein is obtained by mutating the 282 th amino acid residue of YH66-RS10865 protein from N to other amino acid residues; the YH66-RS10865 protein as set forth in claim 1, which is YH66-RS10865 protein.
8. The mutant protein coding gene or claim 7 with the mutant protein coding gene expression cassettes or claim 7 with the mutant protein coding gene recombinant vector or claim 7 with the mutant protein coding gene recombinant bacteria.
9. Use of the mutein of claim 7, the coding gene of claim 8, the expression cassette of claim 8, the recombinant vector of claim 8 or the recombinant bacterium of claim 8 for producing valine.
10. A method for increasing valine production in a bacterium, comprising the steps of: mutating the codon of 282 th amino acid residue of YH66-RS10865 protein encoded in bacterial genomic DNA from the codon encoding N to the codon encoding other amino acid residue; the YH66-RS10865 protein as set forth in claim 1, which is YH66-RS10865 protein.
CN202110980059.1A 2021-08-25 2021-08-25 Engineering bacterium obtained by modification of YH66-RS10865 gene and application thereof in valine preparation Active CN113683667B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110980059.1A CN113683667B (en) 2021-08-25 2021-08-25 Engineering bacterium obtained by modification of YH66-RS10865 gene and application thereof in valine preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110980059.1A CN113683667B (en) 2021-08-25 2021-08-25 Engineering bacterium obtained by modification of YH66-RS10865 gene and application thereof in valine preparation

Publications (2)

Publication Number Publication Date
CN113683667A true CN113683667A (en) 2021-11-23
CN113683667B CN113683667B (en) 2024-06-25

Family

ID=78582324

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110980059.1A Active CN113683667B (en) 2021-08-25 2021-08-25 Engineering bacterium obtained by modification of YH66-RS10865 gene and application thereof in valine preparation

Country Status (1)

Country Link
CN (1) CN113683667B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292315A (en) * 2021-12-31 2022-04-08 宁夏伊品生物科技股份有限公司 ppc mutant and application thereof in preparation of L-valine
CN114540399A (en) * 2022-02-15 2022-05-27 宁夏伊品生物科技股份有限公司 Method for preparing L-valine and gene mutant and biological material used by same
CN114540262A (en) * 2022-02-15 2022-05-27 宁夏伊品生物科技股份有限公司 Method for constructing recombinant microorganism producing L-valine and nucleic acid molecule and biomaterial used therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1767616A2 (en) * 2005-09-22 2007-03-28 Degussa GmbH Method for producing L-amino acids or ketoacids employing coryneform bacteria with attenuated aceE (pdhA) expression
US20090053779A1 (en) * 2007-01-17 2009-02-26 Korea Advanced Institute Of Science And Technology Mutant microorganism having improved production ability of branched amino acid and method for preparing branched amino acid using the same
CN106715687A (en) * 2015-03-18 2017-05-24 Cj第制糖株式会社 Pyruvate dehydrogenase mutant, microorganism comprising mutant, and method for producing L-amino acid by using microorganism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1767616A2 (en) * 2005-09-22 2007-03-28 Degussa GmbH Method for producing L-amino acids or ketoacids employing coryneform bacteria with attenuated aceE (pdhA) expression
US20090053779A1 (en) * 2007-01-17 2009-02-26 Korea Advanced Institute Of Science And Technology Mutant microorganism having improved production ability of branched amino acid and method for preparing branched amino acid using the same
CN106715687A (en) * 2015-03-18 2017-05-24 Cj第制糖株式会社 Pyruvate dehydrogenase mutant, microorganism comprising mutant, and method for producing L-amino acid by using microorganism

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EMBL: "TR:A4QFV6 A4QFV6_CORGB (http://www.uniprot.org/uniprot/A4QFV6_CORGB) Pyruvate dehydrogenase E1 component OS=Corynebacterium glutamicum (strain R) OX=340322 GN=cgR_2120 PE=4 SV=1, Length=922, Identities = 921/922 (99%)", Retrieved from the Internet <URL:http://www.uniprot.org/uniprot/A4QFV6_CORGB> *
KALINOWSKI等: "The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.", JOURNAL OF BIOTECHNOLOGY, vol. 104, no. 1, pages 3 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114292315A (en) * 2021-12-31 2022-04-08 宁夏伊品生物科技股份有限公司 ppc mutant and application thereof in preparation of L-valine
CN114540399A (en) * 2022-02-15 2022-05-27 宁夏伊品生物科技股份有限公司 Method for preparing L-valine and gene mutant and biological material used by same
CN114540262A (en) * 2022-02-15 2022-05-27 宁夏伊品生物科技股份有限公司 Method for constructing recombinant microorganism producing L-valine and nucleic acid molecule and biomaterial used therefor
CN114540262B (en) * 2022-02-15 2024-05-03 宁夏伊品生物科技股份有限公司 Method for constructing recombinant microorganism producing L-valine and nucleic acid molecule and biological material used in same
CN114540399B (en) * 2022-02-15 2024-05-03 宁夏伊品生物科技股份有限公司 Method for preparing L-valine, and gene mutant and biological material used by same

Also Published As

Publication number Publication date
CN113683667B (en) 2024-06-25

Similar Documents

Publication Publication Date Title
CN113683667B (en) Engineering bacterium obtained by modification of YH66-RS10865 gene and application thereof in valine preparation
CN113666991B (en) Engineering bacterium obtained by YH66-RS07015 gene modification and application thereof in valine preparation
CN113683666B (en) Engineering bacterium obtained by YH66-RS07020 gene modification and application thereof in valine preparation
CN113667682A (en) YH66-RS11190 gene mutant and application thereof in preparation of L-valine
EP4273228A1 (en) Strain having enhanced l-glutamic acid productivity, construction method therefor and application thereof
CN113563436B (en) Engineering bacterium obtained by modification of YH66-RS03880 gene and application thereof in valine preparation
CN114181288B (en) Process for producing L-valine, gene used therefor and protein encoded by the gene
CN114409751B (en) YH 66-04470 gene mutant recombinant bacterium and application thereof in preparation of arginine
CN114605509B (en) YH 66-01475 protein and application of encoding gene thereof in regulating and controlling bacterial arginine yield
CN114540399B (en) Method for preparing L-valine, and gene mutant and biological material used by same
CN114317583B (en) Method for constructing recombinant microorganism producing L-valine and nucleic acid molecule used in method
CN112725253B (en) Recombinant strain for modifying gene BBD29_14900 and construction method and application thereof
CN114410615B (en) YH66_00525 protein and application of encoding gene thereof in regulating and controlling bacterial arginine yield
CN114507273B (en) YH66_07020 protein and application of related biological material thereof in improving arginine yield
CN114292315B (en) Ppc mutant and application thereof in preparation of L-valine
CN114751966B (en) YH66_04585 protein and application of related biological material thereof in improving arginine yield
CN115073569B (en) YH 66-09125 gene mutant recombinant bacterium and application thereof in preparation of arginine
CN114410614B (en) Application of YH66_05415 protein or mutant thereof in preparation of L-arginine
CN114560918B (en) Application of YH 66-14275 protein or mutant thereof in preparation of L-arginine
CN114315998B (en) CEY17_RS00300 gene mutant and application thereof in preparation of L-valine
CN114249803B (en) Engineering bacterium for high-yield arginine and construction method and application thereof
CN114277069B (en) Method for preparing L-valine and biological material used by same
CN114907459B (en) Engineering bacterium for high-yield arginine and construction method and application thereof
CN118147035A (en) Recombinant microorganism and application thereof in preparation of L-lysine
CN114315999A (en) LeuD protein mutant and related biological material and application thereof in preparation of L-valine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant